高原鼢鼠、高原鼠兔的骨骼肌对低氧环境的适应机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高原鼢鼠和高原鼠兔是青藏高原土著动物,对低氧具有很好的适应性。
     为了探讨高原鼢鼠和高原鼠兔骨骼肌摄氧功能与其生活习性的关系,以SD大鼠为对照,应用免疫组化方法测定了三种动物骨骼肌微血管密度(CD),结果发现,高原鼢鼠骨骼肌细胞中微血管密度显著高于SD大鼠(P<0.05),SD大鼠骨骼肌细胞中微血管密度显著高于高原鼠兔(P<0.05);以显微体视学技术测量了线粒体的数量和面积,结果发现,高原鼢鼠和SD大鼠骨骼肌细胞中线粒体面数密度(NA)和比表面积(δ)无显著差异(P>0.05),但显著高于高原鼠兔(P<0.05)。高原鼠兔、高原鼢鼠和SD大鼠骨骼肌线粒体体密度(VV)及面密度(SV)依次显著增加(P<0.05);用分光光度法测定了三种动物骨骼肌肌红蛋白(Mb)含量、结果显示,高原鼢鼠骨骼肌中肌红蛋白含量为高原鼠兔的两倍多,为SD大鼠的三倍多;乳酸(LD)含量和乳酸脱氢酶(LDH)活力;采用聚丙烯酰胺凝胶电泳(PAGE)观察了三种动物LDH同工酶谱。结果表明:在高原鼠兔和SD大鼠骨骼肌中,LDH活力和LD含量无显著差异(P>0.05);但显著高于高原鼢鼠(P<0.05)。同工酶酶谱显示,高原鼢鼠骨骼肌中M亚基含量相对较低,H亚基含量相对较高,而高原鼠兔和SD大鼠骨骼肌中M亚基含量明显高于H亚基含量,高原鼠兔骨骼肌中毛细血管密度、线粒体数量和面积均显著低于高原鼢鼠和SD大鼠;高原鼢鼠、高原鼠兔和SD大鼠骨骼肌中Mb含量依次降低,并有显著性差异;高原鼢鼠骨骼肌中LDH活力和LD含量显著低于高原鼠兔,高原鼢鼠和SD大鼠没有显著的差异。同工酶酶谱显示,高原鼢鼠骨骼肌中M亚基含量相对较低,H亚基含量相对较高,而高原鼠兔和SD大鼠骨骼肌中M亚基含量明显高于H亚基含量。
     为探究高原鼢鼠和高原鼠兔对低氧高二氧化碳生境的适应机理分子生物学水平上差异,用real time PCR检测HIF-1α、Mb、VEGF、LDH-A、LDH-B基因在骨骼肌mRNA水平表达的测定,结果显示,高原鼢鼠和高原鼠兔骨骼肌HIF-1α基因mRNA水平的表达无显著差异(P>0.05),两种高原动物的表达水平均高于SD大鼠(P<0.05);高原鼢鼠骨骼肌Mb基因mRNA水平的表达与高原鼠兔差异不显著(P>0.05);高原鼠兔和高原鼢鼠明显高于SD大鼠(P<0.05);高原鼢鼠骨骼肌VEGF165基因mRNA水平的表达与高原鼠兔差异不显著(P>0.05);高原鼠兔和高原鼢鼠明显高于SD大鼠(P<0.05);高原鼢鼠骨骼肌LDH-A基因和LDH-B基因mRNA水平的表达与SD大鼠差异不显著(P>0.05);高原鼢鼠和高原鼠兔明显高于SD大鼠(P<0.05)。
     上述结果说明,高原鼢鼠尽管生活在严重的低氧环境中,但其骨骼肌通过提高微血管密度、Mb的含量以及线粒体数量和面积增强获氧能力,提高有氧获能水平。与之相反,高原鼠兔骨骼肌主要以糖酵解获能,HIF-1α、Mb、VEGF、LDH-A、LDH-B基因在高原鼢鼠和高原鼠兔的骨骼肌mRNA水平表达的测定明显高于SD大鼠,这与两种动物的生活习性密切相关。
The Plateau zokor (Myospalax rufescens baileyi) and plateau pika (Ochotona curzniae) are species endemic to the Qinghai-Tibet Plateau.
