肺保护性通气和体外膜氧合生命支持救治幼猪急性肺损伤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     急性肺损伤(acute lung iniury,ALI)和急性呼吸窘迫综合征(acute respiratorydistress syndrome,ARDS)是由心源性以外的各种肺内外致病因素引起肺微血管和肺泡上皮损伤为主的肺部炎症综合征,临床表现为急性、进行性低氧性呼吸衰竭,是危及各个年龄段的临床危重症,在儿科重症监护病房(pediatric intensivecare unit,PICU)中病死率很高。难治性低氧血症是严重ALI/ARDS的突出临床特点。一旦出现难治性低氧血症,患儿都会接受肺保护性通气策略指导下的机械通气为主的呼吸支持治疗,辅之以特殊治疗技术如俯卧位、肺复张策略、吸入一氧化氮(inhaled nitric oxide,iNO)、外源性肺表面活性物质(surfactant,Surf)等。当患儿肺存在严重气体交换障碍、上述方法不能纠正低氧血症时,体外膜氧合(extracorporeal membrane oxygenation,ECMO)生命支持可作为最终治疗手段。应用人工肺原理,ECMO可在体外对静脉血进行氧合、排除CO_2,回输体内从而提供呼吸和循环功能的支持作用。同时,ECMO治疗的患儿可采用低浓度氧、低通气量、低通气频率的机械通气策略,最低限度地干预肺,使损伤肺得到休息,从而使损伤肺逐渐完成功能上的改善和病理上的修复。但ECMO治疗也有不良反应,在提供肺功能支持的同时也启动了机体的炎症反应。临床、实验研究显示,ECMO治疗常伴随出现外周血中性粒细胞减少,中性粒细胞活化,促炎介质(tumor necrosis factor(TNF)-α、interleukin(IL)-6、IL-8、IL-1β)释放,补体活化,肺部X线损伤评分增高等变化。ECMO启动的炎症反应可能导致肺脏的二次损伤,抑制ECMO所致炎症反应、减轻治疗后肺脏损伤将改善呼吸衰竭患儿的预后,提高ECMO救治技术生存质量。ALI/ARDS临床、实验研究显示iNO和/或Surf具有改善氧合、抑制肺内炎症反应的作用。iNO可通过减少肺内分流、优化通气、血流比例改善氧合,并具有抑制核转录因子(nuclear transcription factor,NF)-κΒ活性、减少促炎介质释放、降低粘附分子表达、抑制中性粒细胞粘附和迁移等抗炎作用。外源性Surf的应用可恢复、增强损伤肺的表面活性物质功能,同时具有抑制自由基生成、降低促炎细胞因子合成、抑制中性粒细胞活化等抗炎功能。另外,实验研究显示,联合应用iNO、Surf具有较单一应用iNO或Surf更好的抗炎疗效。但iNO、Surf联用能否减轻ECMO所诱导的炎症反应、减轻治疗后肺脏损伤、促进肺脏恢复等尚不清楚。因此,本研究对行ECMO治疗的ALI模型联用iNO、Surf以探讨二者的肺保护作用。
     目的:
     1.观察ECMO对幼猪0-24 h呼吸系统、血流动力学的影响,监测ECMO所致炎症反应;探讨幼猪长时间生存(168 h)后肺病理、生化变化;
     2.对行ECMO治疗的正常、ALI幼猪联用iNO、Surf在抑制ECMO所致炎症反应、减轻治疗后肺损伤及对长时间生存幼猪肺内生长因子、纤维化等方面的影响。
     方法:
     健康雄性幼猪(4-5周龄、体重9-14 kg)23只,经镇静麻醉后均给予气道插管和低潮气量(7-9 ml/kg)机械通气。ALI模型经静脉注射18-20μg/Kg脂多糖(1ipopolysaccharide,LPS)后机械通气4-8 h诱发形成。ALI判断标准:(1)动脉血氧分压/吸入氧浓度(PaO_2/FiO_2)≤300 mmHg;(2)呼吸系统动态顺应性(dynamic compliance,Cdyn)较基础状态下降30%以上。(3)并且在出现上述指标(0 h)及12、24 h肺病理切片显示大量炎症细胞浸润,肺间隔和肺泡腔水肿,肺泡萎馅,符合ALI的病理改变(n=3)。另20只动物随机分为5组(n=5):VENT组:机械通气;VENOS组:机械通气,吸入NO(iNO)10 ppm,气道滴入猪肺Surf制剂50 mg/kg;ECMO组:机械通气,ECMO治疗;ENOS组:机械通气,ECMO治疗,联合应用iNO、Surf(参照VENOS组)。另有5只健康幼猪为NENOS组:健康幼猪行机械通气,ECMO治疗,联合应用iNO、Surf(参照VENOS组)。常规性补液、纠正低血压、酸中毒、电解质紊乱等。在非ECMO干预动物,调节FiO_2、呼吸频率保持PaO_2大于60 mmHg、PaCO_2介于35与45mmHg间。ECMO干预动物持续静脉滴注肝素保持活化凝血时间(activatedclotting time,ACT)介于180-220 s间,保持ECMO流量为70-80 ml/kg/min,调节氧合器气流量保持PaCO_2介于35与45 mmHg间。24 h后各组动物停止治疗、饲养至168 h。
     基础状态、ALI出现时及ALI后第1天内每1h监测一次血气、Cdyn、全身血流动力学、机械通气压力、流量、通气频率、ECMO转流参数;留取血标本检测血常规、全血高铁血红蛋白及血浆亚硝酸根/硝酸根、IL-8、IL-6含量检查。168 h处死动物,行一侧肺灌洗、另一侧肺灌流固定和组织形态学检查。支气管肺泡灌洗液(bronchoalveolar lavage fluid,BALF)中白细胞计数(white cell count,WCC)、总蛋白(total proteins,TP)、总磷脂(total phospholipids,TPL)和饱和磷脂(disaturated phosphatidylcholine,DSPC)、总磷脂表面张力及亚硝酸根/硝酸根、IL-6、IL-8含量测定;肺组织湿/干重比(wet-to-dry lung weight ratio,W/D);肺病理形态学检查,对肺泡扩张、肺损伤特点评分。肺组织中分析测定髓过氧化物酶(myeloperoxidase,MPO)、丙二醛(malondialdehyde,MDA)、谷胱甘肽(glutathione,GSH)、总NOS(total nitric oxide synthase,tNOS)活性、亚硝酸根/硝酸根含量(nitrite/nitrate,NO_2~-/NO_3~-);IL-8、IL-6、角化细胞生长因子(keratinocyte growth factor,KGF)、肝细胞生长因子(hepatocyte growth factor,HGF)、血管内皮生长因子(vascular endothelial grow factor,VEGF)、血管内皮生长因子受体(vascular endothelial grow factor receptor,VEGFR)-2、胶原(Collagen)Ⅲ、诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)、内皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)mRNA的表达,判断肺组织细胞炎症反应、致损伤程度及修复状况。
     结果:
     1.ALI模型的建立:在内毒素输入0.5-1 h后幼猪出现皮肤-过性紫斑、反应差、体温升高、血压下降、心率增快、呼吸急促、呼吸系统动态顺应性进行性下降、动脉血氧分压降低,同时伴有外周血白细胞数量降低。ALI在输注LPS 4-8 h内可制备成功。肺内为双肺间质弥漫性炎性细胞浸润、肺泡萎陷、出血等病理表现。
     2.治疗期间血流动力学:治疗期间,ECMO组、ENOS组血流动力学稳定; ECMO组平均动脉压(mean arterial blood pressure,MABP)、左心室收缩力指数(index of left ventricular contractility,dp/dtmax)、外周血管阻力(systemic vascular resistance,SVR)水平分别高于VENT组19%、25%、36%。
     3.治疗期间呼吸力学:ECMO、ENOS组通气频率(repiratory rate,RR)呈下降趋势;8 h、16 hECMO组RR显著低于VENT、VENOS组(p<0.01)。24 hECMO组RR显著低于VENOS组(p<0.05)。ECMO组8 h、16 h分钟通气量(minute ventilation volume,MV)显著低于VENT、VENOS组(p<0.01);ENOS组8 h MV显著低于VENT组(p<0.05)。
     4.治疗期间气体交换:ECMO、ENOS组PaO_2/FiO_2呈持续、显著的改善;VENT、VENOS组PaO_2/FiO_2比值升高。
