高原鼢鼠骨骼肌VEGF基因的特异性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高原鼢鼠(Myospalax bailey)是青藏高原特有的物种之一,血管内皮生长因子(Vascular endothelial growth factor, VEGF)具有促进毛细血管增生的功能,动物组织微血管密度(Microvessel density, MVD)的大小与其对低氧的适应能力有关。为了研究高原鼢鼠对高原环境的适应机制,通过分子克隆及生物信息学方法测定并分析了高原鼢鼠VEGF的cDNA序列。根据VEGF基因结构特点,设计特异性表达VEGF各亚型的探针,应用Real-time PCR测定不同海拔高原鼢鼠骨骼肌内VEGF各亚型mRNA表达水平。通过免疫组织化学方法对不同海拔高原鼢鼠骨骼肌微血管密度进行测定,并运用SPSS17.0软件对MVD和各VEGF亚型基因表达量之间进行相关性分析。结果:获得的VEGF编码区为645bp,其序列与高原鼠兔VEGF_(189)、大鼠和小鼠VEGF_(188)cDNA序列的同源性分别为92.1%、93.6%和93.8%。该序列编码蛋白长度为214个氨基酸,在N端包含一个26个氨基酸的信号肽,成熟的蛋白具有188个氨基酸,为VEGF_(188)亚型。高原鼢鼠VEGF_(188)与高原鼠兔VEGF_(189)、大鼠和小鼠VEGF_(188)的同源性分别为90.2%、94.9%和94.4%。高海拔高原鼢鼠骨骼肌MVD(1107.47±47.98)显著高于低海拔高原鼢鼠(918.74±54.10)(P<0.05)。高原鼢鼠骨骼肌VEGF亚型主要组成为VEGF_(188)、VEGF_(164)和VEGF_(120)。4200m海拔的高原鼢鼠骨骼肌中总量VEGF、VEGF_(188)、VEGF_(164) mRNA表达量(分别为1.27±0.24,1.22±0.13,1.47±0.24)显著高于3200m海拔高原鼢鼠表达量(分别为0.90±0.10,0.66±0.14,0.94±0.17)(P<0.05),VEGF_(120) mRNA表达量(4200m海拔为0.58±0.11,3200m海拔为0.67±0.12)没有显著变化。VEGF_(164)与MVD显著相关(P<0.05)。
     以上结果表明,高原鼢鼠骨骼肌VEGF亚型组成以VEGF_(164)为主,VEGF_(164)基因是促进毛细血管增生作用的主要形式。VEGF_(188)、VEGF_(164)和VEGF_(120)对低氧的敏感程度不同,他们的对低氧敏感程度依次降低。
Plateau zokor (Myospalax bailey) is native to the Qinghai-Tibet plateau, vascular endothelial growth factor (VEGF) can promote capillary proliferation, and the microvessel density (MVD) of animal tissues is related to their adaptility to hypoxia. To study their adaptive mechanisms, the VEGF cDNA of plateau zokor was sequenced and analyzed by bioinformatics, and the expression patterns of VEGF in skeletal muscle tissues were measured through real-time PCR and the MVD of skeletal muscle of plateau zokor in different altitudes were measured by immunohistochemical staining and the correlation relation of MVD with VEGF expression was analyzed by SPSS17.0. Our results indicated that, the open reading frame of the plateau zokor VEGF was 645 bp, the coding sequence of the plateau zokor VEGF cDNA shared 92.1%, 93.6% and 93.8% nucleotide sequence homology to that of the plateau pika, rat and mouse, respectively. The deduced amino acid sequence of the plateau zokor VEGF cDNA was composed of 188 amino acids and the amino acids from 1 to 26 were signal peptide sequence. The plateau zokor VEGF_(188) shared 90.2%、94.9% and 94.4% homologous to that of the plateau pika, rat and mouse, respectively. MVD (1107.47±47.98) in high altitude plateau zokor was significantly higher than that (918.74±54.10) of skeletal muscle in low altitude plateau zokor (P<0.05). VEGF isoforms in plateau zokor skeletal muscle is mainly composed of VEGF_(188), VEGF_(164) and VEGF_(120). The expression of total VEGF, VEGF_(188), VEGF_(164) mRNA (respectively 0.90±0.10, 0.66±0.14, 0.94±0.17) in plateau zokor at low altitude was significantly lower than high altitude platau (1.27±0.24, 1.22±0.13, 1.47±0.24 respectively)(P<0.05), while VEGF_(120) mRNA expression did not change significantly(0.67±0.12 at low altitude, 0.58±0.11 at high altitude). VEGF_(164) was significantly correlated with MVD (P <0.05).
     In conclusion, VEGF main isoform in plateau zokor skeletal muscle is VEGF_(164), VEGF_(164) is the main form to advance capillary proliferation in VEGF forms.The sensitivities to hypoxia of VEGF_(188), VEGF_(164) and VEGF_(120) were different, and in turn reduced.