     To investigate the relationships between function of getting oxygen in skeletal muscle and living habit of plateau zokor (Myospalax rufescens baileyi) and plateau pika (Ochotona curzoniac), the capillary density (CD) of skeletal muscle of plateau zokor and plateau pika were measured by immunohistochemical staining, the numerical density on area (NA) of mitochondria, and surface density (SV)– external surface area density of mitochondria per unit volume of skeletal muscle fiber were obtained by microscopy and stereology.The results showed that the capillary density (CD), the numerical density and the surface area of mitochondria in skeletal muscle of plateau pika were significantly lower than that of SD rat.The content of myoglobin (Mb) and lactic acid (LD), and the activity of lactate dehydrogenase (LDH) in skeletal muscle were determined by spectro-photometer; and the isozyme zymogram were investigated by polyacrylamide gel electrophoresis. There were significant differences in the content of myoglobin among three species, of which plateau zokor and SD rat presented the highest and the lowest value, respectively. The activity and the content of lactate dehydrogenase in skeletal muscle of plateau zokor were significantly lower than that of plateau pika, and there was no significant difference between plateau zokor and SD. The isozyme zymogram indicated that the content of H subunit was higher than that of M subunit in skeletal muscle of plateau zokor, while in skeletal muscle of plateau zokor and SD, the content of M subunit was high than that of H subunit.
     To explore the adaptive mechanisms of blood in plateau zokor and plateau pika to the hypoxic environment, the content of HIF-1αmRNA and Mb mRNA and VEGF165 mRNA , LDH mRNA in skeletal muscle were determined by the RT-PCR. The results indicated that,there was no significant difference in the content of HIF-1αmRNA and Mb mRNA and VEGF165 mRNA in skeletal muscle between plateau zokors and plateau pikas, but the content of all in skeletal muscle in the two species were higher than that in SD rats. there was no significant difference in LDH mRNA in skeletal muscle between plateau zokor and SD, the content of LDH mRNA in skeletal muscle of plateau zokors was significantly lower plateau pikas.
     In conclusion, the results suggest that even though plateau zokor inhabit in the hypoxia environment, they obtains energy with aerobic oxidation by increasing the number and surface area of mitochondria, capillary density and content of myoglobin in the cardiac muscle, while the plateau pika obtain energy through glycolysis, which significantly related to the different living habits of two high altitude species.
引文
[1] Kennerly T. Microenvironmental conditions of the pocket gopher burrow. Tex J Sci, 1964, 16: 395-441.
    [2] Arieli, R. The atmospheric environment of the fossorial mole rat (Spalax ehrenbergi): effects of seasons, soil texture, rain, temperature, and activity. Comp Biochem Physiol A, 1979, 63: 569-575.
    [3] Maclean G. Factors influencing the composition of respiratory gases in mammal burrows. Comp Biochem Physiol A, 1981, 84: 517-522.
    [4] Kuhnen G. O2 and CO2 concentrations in burrows of euthermic and hibernating golden hamsters. Comp Biochem Physiol A, 1986, 84: 517-522.
    [5] Shams I, Avivi A, Nevo E. Oxygen and carbon dioxide fluctuations in burrows of subterranean blind mole rats indicate tolerance to hypoxic-hypercapnic stress. Comp Biochem Physiol, 2005, 142 (3): 376-382.
    [6] Widmer HR, Hoppeler H, Nevo E, Taylor CR, Weibel ER. Working underground: respiratory adaptations in the blind mole rat. Proc Natl Acad Sci A U.S.A , 1997, 94: 2062-2067.
    [7] Weibel E.R.. Understanding the limitation of O2 supply through comparative physiology. Respiration Physiology, 1999, 118: 85-93.