     5.BALF磷脂含量、表面张力、WCC和TP检测:ENOS、NENOS组DSPC显著高于VENT、VENOS组(p<0.05);ECMO组DSPC显著高于VENT组(p<0.05)。ENOS、NENOS组最小表面张力(minimum surface tension,γ_(min))显著低于VENT组(p<0.05)。ENOS、NENOS组BALF WCC显著低于VENT组(p<0.05)。各组间TP无显著性差异。
     6.NO_2~-/NO_3~-(NOx~-)检测:0 h,VENT、ECMO组血浆NOx~-含量显著高于NENOS组含量(p<0.05);4 h,VENT组血浆NOx~-含量显著高于ENOS、NENOS组含量(p<0.05)。4 h后各组血浆均降低,组间无显著性差异。VENT组BALF内NOx~-含量显著高于VENOS、ECMO、ENOS、NENOS组含量(p< 0.01)见图1。
     7.IL-6检测:实验中各组血浆IL-6水平逐渐升高,24 h达峰值,24 h后均降低。血浆、BALF IL-6水平各组间无显著差异。
     8.IL-8检测:实验中血浆IL-8水平呈上升趋势,24 h达峰值。16 h,VENT组血浆IL-8含量显著高于ENOS、NENOS组含量(P<0.05);24 h,VENT、VENOS、ECMO组血浆IL-8含量均显著高于ENOS、NENOS组含量(P< 0.05)。见图2。BALF内IL-8含量各组间差异无统计学意义。
     9.肺组织IL-6、IL-8、iNOS、eNOS mRNA表达:肺组织IL-6、eNOS各组间表达无显著差异。VENT组IL-8表达显著高于VENOS组、ENOS组和NENOS组(P<0.01);ECMO组IL-8表达显著高于ENOS组和NENOS组(P<0.05)见图3。VENT组iNOS表达显著高于ECMO、ENOS、NENOS组(P<0.01)见图4。
     10.肺组织VEGF、VEGFR-2、KGF、HGF、collagenⅢmRNA表达:肺组织VEGF、KGF、collagenⅢ各组间表达无显著差异。NENOS组VEGFR-2表达显著高于VENT组(P<0.05)。ENOS、NENOS组HGF表达显著高于VENT组(P<0.05)。
     11.肺组织MPO、MDA、GSH、tNOS、NOx~-、W/D检测:各组间MPO、GSH、tNOS、NOx~-无显著差异。ENCP、NENOS组MDA含量显著低于VENT组(P<0.05)。NENOS组W/D显著低于VENT组(P<0.05)。
     12.肺组织学检查:VENT组动物肺有显著的粒细胞浸润、肺泡萎陷。VENOS、ECMO组存在中度病理改变。ENOS、NENOS组动物肺内有轻度粒细胞浸润。ENOS、NENOS组肺扩张度显著高于VENT组(P<0.05)。
     结论:
     1.成功制备内毒素诱导幼猪ALI模型,为开展ECMO治疗研究及观察恢复期肺组织的修复机制提供合适方法。
     2.ECMO治疗启动幼猪全身炎症反应并引起肺损伤。
     3.ECMO治疗能改善急性期ALI幼猪呼吸力学、氧合、血流动力学状态,恢复期通过降低肺内iNOS表达、NO合成减轻呼吸机治疗诱导的炎症反应。
     4.联用iNO、Surf通过降低急性期血浆IL-8合成、恢复期肺内IL-8表达减轻ECMO诱导的炎症反应,并可能降低呼吸机、ECMO治疗后肺MDA的合成量。通过上述机制,联用iNO、Surf上调HGF的表达,进而促进ECMO治疗后ALI幼猪肺内AEC的增殖与修复。
Background
     Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the most severe forms of acute and persistent hypoxemic respiratory failure (PHRF) in adults and children. ALI and ARDS in children have very high mortality and morbidity in recent domestic multicenter clinical investigations. Pathogenesis and phathophysiology of ALI/ARDS involve variable insults as pulmonary or extra-pulmonary origin, and severe alveolar-to-vascular permeability, leading to bilateral infiltration, edema, intra-pulmonary shunting and ventilation-perfusion mismatching. Clinically it is characterized as refractory hypoxaemia requiring aggressive ventilation and intensive care to survive. Currently, its death rate is more than 50% in Chinese pediatric intensive care unit (PICU). Although various interventions with lung protective ventilation strategy are implemented and tend to be effective, no any single therapy claims cost-effective in pediatric ALI/ARDS yet. Very often, combined or alternative therapies such as lung tidal volume restriction, and alveolar recruitment including high frequency oscillation (HFOV), fluid restriction, prone position, inhaled nitric oxide (iNO), and exogenous surfactant (Surf), are considered appropriate. These treatment modalities depend on effective gas exchange and adequate pulmonary perfusion to improve oxygenation. When there is dysfunction at any level of ventilation and perfusion due to sever injury in the lungs, PHRF and ALI occur. As ALI is early phase of ARDS, it is obvious that early intervention with effective and adequate therapy is vital in bringing up optimal response and outcome prediction in the very sick children.
     Extracorporeal membrane oxygenation (ECMO) is a unique therapy for life support in those who have impaired respiratory and circulatory function. It improves oxygenation with minimum ventilation requirement, thus enabling lung rest for reparation. Technology of ECMO involves an extracorporeal circuit conducting deoxygenated venous blood flow, after re-oxygenation and warming, to systemic circulation, either through artery or vein depending on whethere there is a heart or lung failure. It removes CO_2 out of, while fresh O_2 is provided to, the circulation, through convection of gas and blood