甘肃鼢鼠鼻腔的组织解剖及低氧条件下鼻粘膜内含SP及CGRP的免疫反应纤维
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘肃鼢鼠是一种严格营地下生活的啮齿类动物,它所生活的密闭洞道环境使其遭受多重生存压力,低氧即为其中之一。P物质(SP)和降钙素基因相关肽(CGRP)是初级感觉神经元的主要起信号作用的神经肽,低氧条件下肽能神经纤维内SP及CGRP含量的变化情况反映了动物体对所遭受的有害刺激的感觉适应情况。
     本文运用组织学方法对甘肃鼢鼠的鼻腔进行了解剖学研究,分析了其鼻腔结构与其它啮齿动物的差异,应用免疫组织化学方法对比了常氧条件下与低氧条件下(10.5%O_2每天8小时,持续一个月)甘肃鼢鼠鼻腔粘膜的SP及CGRP能神经纤维平均长度的变化情况,探究甘肃鼢鼠上呼吸道对其所生存的低氧环境的适应。通过研究得出以下主要结论:
     1.甘肃鼢鼠的鼻腔粘膜与其它啮齿动物一样,分为前庭粘膜、呼吸粘膜和嗅粘膜,粘膜的上皮细胞类型也分为扁平上皮、变移上皮、呼吸上皮和嗅上皮四种类型,粘膜从外到里依次为上皮、基层和固有层。甘肃鼢鼠鼻腔中嗅粘膜所占比例较大,几乎覆盖了上颌鼻甲的大部分和鼻中隔的一半多,这与其发达的嗅觉功能是相适应的。由于呼吸粘膜中杯状细胞所分泌的粘蛋白能保护上皮免受细菌、病毒侵害,故构成免疫的第一道防线,但甘肃鼢鼠呼吸粘膜中杯状细胞很少,几难见到,这与其在实验室饲养环境中免疫功能低下的事实是一致的,所以推测杯状细胞的缺失可能是甘肃鼢鼠免疫功能低下的一个原因。
     2.甘肃鼢鼠在低氧条件下鼻腔粘膜的SP及CGRP免疫反应神经纤维的平均长度虽然较之常氧条件有所增加(p<0.05),但未达到极显著水平,另外,甘肃鼢鼠鼻腔粘膜内肽能神经增加率(相对于常氧条件)明显小于SD大鼠而与常氧条件下相差不大(低氧条件下肽能神经平均长度与常氧条件的比率小于1.5),这说明低氧环境并未对甘肃鼢鼠的上呼吸道造成较大影响,对甘肃鼢鼠还算不上严重的有害刺激,所以推断,甘肃鼢鼠的上呼吸道对低氧环境的不敏感性是对其极端生存环境的一种适应性特征。但目前还没有做低氧条件下甘肃鼢鼠的气管、肺等器官的粘膜内肽能神经纤维相对于常氧条件的变化研究,因此,甘肃鼢鼠呼吸道对低氧环境的适应还有待于进一步研究。
Myospalax cansus is a subterranean rodents. It has to be faced with multiple pressures of survival due to living in the confined tunnel environment,and hypoxia is one of the pressures. Substance P (SP) and calcitonin gene-related peptide(CGRP) in primary sensory neurons are predominant signal substances to transmite sensory information. The change of SP and CGRP content within peptidergic nerve fibers in hypoxic condition shows how Myospalax cansus adapts to the harmful stimulus.
     In this paper, the nasal cavity of Myospalax cansus were studied by using histology and anatomical approach. We revealed the differences between Myospalax cansus and other rodents in the nasal cavity. Using immunohistochemical technique,the distributing density of SP-immunoreactive and CGRP-immunoreactive nerve fibers in the nasal mucosa was compared between normoxic and chronically hypoxic Myospalax cansus (10.5%O_2 for 8 hours everyday within 1 month) . We tried to find how Myospalax cansus adapts to hypoxic condition in the upper respiratory tract and drew the following conclusions:
     1. Be similar to other rodents, the nasal mucosa of Myospalax cansus is divided into the vestibular mucosa, respiratory mucosa and olfactory mucosa, and the epithelial cell type of the nasal mucous is also divided into squamous epithelium, transitonal epithelium ,respiratory epithelium and olfactory epithelium. From the outside to inside of the nasal mucous ,the epithelium is followed by basal lamina and lamina propria. The olfactory mucosa accouts for a large proportion of the nasal mucosa.It almost covers the majority of maxilloturbinate and half of the nasal septum, which features was adapted to well-developed sense of smell of Myospalax cansus. The goblet cell in respiratory mucosa can protect the epithelium from bacteria, viruses as result of secreting mucin, and it constitutes the first line of defense. But the goblet cells of respiratory mucosa in Myospalax cansus are few, which may be one of the reasons why the immunity of Myospalax cansus with reared in the laboratory is compromised.