    [8] Ar A, Arieli R, Shkolnik A. Blood-gas properties and function in the fossorial mole rat under normal and hypoxic-hypercapnic atmospheric conditions. Respiration Physiology, 1977, 30 (1-2): 201-218.
    [9]杨静,李金钢.甘肃鼢鼠心血管系统对低氧的适应[D].陕西西安:陕西师范大学, 2006.
    [10] Gurnett AM, O’Connell J, Harris DE, Lehmann H, Joysey KA, Nevo E. The myoglobin of rodents: Lagostomus maximus (viscacha) and Spalax ehrenbergi (mole rat). Protein Chem, 1984, 3: 445-454.
    [11] Kleinschmidt T, Nevo E, Braunitzer G. The primary structure of the hemoglobin of the mole rat (Spalax ehrenbergi, rodentia, chromosome species 60). Hoppe-Seyler's Zeitschrift fur Physiologische Chemie, 1984, 365 (5): 531-537.
    [12] Shams I, Avivi A, Nevo E. Oxygen and carbon dioxide fluctuations in burrows ofsubterranean blind mole rats indicate tolerance to hypoxic-hypercapnic stress. Comp Biochem Physiol, 2005, 142 (3): 376-382.
    [13] Nevo E, Ben-Shlomo R, and Maeda N. Haptoglobin DNA polymorphism in subterranean mole rats of the spalax ehrenbergi superspecies in Israel. Heredity, 1989, 62 (1): 85-90.
    [14] Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor-1. J Biol Chem, 1995, 270: 1230-1237.
    [15] Semenza GL. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev, 1998, 8: 588-594. 307-309.
    [16] Avivi A, Resnik MB, Nevo E, Joel A, Levy AP. Adaptive hypoxic tolerance in the subterranean mole rat Spalax ehrenbergi: the role of vascular endothelial growth factor. FEBS Lett, 1999, 452: 133-140.
    [17]樊乃昌,施银柱.中国鼢鼠(Eospalax)亚属分类研究[J].兽类学报, 1982, 2 (2): 183-199.
    [18]中国科学院西北高原生物研究所.青海经济动物志.西宁:青海人民出版社,1989, 599.
    [19]曾缙祥,王祖望,师治贤.高山地区高原鼢鼠的代谢特点及若干生理指标的观察.高原生物学集刊, 1984, 3: 163-171.
    [20]樊乃昌,谷守勤.中华鼢鼠(Myospalax fontanieri)的洞道结构[J].兽类学报, 1981, 1(1): 67-71.
    [21]王晓君,魏登邦,魏莲,等.高原鼢鼠和高原鼠兔肺细叶结构特征[J].动物学报, 2008, 54(3): 531-539.
    [22]黄秀霞,庞宝森,王辰,牛淑洁,辛萍,张海燕.低氧性肺动脉高压大鼠肺功能的变化[J].基础医学与临床.2002,22(4):328-329.
    [23] Tucker A., McMurtry I.F., Reeves J.T., et al. Lung vascular smooth muscle as a determinant of pulmonary hypertension at high altitude. Am. J. Physiol., 1975, 288 (3): 762-766.
    [24] Wei DB, Wei L, Zhang JM, Yu HY. Blood-gas properties of plateau zokor (Myospalax baileyi). Comp Biochem Physiol A, 2006, 145: 372-375.
    [25]王祖望,曾缙祥,韩永才.高原鼠兔和中华鼢鼠气体代谢研究.动物学报[J], 1979,25 (1): 75-84.
    [26]魏登邦,马建宾.高原鼢鼠和小白鼠心肌及骨胳肌肌红蛋白含量和乳酸脱氢酶活性的比较研究.青海大学学报, 2001, 19 (2): 20-21.
    [27]周虞灿,刘国富,温得启.高原鼠兔和高原鼢鼠红细胞2,3-二磷酸甘油酸含量的初步研究[J].高原生物学集刊, 1984, 2: 133-137
    [28]刘国富,温得启,胡晓梅.高原鼠兔和高原鼢鼠乳酸脱氢酶同工酶的初步研究[J].兽类学报,1985, 5 (3): 223-228.