flow in the oxygenator, or as an artificial lung. ECMO treatment also has adverse effects as it provokes a systemic inflammatory response as reflected by neutropenia, activation of polymorphonuclearcytes, release of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, activation of complement, and a capillary leak syndrome with systemic and pulmonary edema, in addition to hemolysis of damaged red blood cell in the circuit. This may lead to secondary organ injury. Therefore we consider a modulation or down-regulation of the inflammatory process in the lungs during ECMO should alleviate lung injury and improve the prognosis of children with PHRF and ALL In our previous, as well as others, studies, iNO and/or Surf tend to be effective in improving oxygenation and inhibiting pulmonary inflammation in experimental ALI/ARDS induced by intravenous endotoxin, oleic acid, or by intra-tracheal or intra-abdominal bacteria. iNO is capable of selectively dilating intrapulmonary resistant vessels, reducing pulmonary artery hypertension, improving hypoxemia by reducing intrapulmonary shunt, and optimizing ventilation-perfusion matching. It also reveals anti-inflammatory capability by inactivating nuclear transcription factor (NF)-κΒand its downstream proinflammatory cytokine synthesis. iNO may also decrease the expression of adhesion molecules, preventing neutrophil adhesion and migration in the injured lungs. Pulmonary surfactant, a mixture of phospholipids and specific proteins produced by the typeⅡalveolar epithelial cells, is important in maintaining alveolar expansion during breath. The rationale for the use of exogenous surfactant in the treatment of patients with ALI/ARDS is not only to recover the function of surfactant, but also to inhibit the stimulated production of superoxide anions, to suppress the stimulated secretion and synthesis of proinflammatory cytokines, such as TNF-α, IL-6, IL-8, and also to inhibit granulocyte activation. Previous studies from this lab have demonstrated that a combined administration of iNO and Surf has better therapeutic effects than either therapy alone. It is of interest to know whether this combined use may exert similar effects of anti-inflammation in ECMO, with special emphasis on endotoxin-induced ALI, and any benefit in facilitating lung repair during recovery from ECMO.
     Objectives
     1. To observe ECMO effects on lung mechanics, gas exchange, and hemodynamics and the inflammation induced by ECMO in ALI piglets between 0 and 24 h, and to detect the lung pathology and biochemical injury in piglets survived at 168 h.
     2. To investigate the effects of a combined use of iNO and surfactant on mitigation of the lung inflammatory injury induced by ECMO in healthy and ALI piglets, and to observe the effects on lung reparation in the survived animals.
     Methods
     After sedated intramuscularly with ketamine, twenty-three piglets, male, 4-5 week-old, body weight 9-14 kg, received i.v. infusion of LPS (18-20μg/kg) within one h, followed by mechanical ventilation with a standard tidal volume of 7-9 ml/kg for 4-8 h. ALI was defined as PaO_2/FiO_2≤300 mmHg, dynamic lung compliance (Cdyn) decreased by more than 30% of its baseline level. This moment was regarded as treatment time 0 h. At 0, 12, and 24 h three animals were immediately sacrificed. Their lungs showed that LPS induced diffuse alveolar damage represented by alveolar atelectasis, and leukocyte sequestration. The other 20 ALI animals were randomly allocated to four groups (n=5) and defined as: VENT group, animals treated with PCV ventilation; VENOS group, animals treated with PCV ventilation, inhalation of 10 ppm NO, 50 mg of surfactant phospholipids/kg body weight via the endotracheal tube; ECMO group, animals treated with PCV