     2. In nasal mucosa in hypoxic Myospalax cansus , the relative density of SP- and CGRP-immunoreactive nerve fibers was also higher than normoxic mucosa(p<0.05), but that did not reach very significant levels, In addition, in hypoxic Myospalax cansus nasal mucosa, the rate of increase of peptidergic nerves (be compared with Myospalax cansus in normoxic conditions) was significantly smaller than the SD rats, and has little difference between normxic and hypoixic conditions (the ratio of them was less than 1.5). It suggests that hypoxic environment has no greater impact on upper respiratory tract of Myospalax cansus. Thus, we thinked that the upper respiratory tract in Myospalax cansus was no highly sensitive to hypoxic entironment , which adated to the extremely living environment. However, in hypoxic trachea mucosa, lung mucosa ,the density change of peptidergic nerve fibers have been not studied. The hypoxic adptation in whole respiratory tract in Myospalax cansus has still been further researched.
引文
[1]Lembeck F.Central transmission of afferent impulses.Ⅲ.Incidence and significance of the substance P in the dorsal roots of the spinal cord.Naunyn Schmiedebergs Arch.Exp.Pathol.Pharmakol.1953(219):197-213.
    [2]Maggi C A.The mammalian tachykinin receptors,en.Pharmacol.1995(26):911-944.
    [3]Page,N.M.New challenges in the study of the mammalian tachykinins.Peptides.2005(26):1356-1368.
    [4]Guard S.,Watson S.P.,Tachykinin receptor types:classification and membranesignaling mechanisms,Neurochem.Int.1991(18):149-165.
    [5]Lundberg JM,Hokfelt T,Martling CR.,et al.,Substance P-immunoreactive sensory nerves in the lower respiratory tract of various mammals including man.Cell Tissue Res 1984(235):251-261.
    [6]Kummer W,Fischer A,Kurkowski R et al.,The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal traci -ng and double-labelling immunohistochemistry.Neuroscience.1992(49):715-37.
    [7]Riccio MM,Kummer W,Biglari B.,et al.,Interganglionic segregation of distinct vagal afferent fibre phenotypes in guineapig airways.J.Physiol.1996(496):521-30.
    [8]Lilly CM,Bai TR,Shore SA.,et al.,.Neuropeptide content of lungs from asthmatic and nonasthmatic patients.Am J Respir Crit Care Med 1995(151):548-53.
    [9]Fischer A,McGregor GP,Saria A.,et al.Induction of tachykinin gene and pept-ide expression in guinea pig nodose primary afferent neurons by allergic airway infl-ammation.J Clin Invest 1996(98):2284-91.
    [10]Myers AC,Kajekar R,Undem BJ.Allergic inflammation-induced neuropeptid reproduction in rapidly adapting afferent nerves in guinea pig airways.Am JPhysiol Lung Cell Mol Physiol.2002(282):L775-81.
    [11]Chuaychoo B,Hunter D.D.,Myers A.C.,Allergen-induced substance P synthesis in large-diameter sensory neurons innervating the lungs.J.Allergy Clin Immunl.2005(116):325-331.
    [12]谢启文.神经肽.[M].上海:复旦大学出版社,2004:415-416.
    [13]Fewtrell C.M.S.,Foreman J.C,Jordan C.C.,et al.The effects ofsubstance P on histaming and 5-hydroxytryptaming release in the rat. J. Physiol. 1982(330):393-411.
    