    [29] Berra E,Benizri E,Ginouves A,et al. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady state level of HIF-1 in normoxia[J].EMBO.J,2003,22:4082-4090
    [30]赵新全,祁德林,杨洁.青藏高原代表性土著动物分子进化与适应研究[M].科学出版社.2003,217
    [31]俞红贤.藏羊肺组织形态测量指标及其与高原低氧的关系[J].中国兽医科技, 1999, 29 (7): 15-16.
    [32]汪宏夫.平原地区狗进入高原后对其主要脏器组织形态学的光镜和电镜观察[J].青海医药(高原医学专号) ,1982 ,19 (增刊):53.
    [33]张勤文.不同海拔地区牦牛的肺组织形态学比较[J].中国兽医科技, 2004, 34 (2): 73-74.
    [34]杨晓静,毛宝玲,钱桂生,赵自强.肺动脉高压大鼠模型的复制[J].上海实验动物科学,1997,17(4):199-202.
    [35] Kovalenko TN,Pozharov VP,Seredenko MM.Effect of acute hypoxic hypoxia on the thickness of the lung air-blood barrier[J].Morphology and pathomorphology,1980,66-68.
    [36]陈秋生,冯霞,姜生成.毛牛肺脏高原适应性的结构研究[J].中国农业科学,2006,39(10):2107-2113.
    [37]张峙,张鹏,范正富,等.蒜油对急性模拟高原条件下大鼠血气的影响[J].医药导报, 2003, 22 (9): 597-599.
    [38] Beall C.M., Reichsman A.B.. Hemoglobin level in a Himalayan high altitude population. Am. J. Phys. Anthropol., 1980, 63: 301-306.
    [39] Adams W., Graves I.L., Pyakural S.. Hemotologic observation on the Yak. Proc. Soc. Exp. Biol. Med., 1975, 148: 701-708.
    [40] Ahima R.S., Flier J.S.. Adipose tissue as an endocrine organ. Trends. Endocrinol. Metab.,2000, 11: 327-332.
    [41] Yang J., Zhao X.Q., Guo S.C., et al. Leptin cDNA cloning and its Mrna expression in plateau pikas (Ochotona curzoniae) from different altitudes on Qinghai-Tibet Plateau. Biochemical and Biophysical Research Communications, 2006, 345: 1405-1413.
    [42] Zhao T.B., Ning H.X., Zhu S.S., et al. Cloning of hypoxia-inducible factor 1αcDNA from a high hypoxia tolerant mammal- plateau pika (Ochotona curzoniae). Biochemical and Biophysical Research Communications, 2004, 316: 565-572.
    [43] Yang Y.Z., Cao Y., Jin G.E., et al. Molecular cloning and characterization of hemoglobinαandβchains from plateau pika (Ochotona curzoniae) living at high altitude. Gene, dio: 10. 1016/j. gene. 2007. 07. 31.
    [44] Van Aardt W.J., Bronner G., Buffenstein R.. Hemoglobin-oxygen-affinity and acid-base properties of blood from the fossorial mole-rat Cryptomys hottentotus pretoriae. Comp. Biochem. Physiol., 2007, A 147 (1): 50-56.
    [45] Bigard A X .Skeletal muscel chang after endurance train at high altitude[J]J Appl Phsiol,1991,71(6):2114-2121
    [46] Semenza GL,Jiang BH,Leung SW. Hypoxia response elements in the aldolase A, enolase 1,and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia—inducible factor 1.J Bid Chem .1996,271(51):32529—37
    [47] Riddk SR,Ahmad A,Ahmad S,et al.Hypoxia induces hexokinase 11 gene expression in human lung cell-line A549.Am j Physiol Lung CellMolPhysiol. 2000;278(2):L407一l6
    [48] Hoppeler H,Vogt M. Hypoxia training for sea—level performance.Fraining high—living low. Adv Exp Med Biol .200 l,502:6l一73.