ventilation, ECMO; ENOS group, animals treated with PCV ventilation, ECMO, iNO and surfactant as VENOS group. Additionally, five healthy piglets were used as a normal control group (NENOS group). Animals in NENOS group were treated with PCV ventilation, ECMO, iNO and surfactant. During the experiment, Ringer's lactate solution was i.v. infused to keep normal blood pressure, and 1.4% bicarbonate sodium in Ringer's solution was given to overcome metabolic acidosis. FiO_2 was adjusted to maintain PaO_2 greater than 60 mm Hg, and PaCO_2 was maintained between 35 and 45 mm Hg by varying the respiratory rate (RR) in the non-ECMO-treated animals. Continuous infusion of heparin maintained the activated clotting time (ACT) at 180 to 220 s in ECMO groups. The ECMO flow was kept 70-80 ml/kg/min. The initial sweep gas flow of oxygenator was set at 2 L/min and titrated to keep PaCO_2 between 35 to 45 mm Hg. Animals were treated with above settings from 0 to 24 h and fed between 24 h and 168 h.
     Arterial blood gas, Cdyn, systematic hemodynamics, airway pressure, minute ventilation volume, RR of ventilator, and ECMO parameters were monitored at the baseline, establishment of ALI, and each h during the treatment. Blood samples were collected at baseline, establishment of ALI, 4, 8, 16, 24, 48, and 168 h of the treatment. At 168 h, animals were sacrificed by overdose of 10% potassium chloride and lung tissues and bronchoalveolar lavage fluid (BALF) were collected. Total proteins (TP), total phospholipids (TPL), disaturated phosphatidylcholine (DSPC) were measured with biochemical methods and minimum and maximum surface tension (γ_(min) andγ_(max)) of TPL in BALF were measured using pulsating bubble technique. Commercial available kits were used to measure the levels of NOx~-, IL-8, IL-6, myeloperoxidase (MPO) malondialdehyde (MDA), glutathione (GSH), and total nitric oxide synthase activity (tNOS). The expression of IL-8, IL-6, keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), vascular endothelial grow factor (VEGF), vascular endothelial grow factor receptor 2 (VEGFR-2), collagenⅢ, inducible nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS) mRNA in lung tissues were measured by real-time polymerase chain reaction (real-time PCR) at the end of the experiment.
     Results
     1. ALI model: Piglets appeared transient purple plague, poor response, the increase of blood temperature and heart rate, tachypnea, and the decrease of systemic blood pressure, Cdyn and PaO_2 and accompanied with the decrease of peripheral WBC 0.5-1 hour since LPS infused. It took 4-8 h to result in ALI. The lung pathology showed that LPS induced diffuse alveolar damage represented by alveolar bleeding, atelectasis, leukocyte sequestration.
     2. Hemodynamics during treatment: During the treatment, the systemic hemodynamics of ECMO and ENOS groups was stable. Levels of MABP, dp/dtmax, and SVR in ECMO group were 19%, 25%, and 36% higher than those in VENT group respectively.
     3. Lung mechanics during treatment: There was a reducing trend of RR in the ECMO and ENOS groups. At 8 and 16 h, RR of ECMO group was significantly lower than that of VENT and VENOS groups (p<0.01). At 24 h, RR of VENOS was obviously higher in comparison to that of ECMO group (p<0.05). At 8 and 16 h, minute ventilation volume (MV) of ECMO group was significantly lower than that of VENT and VENOS groups (p < 0.01). Minute ventilation volume of 8 h in ENOS group was significantly lower compared to that in VENT group (p < 0.05).
     4. Gas exchange during treatment: There was a continuous and significant improvement in PaO_2/FiO_2 in ECMO and ENOS groups during ECMO treatment and it was improved in both VENT and VENOS groups as well.