    [14]Cao, T., Gerard, N.P. & Brain, S.D. Use of NK1 knockout mice to analyze substance P-induced edema formation. Am. J.Physiol. 1999(277):476-481.
    
    [15]Unger Th., Carolus S., Demmert G.,et al., Substance P induces a cardiovascular defence reaction in the rat: pharmacological charac- terization, Circ. Res. 1988 (63): 812-820.
    
    [16]Culman J., Unger Th., Central tachykinins:mediators of defencereaction and stress reactions, Can.J.Physiol. Pharmacol.l995(73):885-891.
    
    [17]Culman J., Klee S., Ohlendorf C.et al., Effects of tachykinin receptor inhibition in the brain on cardiovascular and behavioral responses to stress, J. Pharmacol. Exp.Ther. 1997(280):238-246.
    
    [18]Cao, T., Pinter, E., Al-rashed, S. et al. Neurokinin-1 receptor agonists are involved in mediating neutrophil accumulation in the inflamed, but not normal, cutaneous microvasculature: an in vivo study using neurokinin-1 receptor knockout mice. J. Immunol.2000(164):5424-5429.
    
    [19]Neumann S, Doubell TP, Leslie T.et al. Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons. Nature 1996(384):360-4.
    
    [20]Ma QP, Woolf CJ. Progressive tactile hypersensitivity: an inflammation induced incremental increase in the excitability of the spinal cord. Pain.l996(67):97-106.
    
    [21]Martling C.R, Saria A, Fischer i.A.et al. Calcitonin gene-related peptide and the lung: neuronal coexistence with substance P, release by capsaicin and vasodilatory effect. Regulatory Peptides.1988(20): 125-139.
    
    [22]Ma W & Bisby MA. Increase of calcitonin gene-related peptide immunoreact i-vity in the axonal fibers of the gracile nuclei of adult and aged rats after complete and partial sciatic nerve injuries. Exp Neurol.l998(152):137-149.
    [23]Bennett AD, Chastain KM & Hulsebosch CE. Alleviation of mechanical and thermal allodynia by CGRP_(8-37) in a rodent model of chronic central pain. Pain. 2000(86): 163-175.
    