    [49]陆爱云,周志宏.低氧训练对大鼠骨骼肌缺氧诱导因子- 1α蛋白和血管内皮生长因子mRNA表达的影响[J ] .中国运动医学杂志,2005 ,24 (4) :424– 429
    [50] Majed SA,Wells R M Q, Mcardie B H.Seasonal efect on lactate dehydrogenase and citrate synthase in snapper(Pagrus auratus).New Zealand Journal of Marine and Fresh water Research,2002,36:233.239
    [51] Holbrook J J,Liljas A,Steindel S J,Rossmann M G Lactate dehydrogenase.In:Boyer P D(ed).The Enzymes(Vo1.11).New York:Academic Press,1975:191-291.
    [52]张容昶.中国的牦牛[M].兰州:甘肃科学技术出版社,1989.
    [53]李庆芬.人与动物呼吸系统对高海拔低氧的适应[J] .生物学通报,1991,(10):19-31.
    [54] Reynafarje ,C. et al. Kinetics of red cell fomation and dest ruction in high altitude adated animals [J] ,23th International Congress of Physiological Scienses ,1965,182.
    [55]马兰,格日力.高原鼠兔低氧适应分子机制的研究进展[J].生理科学进展,2007,38(2):143-146
    [56] Ge R.L., Kubo K., Kobayashi T., et al. Blunted hypoxic pulmonary vasoconstrictive response in the rodent Ochotona curzoniae (pika) at high altitude. Am. J. Physiol., 1998, 274 (Heart cire physiol 43): H 1792-1799.
    [57]阮宗海,陈华伟,陈秋红,等.不同海拔高原鼠兔、大白鼠血红蛋白电泳及血液学对比观察[J].中国应用生理学杂志,2000,16:91-95.
    [58]杜继增,李庆芬.模拟高原低氧对高原鼠兔和大鼠器官与血液若干指标的影响[J].兽类学报, 1982, 2 (1): 35-41.
    [59]佘海如,格日力,陈秋红,等.高原鼠兔红细胞2, 3-DPG含量的测定[J].高原医学杂志. 1997, 7 (1): 38-40.
    [60] Adams W., Graves I.L., Pyakural S.. Hemotologic observation on the Yak. Proc. Soc. Exp. Biol. Med., 1975, 148: 701-708.
    [61]顾浩平,杨之,滕国奇,等.高原鼠兔血红蛋白氧亲和力P50的测定[J].中国应用生理学杂志, 1991, 7 (4): 365-367.
    [62]何加强,许存和,孟宪法,等.鼠兔与平原大鼠血液携氧能力的比较研究[J].解放军预防医学杂志, 1994, 12 (6): 431-435.
    [63]张彦博.人与高原[M].第一版.青海人民出版社. 1996, 81-89, 51-60, 292-296.
    [64]叶润蓉,曹伊凡.高原鼠兔血清无机元素含量的分析[J].兽类学报, 1999, 19 (1): 43-47.
    [65] Banchero N. Cardiovascular response to chronic hypoxic [J] .Annu Rev Physiol . ,1987 ,49 :465-476
    [66] Li Q.F., Sun R.Y., Huang C.X., et al. Gold adaptive thermogenesis in small mammals from different geographical zones of China. Comp. Biochem. Physiol. A Mol. Intergr. Physiol., 2001, 129: 949-961.
    [67]杜继增,李庆芬,陈晓光.模拟高原对高原鼠兔和大白鼠肝脏的影响[J].动物学报, 1984,171: 201-203.
    [68] Ahima R.S., Flier J.S.. Adipose tissue as an endocrine organ. Trends. Endocrinol. Metab., 2000, 11: 327-332.
    [69] Yang J., Zhao X.Q., Guo S.C., et al. Leptin cDNA cloning and its Mrna expression in plateau pikas (Ochotona curzoniae) from different altitudes on Qinghai-Tibet Plateau. Biochemical and Biophysical Research Communications, 2006, 345: 1405-1413.
    [70] Zhao T.B., Ning H.X., Zhu S.S., et al. Cloning of hypoxia-inducible factor 1αcDNA from a high hypoxia tolerant mammal- plateau pika (Ochotona curzoniae). Biochemical and Biophysical Research Communications, 2004, 316: 565-572.