引文
[1]刘华仁.中国鼢鼠的分类及地理区划.国土与自然资源研究. 1995,3:54-55
    [2]罗泽珣,陈卫,高武,等.中国动物志.兽纲第六卷,啮齿目下册,仓鼠科.北京:科学出版社,2000
    [3]周文扬,窦丰满.高原鼢鼠活动与巢区的初步研究.兽类学报. 1990,10(1):31-39
    [4]王权业,周文扬,张堰铭,等.高原酚鼠挖掘活动的观察.兽类学报. 1994,14(3):203–208
    [5]曾缙祥,王祖望,师治贤.高山地区高原鼢鼠的代谢特点及若干生理指标的观察.高原生物学集刊. 1984,3:163-171
    [6]樊乃昌,古守勤.中华鼢鼠(MYOSPALAX FONTANIERI)的洞道结构.兽类学报. 1981,1 (1):67-71
    [7] Ar A, Arieli R, Shkolnik A. Blood-gas properties and function in the fossorialmole rat under normal and hypoxic-hypercapnic atmospheric conditions. Respir Physiol. 1977, 30: 201-218
    [8] Arieli R, Heth G, Nevo E,et al. Hematocrit and hemoglobin concentration in four chromosomal species and some isolated populations of actively speciating subterranean mole rats in Israel. Experientia. 1986, 42(4):441-443
    [9] Gurnett A M, O’Connell J, Harris D E, et al. The myoglobin of rodents: Lagostomus maximus (viscacha) and Spalax ehrenbergi (mole rat) . J. Protein. Chem. 1984, 3: 445-454
    [10] Yang H, Nevo E, Tashian R E. Unexpected expression of carbonic anhydrase I and selenium-binding protein asthe only major non-born proteinsin erythrocytes of the subterranean mole rat (Spalax ehrenbergi). FEBS. Lett. 1998, 430(3): 343- 347
    [11] Wei D B, Wei L, Zhang J M, et al. Blood-gas properties of plateau zokor (Myospalax baileyi). Comp. Biochem. Physiol. Mol. Integr. Physiol. 2006, 145(3):372-385
    [12]朱世海,齐新章,王晓君,等.高原鼢鼠和高原鼠兔骨骼肌摄氧功能差异研究.生理学报. 2009,61(4): 373-378
    [13]王祖望,曾缙祥,韩永才.高原鼠兔和中华鼢鼠气体代谢研究.动物学报. 1979,25(1):75-84
    [14]魏登邦,魏莲.高原鼢鼠红细胞、血红蛋白及肌红蛋白的测定结果.青海大学学报(自然科学版). 2001,19(4):1-2
    [15]魏登邦,马建宾.高原鼢鼠和小白鼠心肌及骨胳肌肌红蛋白含量和乳酸脱氢酶活性的比较研究.青海大学学报(自然科学版). 2001,19(2)::20-21
    [16]王晓君,魏登邦,魏莲,等.高原鼢鼠和高原鼠兔肺细叶的结构特征.动物学报. 2008,54(3):531-539
    [17]魏登邦,于红妍,张建梅,等.不同季节高原鼢鼠乳酸脱氢酶活力和同工酶谱.中国应用生理学杂志. 2007,23(3):365-369
    [18]周虞灿,刘国富,温得启.高原鼠兔和高原鼢鼠红细胞2,3-二磷酸甘油酸含量的初步研究.高原生物学集刊. 1984,2:133-137
    [19]刘国富,温得启,胡晓梅.高原鼠兔和高原鼢鼠乳酸脱氢酶同工酶的初步研究.兽类学报. 1985,5(3):223-228
    [20]赵新全,祁得林,杨洁.青藏高原代表性土著动物分子进化与适应研究.北京:科学出版社. 2008,162-190,192-217
    [21] Wang G L, Semenza G L. Purification and characterization of hypoxia-inducible factor 1. J.Biol.Chem. 1995, 270(3): 1230–1237.
    [22] Jewell U R, Kvietikova I, Scheid A, et al. Induction of HIF-1αin response to hypoxia is instantaneous. FASEB.J. 2001, 15(7): 1312–1314.
    [23] Senmenza G L,Wang G L. A nuclear factor induced by hypoxia via denovo protein synthesis binds to the human erythopoietin gene enhancer at a site required for transcriptional activation .Mol.Cell.Biol. 1992, 12(12): 5447-5454.
    [24]张建梅.高原鼢鼠HIF-1α及HO-1在组织中的季节性表达:[张建梅学位论文].青海省西宁市:青海大学,2007
    [25] Maines M D. The heme oxygenase system:a regulator of second messenger gases. Annu.Rev.Pharmacol.Toxicol. 1997,37: 517-554.