    [24]Weidner C, Klede M, Rukwied R.et al. Acute effects of substance P and calcitonin gene-related peptide in human skin-a microdialysis study. J Invest Dermatol.2000(115):1015-1020.
    [25]Gamse,R. & Saria,A. Potentiation of tachykinin induced plasma protein extravasation by calcitonin gene-related peptide.European Journal of Pharmacology.1985(114):61-66.
    [26]Brain,S.D.& Williams,T.J.Interactions between the tachykinins and calcitonin gene-related peptide lead to the modulation of oedema formation and blood flow in rat skin.British Journal of Pharmacology.1989(97):77-82.
    [27]Brain,S.D.,Cambrige,H.,Hughes,S.R.et al.Evidence that calcitonin gene-related peptide contributes to inflammation in the skin and joint.Annals of the New York.Academy of Sciences.1992(657):412-419.
    [28]Buckley,T.L.,Brain,S.D.,Rampert,M.et al.Time-dependent synergistic interactions between the vasodilator neuropeptide,calcitonin gene-related peptide (CGRP) and mediators of inflammation.British Journal of Pharmacology 1991(103):1515-1519.
    [29]Sung,C.P.,Arleth,A.J.,Aiyar,N.et al.CGRP stimulates the adhesion of leukocytes to vascular endothelial cells.Peptides.1992(13):429-434.
    [30]Goebeler,M.,Henseleit,U.,Roth,J.et al.Substance P and calcitonin gene-related peptide modulate leukocyte infiltration to mouse skin during allergic contact dermatitis.Archives of Dermatological Research.1994(286):341-346.
    [31]Hosoi,J.,Murphy,G.F.,Egan,C.L.et al.Regulation of Langerhans cell function by nerves containing calcitonin generelated peptide.Nature 1993(363):159-163.
    [32]Ryu,P.D.,Gerber,G.,Murase,K.et al.a.Actions of calcitonin gene-related peptide on rat spinal dorsal horn neurons.Brain Research.1988(441):357-361.
    [33]Schaible,H.G.,Hope,P.J.,Lang,C.W.et al..Calcitonin gene-related peptide causes intraspinal spreading of substance P released by peripheral stimulation.European Journal of Neuroscience.1992(4):750-757.
    [34]Morton,C.R.& Hutchison,W.D.Release of sensory neuropeptides in the spinal cord:studies with calcitonin generelated peptide and galanin.Neuroscience.1989(31):807-815.
    [35]Lawson S.N.,Crepps B.and Perl E.R.Calcitonin gene-related peptide imm-unoreactivity and afferent receptive properties of dorsal root ganglion neurones in guinea-pigs.Journal of Physiology.2002(540):989-1002.
    [36]Sumbera R,Chitaukali WN,Elichova M,et al.Microclimatic stability in burrows of an Afrotropical solitary bathyergid rodent,the silverymole-rat(Heliophobius argenteocinereus).J.Zool Lond.2004(263):409-416.
    [37]Wilson KJ,Kilgore DL Jr.The effect of location and design on the diffusion of respiratory gases in mammal burrows.J.Theor Biol 1978(71):73-101.
    [38]McNab BK.The metabolism of fossorial rodents:a study of convergence.Ecology.1966(47):712-733.
    [39]Darden TR.Respiratory adaptations of a fossorial mammal,the pocket gopher (Thomomys bottae).J.Comp Physiol A.1972(78):121-137.
    [40]Zeng J,Wang Z,Shi Z.Metabolic characteristics and some physiological parameters of mole rat(Myospalax baileyi) in alpine area.Acta Biol Plat Sin1984(3):163-171.
    [41]Evans DS,Dill DB.Environmental conditions in the burrow of the kangaroo rat(Dipodomys merriami).Physiologist.1969(12):218.
    [42]Soholt LF.Environmental conditions in an artificial burrow occupied by Merriam's kangaroo rat,Dipodomys merriami.J Mammal 1974(55):859-864.
    [43]Kay RF,Whitford WG.The burrow environment of the banner-tailed kangaroo rat,Dipodomys spectabilis,in South-central New Mexico.Am Mid Nat.1978(99):270-279.
    [44]Roper TJ,Bennett NC,Conradt L,et al.Environmental conditions in burrows of two species of African mole-rat,Georhychus capensis and Cryptomys damarensis.J Zool Lond 2001(254):101-107.
    [45]Roper TJ,Kemenes I.Effect of blocking of entrances on the internal environment of badger Meles meles setts.J Appl Ecol 1997(34):1311-1319.
    [46]Shams I,Avivi A,Nevo E.Oxygen and carbon dioxide fluctuation in burrow of subterranean blind mole-rats indicate tolerance to hypoxic-hypercapnic stress.Comp Biochem Physiol A.2005(142):376-382.
    [47]Arieli R.The atmospheric environment of fossorial mole rat(Spalax ehrenbergi):effect of season,soil texture,rain,temperature and activity.Comp Biochem Physiol A 1979(63):569-575.
    [48]Kennerly TE Jr.Microenvironmental conditions of the pocket gopher burrow.Texas J Sci.1964(16):395-441.
    [49]Kuhnen G.O_2 and CO_2 concentrations in burrows of euthermic and hibernating golden hamsters.Comp Biochem Physiol A.1986(84):517-522.
    [50]MacLean GS.Torpor patterns and micro-environment of the eastern chipmunk,Tamias striatus.J.Mammal.1981(62):64-73.
    [51]Nevo,E. Evolutionary theory and processes of active speciation and adaptive radiation in subterranean mole rats, Spalax ehrenbergi superspecies in Israel. Evol.Biol.1991(25):1-125.
    
    [52]Edoute, Y., Arieli, R. and Nevo, E. Evidence for improved myocardial oxygen delivery and function during hypoxia in the mole rat. J. Comp. Physiol. B.1988(158):575-582.
    
    [53]Widmer, HP., Hoppeler,H., Nevo, E. et al. Working underground: Respiratory adaptations in the blind mole rat. Proc. Natl. Acad. Sci. USA.1997(94):2062-2067.
    