     5. Phospholipids, surface tension, white cell counts (WCC), and TP in BALF: ENOS and NENOS groups had higher DSPC than that of VENT and VENOS groups (p < 0.05) and had lower minimum surface tension of TPL in BALF than that of VENT group (p < 0.05). ECMO group had higher DSPC than that of VENT (p < 0.05). WCC in ENOS and NENOS groups was lower than that in VENT group (p < 0.05). There was not significant difference in TP levels among the groups.
     6. NOx~- concentration: At 0 h, plasma NOx~- of VENT and ECMO groups was significantly higher than that of NENOS group (p < 0.05). At 4 h, VENT group had significantly higher NOx~- than ENOS and NENOS groups (p < 0.05). At 168 h, BALF NOx~- of VENT group was higher than that of VENOS, ECMO, and NENOS groups (p< 0.01).
     7. IL-6 concentration: During the treatment, plasma IL-6 in all groups increased and reached its peak level at 24 h. At 48 and 168 h, this level was decreased in all groups.
     8. IL-8 concentration: During the treatment, plasma IL-8 in all groups increased and reached its peak level at 24 h. At 16 h, plasma IL-8 of VENT group was significantly higher than that in ENOS and NENOS (p < 0.05). At 24 h, VENT, VENOS, and ECMO had higher plasma IL-8 than that in ENOS and NENOS (p < 0.05). There was not significant difference in BALF IL-8 among the groups.
     9. The mRNA expression of IL-6, IL-8, iNOS, and eNOS in the lung tissue: There were no significant differences in mRNA expression of IL-6 and eNOS among the groups. IL-8 expression in VENT was significantly higher than that in VENOS, ENOS, and NENOS (p < 0.01). ECMO had higher IL-8 expression than that in ENOS and NENOS (p < 0.05). VENT had significantly higher iNOS expression than that in ECMO, ENOS, and NENOS (p < 0.01).
     10. The mRNA expression of VEGF, VEGFR-2, KGF, HGF, and collagenⅢin lung tissues: There were no significant differences in mRNA expression of VEGF, KGF, and collagenⅢamong the groups. Expression of VEGFR-2 in NENOS was significantly higher than that in VENT (p < 0.05). ENOS and NENOS had higher expression of HGF than in VENT (p < 0.05).
     11. MPO, MDA, GSH, tNOS, NOx~-, and W/D in lung tissue: There were not significant differences in the levels of MPO, GSH, tNOS, and NOx~- in lung tissue among the groups. MDA in ENOS and NENOS was significantly lower than that in VENT (p < 0.05), and VENT group had higher W/D than that in NENOS group (p < 0.05).
     12. Lung histopathology: There was prominent neutrophil infiltration in VENT. VENOS and ECMO had moderate pathological changes. There was modest neutrophil infiltration in ENOS and NENOS. Volume density of alveolar aeration in ENOS and NENOS was significantly higher than in VENT (p < 0.05).
     Conclusions
     1. ALI was successful established by intravenous administration of LPS in young piglets, which enabled assessment of therapeutic efficacy and safety of ECMO and investigation of mechanicsm of lung injury and repair in the recovery.
     2. ECMO initiated a systemic inflammatory response and caused lung injury in these animals.
     3. ECMO improved lung mechanics, oxygenation, and hemodynamic condition of ALI piglets in acute phase and alleviated the lung inflammatory response induced by ventilator treatment associated with differential expression of iNOS and endogenous NO metabolites in the lungs.
     4. Combined use of iNO and surfactant mitigated the inflammatory response provoked by ECMO as reflected by plasma IL-8 production in the acute phase and the lung expression of IL-8 in the recovery phase as well as altered MDA production. This modality upgraded the expression of HGF and facilitated reparation of alveolar epithelial cells in the recovery phase.
引文
1. Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury [J]. N Engl J Med, 2005, 353(16): 1685-1693.
    