    [26] Li X, Eriksson U. Novel VEGF family members: VEGF-B、VEGF-C and VEGF-D. Int. J Biochem. Cell . Biol. 2001, 33 (4): 421-426
    [27] Shima D T, Kuroki M, Deutsch U, et al. The mouse gene for vascular endothelial growth factor. Genomic structure, definition of the transcriptional unit, and characterization of transcriptional and post-transcriptional regulatory sequences. J. Biol.Chem. 1996, 271 (7): 3877–3883
    [28] Robinson C J, Stringer S E. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J. Cell .Sci. 2001, 114 (pt5): 853–865
    [29] Ferrara N, Davis-Smyth T. The Biology of Vascular Endothelial Growth Factor. Endocr. Rev. 1997, 18 (1): 4-25
    [30] Siemeister G, MarméD, Martiny B G. The alpha-helical domain near the amino terminus is essential for dimerization of vascular endothelial growth factor. J. Biol .Chem. 1998, 273 (18): 11115-11120
    [31] Ferrara N, Houck K, Jakeman L, et al. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr .Rev. 1992, 13: 18-32
    [32] Houck K A, Leung D W, Rowland A M, et al. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J. Biol. Chem. 1992, 267 (36): 26031–26037
    [33] Maeda K, Chung Y S, Ogawa Y, et al. Sowa M.. Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer. 1996, 77 (5): 858-863
    [34] Houck K A, Ferrara N, Winer J, et al. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol 1991; 5(12): 1806–1814.
    [35] Koch A E, Harlow L A, Haines G K, Amento E P, Unemori E N, Wong W L, Ferara N. Vascular endothelial growth factor a cytokine modulating endothelial function in rheumatoid arthritis, J Immunol, 1994, 152 (8): 4149-4156
    [36] Murohara T, Horowitz J R, Silver M, et al. Vascular endothelial growth factor/vascular permeadility factor enhances vascles permeadility bia nitric oxide and prostacychlin. Circulation. 1998, 97(1):99-107
    [37] Senger D R, Galli S J, Dvorak A M, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983, 219 (4587): 983-985
    [38] Levy A P, Levy N S, Loscalzo J, et al. Regulation of vascular endothelial growth factor in cardiac myocytes. Circ. Res. 1995, 76 (5): 758-766
    [39] Pepper M S, Ferrara N, Orci L, Montesano R. Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem. Biophys. Res. Commun. 1991, 181 (2): 902-906
    [40] Unemori E N, Ferrara N, Bauer E A, et al. Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. J. Cell. Physiol. 1992, 153 (3): 557-562
    [41]姜恒,郭光金. VEGF及其受体的研究进展.局解手术学杂志. 2004,13(2):126-127
    [42] Duyndam M C, Hilhorst M C, Schluper H M, et al. Vascular endothelial growth factor-165 over expression stimulates angiogenesis and induces cyst formation and macrophage infiltration in human ovarian cancer xenografts. Am. J. Pathol. 2002, 160 (2): 537-548
    [43]周泉.血管内皮生长因子的生物学特性及临床研究进展.实用心脑肺血管病杂志. 2001,9 (1):51-54.
    [44]毛华,赵敏芳,袁爱力,等.血管内皮生长因子对肝癌细胞侵袭能力和同质性粘附作用影响.肿瘤. 2002,22 (3):197-199
    [45]邵国,苏燕,张胜,等.急性重复缺氧增加小鼠海马组织血管内皮生长因子的表达.包头医学学院学报. 2006,22 (4):362-364
    [46] Suto K, Yamazaki Y, Morita T, et al. Crystal structures of novel vascular endothelial growth factors(VEGF) from snake venoms: insight into selective VEGF binding to kinase insertdomain-containing receptor but not to fms-like tyrosine kinase-1. J. Biol. Chem. 2005, 280 (3): 2126-2131
    [47] Muller Y A, Li B, Christinger H W, et al. Vascular endothelial growth factor: crystal structure and function almapping of the kinase domain receptor binding site. Proc. Natl. Acad. Sci. USA. 1997, 94 (14): 7192-7197
    [48] De Falco S, Gigante B, Persico M G. Structure and function of placental growth factor. Trends. Cardiovasc. Med. 2002, 12 (6): 241-246
    [49] Pajusola K, Aprelikova O, Korhonen J, et al. FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines. Cancer. Res. 1992, 52 (20): 5738–5743
    [50] Finnerty H, Kelleher K., Morris G E, et al. Molecular cloning of murine FLT and FLT4. Oncogene. 1993, 8 (8): 2293–2298
    [51] Shibuya M, Yamaguchi S, Yamane A, et al. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene. 1990, 5 (4): 519–524