    [54]Arieli, R., and Ar.A.Heart rate responses of the mole rat (Spalax ehrenbergi) in hypercapnic, hypoxic and cold conditions. Physiol. Zool. 1981(54): 14-21.
    
    [55] Nevo, E. and Reig, O.A., Eds.Arieli, R. Evolution of subterranean mammals at the organismal and molecular levels [M].New York: Wiley-Liss, 1990: 251-268.
    
    [56]Vock, R. and Weibel, E.R. Massive hemorrhage causes changes in morphometric parameters of lung cap illaries and concentration of leukocytes in microvasculature Exp. Lung Res. 1993 (19):549-557.
    
    [57]Weibel, E.R., Marques, L.B., Constantinopol, M.,et al., Adaptive variation in the mammalian respiratory system in relation to energetic demand. Respir. Physiol. 1987 (69):81-100.
    
    [58]Weibel, E.R., Federspiel, W.J., Fryder-Doffeyf., et al.,Morphometric model for pulmonary diffusing capacity .:Membrane diffusing capacity Respir.Physiol. 1993 (93):125-149.
    
    [59]Honig, C.R., Connett, R.J. and Gayeski, E.J. O_2 transport and its interaction withmetabolism; a systems view of aerobic capacity.J.Med Sci Sports Exerc.l992(24):47-53.
    
    [60]Arieli R,Heth G,Nevo E.,et al.Hematocrit and hemoglobin concentration in four chromosomal species and some isolated populations of actively speciating subterranean mole rats in Israel.J.Experientia. 1986(42) :441-443.
    
    [61]Ar A , Arieli R , Shkolnik A. Blood - gas properties and function in the fossorial mole rat under normal and hypoxic - hypercapnic atmospheric conditions.J. Respir Physiol. 1977(30):201-218.
    
    [62]Kleinschmidt T , Nevo E , Braunitzer G.The primary structure of the hemoglobin of the mole rat ( Spalax ehrenbergi, rodentia , chromosome species60).J.Hoppe Seylers Z Physiol Chem.l984(365):531-537.
    [63]Nevo E,Ben-Shlomo R,Maeda N.Haptoglobin DNA polymorphism in subterranean mole rats of the spalax ehrenbergi superspecies in Israel.J.Heredity.1989,62,(1):85-90.
    [64]Gurnett A M,O'Connell J,Harris D E.,et al.The myoglobin of rodents:Lagostomus maximus(viscacha) and Spalax ehrenbergi(mole rat).J.Protein Chem.1984(3):445-454.
    [65]Aaron Avivi.,Mark Band.,Alma Joel.,et al,Adaptive features of skeletal muscles of mole rats(Spalax ehrenbergi) to intensive activity under subterranean hypoxic conditions.Acta Histochemica,In Press,Corrected Proof,Available online 3August 2008.
    [66]王晓君,魏登邦,魏莲等.高原鼢鼠和高原鼠兔红细胞低氧适应特征[J].四川动物2008,27(6):1100-1103.
    [67]王晓君,魏登邦,魏莲等.高原鼢鼠和高原鼠兔肺细叶的结构特征[J].动物学报,2008,54(3):531-539.
    [68]齐新章,王晓君,朱世海等.高原鼢鼠和高原鼠兔心脏对低氧环境的适应[J].生理学报,2008,60(3):348-354.
    [69]Wei D B,Wei L,Zhang J M,et al.Blood - gas properties of plateau zokor (Myospalax baileyi).J Comp Biochem Physiol.2006 A(145):372-385.
    [70]杨静,李金钢,何建平等.甘肃鼢鼠血象及其与低氧适应的关系[J].动物学杂志,2006,41(2):112-115.
    [71]Yang H,Nevo E,Tashian R E.Unexpected expression of carbonic anhydrase I and selenium- binding protein as the only major non - born proteins in erythrocytes of the subterranean mole rat(Spalax ehrenbergi).J.FEBS Lett.1998(430):343-347.
    [72]Maxwell,P.H.The HIF pathway in cancer.Semin.Cell Dev.Biol.2005(16):523-530.
    [73]Ratcliffe,P.J.Understanding hypoxia signalling in cells—a new therapeutic opportunity? Clin.Med.2006(6):573-578.
    [74]Semenza,G.L.,and Wang,G.L.A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation.Mol.Cell Biol.1992(12):5447-5454.
    [75]Wang,G.L.,and Semenza,G.L..Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity:Implications for models of hypoxia signal transduction.Blood.1993(82):3610-3615.
    [76]Wang GL , Semenza GL. Purification and characterization of hypoxia - inducible factor -1 J. Biol Chem. 1995 (270) :1230 -1237.
    