    2. ARDS Network. Higher versus lower positive end expiratory pressures in patients with acute respiratory distress syndrome [J]. N Engl J Med, 2004,351(4): 327-336.
    
    3. Ware LB, Matthay MA. The acute respiratory distress syndrome [J]. N Engl J Med, 2000, 342(18): 1334-1349.
    
    4. ECLS Registry Report International summary [R], 2006.
    
    5. Bartlett RH, Gazzaniga AB, Jefferies MR, et al. Extracorporeal membrane oxygenation (ECMO) cardiopulmonary support in infancy [J]. Trans Am Soc Artif Intern Organs, 1976, 22: 80-93.
    
    6. UK Collaborative ECMO Trail Group: UK collaborative randomised trial of neonatal extracorporeal membrane oxygenation [J]. Lancet, 1996, 348(9020):75-82.
    
    7. Bartlett RH, Roloff DW, Custer JR, et al. Extracorporeal life support: the university of Michigan experience [J]. JAMA, 2000, 283(7): 904-908.
    
    8. Green TP, Timmons OD, Fackler JC, et al. The impact of extracorporeal membrane oxygenation on survival in pediatric patients with acute respiratory failure [J]. Crit Care Med, 1996, 24(2): 323-329.
    
    9. Zwischenberger JB , Cox CS Jr , Minifee PK, et al . Pathophysiology of ovine smoke inhalation injury treated with extracorporeal membrane oxygenation [J].Chest, 1993, 103(5): 1582-1586.
    
    10. Adrian K, Skogby M, Friberg LG, et al. The effect of s-nitroso-glutathione on platelet and leukocyte function during experimental extracorporeal circulation [J]. Artif Organs, 2003, 27(6): 570-575.
    
    11. Golej J, Winter P, Schoffmann G, et al. Impact of extracorporeal membrane oxygenation modality on cytokine release during rescue from infant hypoxia [J].Shock, 2003, 20(2): 110-115.
    
    12. Horan M, Ichiba S, Firmin RK, et al. A pilot investigation of mild hypothermia in neonates receiving extracorporeal membrane oxygenation (ECMO) [J]. J Pediatr,2004, 144(3): 301-308.
    
    13. Fortenberry JD, Bhardwaj V, Niemer P, et al. Neutrophil and cytokine activation with neonatal extracorporeal membrane oxygenation [J]. J Pediatr, 1996; 128(5 Pt 1): 670-678.
    14. Graulich J, Sonntag J, Marcinkowski M, et al. Complement activation by in vivo neonatal and in vitro extracorporeal membrane oxygenation [J]. Mediators Inflamm, 2002, 11(2): 69-73.
    15. Khoshbin E, Dux AE, Killer H, et al. A comparison of radiographic signs of pulmonary inflammation during ECMO between silicon and poly-methyl pentene oxygenators [J]. Perfusion, 2007, 22(1): 15-21.
    16.汪薇,陆铸今,刘海沛,等.体外膜肺对急性呼吸窘迫综合征幼猪肺生理和病理的影响[J].中华急诊医学杂志,2007,16(7):685-689。
    17. Bert C, De Buck F, Sergeant P, et al. Aprotinin reduces cardiac troponin Ⅰrelease and inhibits apoptosis of polymorphonuclear cells during off-pump coronary artery bypass surgery [J]. J Cardiothorac Vasc Anesth, 2008,22(1):16-22.
    18. Baksaas ST, Flom-Halvorsen HI, Ovrum E, et al. Leucocyte filtration during cardiopulmonary reperfusion in coronary artery bypass surgery [J]. Perfusion,1999,14(2): 107-117.
    19. Baksaas ST, Videm V, Fosse E, et al. In vitro evaluation of new surface coatings for extracorporeal circulation [J]. Perfusion, 1999, 14(1): 11-19.
    20. Oliver WC, Nuttall GA, Orszulak TA, et al. Hemofiltration but not steroids results in earlier tracheal extubation following cardiopulmonary bypass: a prospective, randomized double-blind trial [J]. Anesthesiology, 2004, 101(2):327-339.
    21. Griffiths MJ, Evans TW. Inhaled nitric oxide therapy in adults. [J]. N Engl J Med, 2005, 353(25): 2683-2695.
    22. Kinsella JP, Abman SH. Clinical approach to inhaled nitric oxide therapy in the newborn with hypoxemia [J]. J Pediatr, 2000, 136(6): 717-726.
    23. Raychaudhuri B, Dweik R, Connors MJ, et al. Nitric oxide blocks nuclear factor-κΒ activation in alveolar macrophages [J]. Am J Respir Cell Mol Biol,1999, 21(3): 311-316.
    24. El Kebir D, Hubert B, Taha R, et al. Effects of inhaled nitric oxide on inflammation and apoptosis after cardiopulmonary bypass [J]. Chest, 2005, 128(4): 2910-2917.
    25. Chung A, Wildhirt SM, Wang S, et al. Combined administration of nitric oxide gas and iloprost during cardiopulmonary bypass reduces platelet dysfunction: A pilot clinical study [J]. J Thorac Cardiovasc Surg, 2005, 129 (4): 782-790.
    