    [71] Yang Y.Z., Cao Y., Jin G.E., et al. Molecular cloning and characterization of hemoglobinαandβchains from plateau pika (Ochotona curzoniae) living at high altitude. Gene, dio: 10. 1016/j. gene ,2007. 07. 31.
    [72] Banchero N. Cardiovascular response to chronic hypoxic [J] .Annu Rev Physiol ,1987 ,49 :465-476
    [73] Reynafarje B. Myoglbin content and enzymatic activity of muscle and altitude adaptation[J].J Appl Physiol ,1962 ,17 :301-305.
    [74] Hoppeler H , Kleinert E , Schlegel C , et al. Muscullar exercise at high altitude ,Ⅱ.Morphological adaptation of skeletal muscle to chronic Hypoxia[J ] . Int J Sports Med ,1990 :11 :s3-s9.
    [75] Green H J , Sutton J R , Cymerman A , et al. OperationⅡ:Adaptations in human skeletal muscle [J] . J Appl Physiol, 1989 ,66 :2454-2461.
    [76] Millikan D A.Muscle hemeoglobin.Physiol Rev[J].1937,19:503-523
    [77] Singh N,Dhalla A K,Seneviratne C,etal.Oxidative stress and heart failure.Mol Cell Isiochem[J] ,1995,145:77-81
    [78] Hoppeler H. Exercise2induced ultrastructural changes in skeletal muscle[J ] . Int J Sports Med ,1986 ,7 :187-204.
    [79]黄庆源,高钰琪,史景泉等.缺氧大鼠心肌毛细血管密度与VEGF变化的研究[J].第三军医学学报,2001,23(6):633-636
    [80] Mizuno M.Limb skeletal muscle adaptation in athletes after train at altitude.[J] J Appl Physiol ,1990,68(2):496-502
    [81] YJ Peng , N R Prabhakar . Effect of two paradigms of chronic intermittent hypoxia on carotid body sensory activity [J ] . J Appl Physiol , 2004 , 96 (3) :1236-1242.
    [82] Katayama , Keisho , Yasutake Sato , et al. Intermittent hypoxia increases ventilation and SaO2 during hypoxic exercise and hypoxic chemosensitivity [J] . J Appl Physiol , 2001 ,90 : 1431-1440.
    [83] Zoll , Joffrey , Elodie Ponsot , et al. Exercise training in normol baric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts[J] . J Appl Physiol , 2006 ,100 : 1258-1266.
    [84] Semenza G L. HIF21 : mediator of physiological and patho physiological responses to hypoxia [ J ] . J Appl Physiol , 2000 ,88 :1474-1480.
    [85] Vogt M, Puntschart A , Geiser J , et al. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions[J ] . J Appl Physiol , 2001 ,91 : 173-182.
    [86] Wei DB, Wei L, Zhang JM, Yu HY. Blood-gas properties of plateau zokor (Myospalax baileyi). Comp Biochem Physiol A , 2006 , 145: 372-375
    [87] Avivi A., Shams I., Joel A., et al. Increased blood vessel density provides the mole rat physiological tolerance to its hypoxic subterranean habitat. FASEB J 2005; 19(10): 1314-1316.
    [88]魏登邦,魏莲.高原鼢鼠红细胞、血红蛋白及肌红蛋白的测定结果[J].青海大学学报, 2001, 19 (4): 1-2.
    [89]刘国富,温得启,韩思梗.高原鼠兔乳酸脱氢酶同工酶对低氧环境的应答[J].兽类学报,1988,8(1)∶60~64.
    [90] Booth, F.W., Thomason, D.B. Molecular and cellular adaptation of muscle in response to exercise : perspectives of various models [J] . Physiological Reviews, 1991 , 71(2) : 541 - 585
    [91] Hudlicka, O., Brown, M., Egginton, S. Angiogenesis in skeletal and cardiac muscle[J ]. Physiological Reviews,1992 , 72 : 369 - 417.