    [77]Wiesener, M. S., Turley, H., Allen, W. E., et al. Induction of endothelial PAS domain protein-1 by hypoxia: Characterization and comparison with hypoxia-inducible factor-1 alpha. Blood 1998(92): 2260-2268.
    
    [78]Arany, Z., Huang, L. E., Eckner, R., et al. An essential role for p300/CBP in the cellular response to hypoxia. Proc. Natl. Acad. Sci. USA 1996(93): 12969-12973.
    
    [79]Warnecke C, Griethe W, Weidemann A,et al.Activation of the hypoxia-inducible factor-pathway and stimulation of angiogenesis by application of prolyl hydroxylase inhibitors. FASEB J. 2003 (17): 1186-1188.
    
    [80]Jiang, B. H., Semenza, G. L., Bauer, C.,et al.Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O_2 tension. Am. J.Physiol. 1996 (271):C1172-C1180.
    
    [80]Iyer, N. V., Kotch, L. E., Agani, ¥.,et al. Cellular and developmental control of O_2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998 (12): 149-162.
    
    [82]Rankin, E. B., Biju, M. P., Liu, Q.,et al. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J. Clin. Invest. 2007 (117):1068-1077.
    
    [83]Ryan, H. E., Lo, J., and Johnson, R. S. HIF-1 α is required for solid tumor formation and embryonic vascularization. EMBO J. 1998 (17 ) :3005-3015.
    
    [84]Scortegagna, M., Morris, M. A., Oktay, Y.,et al. The HIF family member EPAS1 /HIF-2α is required for normal hematopoiesis in mice. Blood 2003. (102):1634-1640.
    
    [85]Philipp, S., Jurgensen, J. S., Fielitz, i.,et al.Stabilization of hypoxia inducible factor rather than modulation of collagen metabolism improves cardiac function after acute myocardial infarction in rats. Eur. J. Heart Fail. 2006(8):347-354.
    
    [86]Rosenberger,C.,Mandriota,S.,Jurgensen,J.S.,et al. Expression of hypoxia-inducible factor-1 alpha and -2alpha in hypoxic and ischemic rat kidneys. J. Am.Soc. Nephrol. 2002(13): 1721-1732.
    
    [87]Wiesener,M.S.,Jurgensen,J.S.,Rosenberger,C.,et al. Widespread hypoxia-inducible expression of HIF-2 α in distinct cell populations of different organs. FASEB J. 2003 (17):271-273.
    