    26. Da JP, Chen LN, Hedenstierna G. Nitric oxide up-regulates the glucocorticoid receptor and blunts the inflammatory reaction in porcine endotoxin sepsis [J].Crit Care Med, 2007, 35(1): 26-32.
    
    27. Walmrath D, Gunther A, Ghofrani HA, et al. Bronchoscopic surfactant administration in patients with severe adult respiratory distress syndrome and sepsis [J]. Am J Respir Crit Care Med, 1996, 154(1): 57-62.
    
    28. Hermon M, Burda G, Male C, et al. Surfactant application during extracorporeal membrane oxygenation improves lung volume and pulmonary mechanics in children with respiratory failure [J]. Crit Care, 2005, 9(6): 18-24.
    
    29. Zhu Y, Guo C, Cao L, et al. Different effects of surfactant and inhaled nitric oxide in modulation of inflammatory injury in ventilated piglet lungs [J]. Pulm Pharmacol Ther, 2005, 18(4): 303-313.
    
    30. Spragg RG, Lewis JF, Wurst W, et al. Treatment of acute respiratory distress syndrome with recombinant surfactant protein C surfactant [J]. Am J Respir Crit Care Med, 2003, 167(11): 1562-1566.
    
    31. Ahuja A, Oh N, Chao W, et al. Inhibition of the human neutrophil respiratory burst by native and synthetic surfactant [J]. Am J Respir Cell Mol Biol, 1996,14(5): 496-503.
    
    32. Baur FM, Brenner B, Goetze-Speer B, et al. Natural porcine surfactant down-regulated mRNA of tumor necrosis factor-a (TNF-a) and TNF-a type II receptor in lipopolysaccharide-stimulated monocytes [J]. Pediatr Res, 1998,44(1): 32-36.
    
    33. Zhu GF, Sun B, Niu SF, et al. Combined surfactant therapy and inhaled nitric oxide in rabbits with oleic acid-induced acute respiratory distress syndrome [J].Am J Respir Crit Care Med, 1998, 158(2): 437-443.
    
    34. Zhao DH, Sun B, Wu ZH, et al. Mitigation of endotoxin-induced acute lung injury in ventilated rabbits by surfactant and inhaled nitric oxide [J]. Intensive Care Med, 2000, 269(2): 229-238.
    
    35. Hu X, Cao L, Lam LK, et al. Mitigation of meconium-induced lung injury by surfactant and inhaled nitric oxide is associated with suppression of nuclear transcription factor kappa B [J]. Biol Neonate, 2005, 87(2): 73-81.
    