    [92] Lash, J.M., Bohlen, H.G. Functional adaptations of rat skeletal muscle arterioles to aerobic exercise training[J]. Journal of Applied Physiology,1992 , 72(6) : 2052 -2062
    [93] Suzuki,J. , Gao ,M., Batra ,S. , Koyama, T. Effects of treadmill training on the arteriolar and venular portions of capillary in soleus muscle of young and middle - aged rats[J] . Acta Physiologica Scandinavica, 1997 , 159 (2) : 113 - 121.
    [94] MacDougall, J.D., Tarnopolsky, M.A., Cipriano, N., Green, H.J. Skeletal muscle adaptationsto training under normobaric hypoxic versus normoxic conditions[J] . Medicine and Science in Sports and Exercise,1997 , 29 (2): 238 - 243.
    [95] Geiser, J., Vogt, M., Billeter, R., Zuleger, C., Belforti, F., Hoppeler, H., et al ,. Training high - living low: changes of aerobic performance and muscle structure with training at simulated altitude[J] . International Journal of Sports Medicine , 22 (8) : 579 - 585.
    [96]李开刚,陆绍中.不同强度的耐力训练后大鼠骨骼肌超微结构适应性变化的研究[J].中国运动医学杂志,2000,19(1):39-42
    [97]郑富盛.细胞形态立体计量学.北京医科大学、中国协和医科大学联合出版社(M)1990;19-42,147-150.
    [98] Weibel ER, Kistler GS, Scherle WF. Practical stereological methods for morphometric cytology. The Journal of Cell Biology 1966; 30: 23-38.
    [99]陈铭,杨欣,周兆年.心肌肌红蛋白含量的测定方法[J].中国应用生理学杂志, 1998, 14 (3): 283-284.
    [100] Bunn H F, Poyton R O. Oxygen sensing and molecular adaptation to hypoxia[J]. Physiol Rev,1996, 76: 839–885.
    [101]张蓓,吴海琴.低氧诱导因子-1与其靶基因[J].医学综述, 2005, 11(5):436-438.
    [102]赵同标,赵新全,常智杰等.常氧下高原鼠兔HIF-1αmRNA的表达[J].动物学研究, 2004, 25(2):132-136.
    [103] Lee P J, Jiang B H, Chin B Y, Iyer N V, Alami J, Semenza G L and Choi A M K. Hypoxia-inducible Factor-1 Mediates Transcriptional Activation of the Heme Oxygenase-1 Gene in Response to Hypoxia[J]. Biochemistry, 1997, 272(9): 5375–5381.
    [104]陈林,赵玲.转基因小鼠技术与HIF-1α功能的研究[J].外医学生理病理科学与临床分册, 2004, 24(2):132-135.
    [105] Semenza G L. O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1[J]. J Appl Physiol, 2004, 96: 1173–1177.
    [106]诸兰艳,陈平,蒋云生. HIF-1α和VEGF在非小细胞肺癌组织中的表达及其与肿瘤血管生成的关系[J].中国现代医学杂志, 2005, 15(7):1017-1019.
    [107]敖启林,郝春荣,熊密,王迪浔.低氧诱导因-1α和内皮素-1基因在大鼠低氧性肺动脉高压中的表达[J].中华病理学杂志, 2002, 31(2):140-142.
    [108] Senmenza G L, Wang G L. A nuclear factor induced by hypoxia via denovo protein synthesis binds to the human erythopoietin gene enhancer[J]. MOL Cell Biol, 1992, 12: 5447-5454.
    [109]邹飞,许豪文.缺氧诱导因子1对糖酵解的调节[J].安徽体育科技, 2004, 25(1):44-46
    [110] Wang G L, Semenza G L. Desferrioxamine induces erythropoietin gene expression and hypoxia-induciblfacter 1 DNA-binding activity: implications for models of hypoxias ingnal transduction [J]. Blood, 1993, 82.
    [111] Livingston DJ, Brown WD. Myoglobin diffusion in bovine heart muscle. Sicnce 1983; 220: 71-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700