    [88]Schofield, C. J., and Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nat. Rev.Mol. Cell Biol. 2004 (5): 343-354.
    [89]Semenza GL.Hypoxia - inducible factor 1:master regulator of O_2 homeostasis.J.Curr Opin Genet Dev.1998(8):588-594.
    [90]Gross E.A.,Swenberg J.A.,Fields S.et al.Comparative morphometry of the nasal cavity in rats and mice.J.Anat.1982(135):83-88.
    [91]Schreider,J.P.Nasal airway anatomy and inhalation deposition in experimental animals and people;in Reznik,G.,S.F.Stinsson(eds):Nasal Tumors in Animals and Man.Boca Raton,CRC Press,1983:2-26.
    [92]Gizurarson,S.Animal models for intranasal drug delivery studies.Acta Pharm Nord.1990(2):105-122.
    [93]Harkema,J.R.Comparative pathology of the nasal mucosa in laboratory animals exposed to inhaled irritants.Environ Health Perspect.1990(85):231-238.
    [94]Jurcisek.J.A.,.Durbin J.E.,Kusewitt D.F.et al.Anatomy of the Nasal Cavity in the Chinchilla.Cells Tissues Organs 2003(174):136-152.
    [95]Uraih L.C.and Maronpot R.R.Normal Histology of the Nasal Cavity and Application of Special Techniques.Environmental Health Perspectives.1990(85):187-208.
    [96]Mygind N.,Dahl R.Anatomy,physiology and function of the nasal cavities in health and disease.Advanced drug delivery reviews.1998(29):3-12.
    [97]王平,曹焯,樊启昶等.简明脊椎动物组织与胚胎学[M].北京:北京大学出版社,2004:112.
    [98]Monticello TM,Morgan KT,Uraih L.Nonneoplastic nasal lesions in rats and mice.Environ Health Perspect.1990(85):249-274.
    [99]Smirnova,M.G.,Guo,L.,Birchall,J.P.et al.LPS up-regulates mucin and cytokine mRNA expression and stimulates mucin and cytokine secretion in goblet cells.Cellular Immunology.2003(221):42-49.
    [100]Adams,D.R.Olfactory and non-olfactory epithelium in the nasal cavity of the mouse.Peromyscus.Am.J.Anat.1972(133):37-50.
    [101]Vizek,M.,Pickett,C.K.,Weil,J.V.Increased carotid body hypoxic sensitivity during acclimatization to hypobaric hypoxia.J.Appl.Physiol.1987(63):2403-2410.
    [102]Begall S.,Burda H.,Schleich C.E.,Subterranean Rodents—News from Under-ground[M].Berlin:Springer,2007:28-30.
    [103]Kusakabe,T.;Kawakami,T.;Powell,F.L.et al.Distribution of substance P and calcitonin generelated peptide immunoreactive nerve fibers in the trachea of chronically hypoxic rats.Brain Res.Bull.1996(39):335-339.
    [104]Matsuda H.,Kusakabe T.,Hayashida Y.et al.Substance P- and calcitonin gene-related peptidecontaining nerve fibers in the nasal mucosa of chronically hypoxic rats.Brain Research Bulletin.1998(45):563-569.
    [105]Stjarne,P.,Lundbladl L.,Anngard A.et al.Tachykinins and calcitonin generelated peptide:coexistence in sensory nerves of the nasal mucosa and effects on blood flow.Cell Tiss.Res.1989(256):439-446.
    [106]Hauser-Kronberger,C.,Hacker,C.W.,Muss W.et al.Autonomic and peptidergic innervation of human nasal mucosa.Acta Otolaryngol.(Stockh.).1993(113):387-393.
    [107]Cadieux,A.Occurrence,distribution and ontogeny of CGRP immunoreactivity in the rat lower respiratory tract:Effect of capsaicin treatment and surgical denervations.Neuroscience 1986(19):605-627.
    [108]Uddman,R.,Luts,A.,Sundler,F.Occurrence and distribution of calcitonin gene-related peptide in the mammalian respiratory tract and middle ear.Cell Tissue Res.1985(241):551-555.
    [109]Anggard,A.Basic mechanisms in autonomic nervous responses in specific and nonspecific nasal hyperreactivity.Acta Otolaryngol.(Stockh.) 1993(113):394-396.
    [110]Gawin,A.Z.,Baraniuk J.N and Kaliner M.Effects of substance P and calcitonin gene related peptide(CGRP) on guinea pig nasal mucosal secretion in vivo.Acta Otolaryngol.(Stockh.) 1993(113):533-539.
    [111]Baraniuk,J.N.,Lundgren,J.D.,Okayama,M.et al.Substance P and neurokinin A in human nasal mucosa.Am.J.Respir.Cell Mol.Biol.1991(4):228-236.
    [112]Grunditz,T.,Uddman,R.,Sundler,F.Origin and peptide content of nerve fibers in the nasal mucosa of rats.Anat.Embryol.1994(189):327-337.
    [113]Park T.J,Lu Ying,J(u|¨)ttner Rene.et al.Selective Inflammatory Pain Insensitivity in the African Naked Mole-Rat(Heterocephalus glaber).PLoS Biol.2008,6(1):e13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700