    [52] Terman B I, Carrion M E, Kovacs E, et al. Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene. 1991, 6 (9): 1677–1683
    [53] Peters K G, De Vries C, Williams L T. Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc. Natl. Acad. Sci. USA. 1993, 90 (19): 8915–8919
    [54] Hattori K, Heissig B, Wu Y, et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1 (+) stem cells from bone-marrow microenvironment. Nat. Med. 2002, 8 (8): 841–849
    [55] Sawano A, Iwai S, Sakurai Y, et al. Flt-1,vascular endothelial growth factor receptor 1,is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood. 2001, 97 (3): 785–791
    [56] Fong G H, Rossant J, Gertsenstein M, et al. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature. 1995, 376 (6535): 66–70
    [57] Fong G H, Zhang L, Bryce D M, et al. Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development. 1999, 126 (13): 3015–3025
    [58] Kabrun N, Buhring H J, Choi K., et al. Flk-1 expression defines a population of early embryonic hemato-poietic precursors. Development. 1997, 124 (10): 2039–2048
    [59] Quinn T P, Peters K G, De Vries C, et al. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc. Natl.Acad .Sci .USA. 1993, 90 (16): 7533–7537
    [60] Schuh A C, Faloon P, Hu Q L, et al. In vitro hematopoietic and endothelial potential of flk-1(-/-) embryonic stem cells and embryos. Proc. Natl. Acad. Sci. USA. 1999, 96(5): 2159-2164
    [61] Wu L W, Mayo L D, Dunbar J D. Utilization of distinct signaling pathways by receptors for vascular endothelial cell growth factor and other mitogens in the induction of endothelial cell proliferation. J. Biol. Chem. 2000, 275 (7): 5096-5103
    [62] Gallicchio M, Mitola S, Valdembri D, et al. Inhibition of vascular endothelial growth factor receptor2 mediated endothelial cell activation by Axl tyrosine kinase receptor. Blood. 2005, 105 (5): 1970-1976
    [63] Guo D Q, Wu L W, Dunbar J D, et al. Tumor necrosis factor employsaprotein-tyrosine phosphatasetoinhibit activation of KDR and vascular endothelial cell growth factor induced endothelial cell proliferation. J. Biol. Chem. 2000, 275 (15): 11216-11221
    [64]肖扬,焦炳华,缪辉南.血管内皮细胞生长因子研究进展.生物化学与生物物理进展. 2000,27(2):131-135.
    [65] Hoelm B D, Hank S I, Hudetz A G. VEGF mRNA expressed in microvessels of neonatal and adult rat cerebral cortex. Brain. Res. Mol. Brain. Res. 2002, 101(1-2): 103-108
    [66] Avivi A, Shams I, Joel A, et al. Increased blood vessel density provides the mole rat physiological tolerance to its hypoxic subterranean habitat. FASEB. J. 2005, 19(10): 1314-1316
    [67] Avivi A, Resnick M B, Nevo E, et al. Adaptive hypoxic tolerance in subterranean mole rat Spalax elmenbergi the role of vascular endothelial growth factor. FEBS. Lett. 1999, 452(3): 133-140
    [68]黄庆愿,高钮琪,孙秉庸.缺氧及缺氧复合运动大鼠骨骼肌组织化学观察.中国运动医学杂志. 2000,19(4):204-206
    [69] Bigard A X. Skeletal muscle change atfer endurnace training at high altitude. J. APPIPhsiol. 1991, 71(6): 2114-2121
    [70] Mizuno M, Juel C, BRO-Rasmussen T, et al. Limb skeletal muscle adaptation in athletes after training at altitude. J. Appl. Physiol. 1990, 68(2): 496-502
    [71] Widmer H R, Hoppeler H, Nevo E, et al. Working underground: Respiratory adaptations in the blind mole rat. Proc. Natl. Acad .Sci. U S A. 1997, 94(5): 2062-2067
    [72] Bullard R W, Kollias J. Functional characteristic of two high-altitude mammals. Fed. Proc. 1966, 25(4): 1288-1292
    [73]齐新章,王晓君,朱世海,等.高原鼢鼠和高原鼠兔心脏对低氧环境的适应.生理学报. 2008,60(3):348-354
    [74] Shweiki D, Itin A, Soffer D, et al. Vascular endothelial growth factor induced by hypoxiamay mediate hypoxia-initiated angiogenesis. Nature. 1992, 359(6398): 843-845
    [75] Pichiule P, LaManna J C. Angiopoietin-2 and rat brain capillary remodeling during adaptation and deadaptation to prolonged mild hypoxia. J. Appl. Physiol. 2002, 93(3): 1131-1139
    [76] Harik N, Harik S I, Sakai K, et al. Time-course and reversibility of the hypoxia-induced alterations in cerebral vascularity and cerebral capillary glucose transporter density. Brain. Res. 1996, 737(1-2): 335-338

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700