    36. Gommers D, Hartog A, vantVeen A, et al. Improved oxygenation by nitric oxide is enhanced by prior lung reaeration with surfactant, rather than positive end-expiratory pressure, in lung-lavaged rabbits [J]. Crit Care Med, 1997,25(11): 1868-1873.
    37. Bernard GR, Artigas A, Brigham KL, et al. The American Europe Consesus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination [J]. Am J Respir Crit Care Med, 1994, 149(3): 818-824.
    38. Becker JA, Martin GR. Principles and practice of veno-venous ECMO. In: Meurs KV, eds ECMO specialist training manual 2rd ed [M]. ELSO, 1999,41-45.
    39. Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the folin phenol reagent [J]. J Bio Chem, 1951; 193(1): 265-275.
    40. Bartlett GB. Phosphorus assay in column chromatography [J]. J Biol Chem 1959, 234(3): 466-468.
    41. Mason RJ, Nellenbogen J, Clements JA. Isolation of disaturated phosphatidylcholine with osmium tetroxide [J]. J Lipid Res 1976, 17(3):281-284.
    42. Ennema JJ, Kobayashi T, Robertson B, et al. Inactivation of exogenous surfactant in experimental respiratory failure induced by hyperoxia [J]. Acta Anaesthesiol Scand 1988, 32(8): 665-671.
    43.朱列伟,孙波,郑珊,等.实验性急性肺损伤的形态计量[J].复旦大学学报,2003,30(2):110-113.
    44. Ullrich R, Roeder G, Lorber C, et al. Continuous venovenous hemofiltration improves arterial oxygenation in endotoxin-induced lung injury in pigs [J].Anesthesiology 2001, 95(2): 428-436.
    45. Kemming GI, Flondor M, Hanser A, et al. Effects of perfluorohexan vapor on gas exchange, respiratory mechanics, and lung histology in pigs with lung injury after endotoxin infusion [J]. Anesthesiology 2005, 103(3): 585-594.
    46. Abadie Y, Bregeon F, Papazian L, et al. Decreased VEGF concentration in lung tissue and vascular injury during ARDS [J]. Eur Respir J 2005, 25(1): 139-146.
    47. Dimmitt RA, Moss RL, Rhine WD, et al. Venoarterial versus venovenous extracorporeal membrane oxygenation in congenital diaphragmatic hernia: The extracorporeal life support organization registry, 1990-1999 [J]. J Pediatr Surg 2001,36(8): 1199-1204.
    48. Hall RI, Smith MS, Rocker G. The systemic inflammatory response to cardiopulmonary bypass: pathophysiological, therapeutic, and pharmacological considerations [J]. Anesth Analg 1997, 85(4): 766-782.
    
    49. Asimakopoulos G, Smith PL, Ratnatunga CP, et al. Lung injury and acute respiratory distress syndrome after cardiopulmonary bypass [J]. Ann Thorac Surg, 1999,68(3): 1107-1115.
    
    50. Wan S, LeClerc JL, Vincent JL. Inflammatory response to cardiopulmonary bypass: mechanisms involved and possible therapeutic strategies [J]. Chest,1997, 112(3): 676-692.
    
    51. Graulich J, Walzog B, Marcinkowski M, et al. Leukocyte and endothelialactivation in a laboratory model of extracorporeal membrane oxygenation (ECMO) [J]. Pediatr Res 2000, 48(5): 679-684.
    
    52. Meduri GU, Headley S, Kohler G, et al. Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS. Plasma IL-1 beta and IL-6 levels are consistent and efficient predictors of outcome over time [J]. Chest 1995,107(4): 1062-1073.
    
    53. Chen JC, Rollins SA, Shernan SK, et al. Pharmacologic C5-complement suppression reduces blood loss during on-pump cardiac surgery [J]. J Card Surg,2005, 20(1): 35-41.
    
    54. Hart M. Nitric oxide in adult lung disease [J]. Chest 1999, 115(5): 1407-1417
    
    55. Bolotina VM, Najibi S, Palacino JJ, et al. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle [J]. Nature 1994, 368(6474): 850-853.
    
    56. Putensen C, Rasanen J, Lopez FA, et al. Continuous positive airway pressure modulates effect of inhaled nitric-oxide on the ventilation-perfusion distributions in canine lung injury [J]. Chest 1994, 106 (5): 1563-1569.
    
    57. Poelma DL, Zimmermann LJ, Scholten HH, et al. In vivo and in vitro uptake of surfactant lipids by alveolar type II cells and macrophages [J]. Am J Physiol Lung Cell Mol Physiol 2002, 283(3): L648-L654.
    
    58. Greene KE, Wright JR, Steinberg KP, et al. Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS [J]. Am J Respir Crit Care Med 1999, 160(6): 1843-1850.
    
    59. Haitsma JJ, Papadakos PJ, Lachmann B. Surfactant therapy for acute lung injury/acute respiratory distress syndrome [J]. Curr Opin Crit Care 2004, 10(1):18-22.
    
    60. Tsangaris I, Lekka ME, Kitsiouli E, et al. Bronchoalveolar lavage alterations during prolonged ventilation of patients without acute lung injury [J]. Eur Respir J 2003,21 (3): 495-501.
    
    61. Creuwels LA, van Golde LM, Haagsman HP. The pulmonary surfactant system:biochemical and clinical aspects [J]. Lung 1997, 175(1): 1-39.
    
    62. Kang JL, Park W, Pack IS, et al. Inhaled nitric oxide attenuates acute lung injury via inhibition of nuclear factor-kappa B and inflammation [J]. J Appl Physiol 2002, 92(2): 795-801.
    
    63. Cao L, Qian LL, Zhu YR, et al. Regulation of activity of nuclear factor-kappa B and activator protein-1 by nitric oxide, surfactant and glucocorticoids in alveolar macrophages from piglets with acute lung injury [J]. Acta Pharmacol Sin 2003, 24(12): 1316-1323.
    
    64. Kinsella JP, Parker TA, Galan H, et al. Effects of inhaled nitric oxide on pulmonary edema and lung neutophil accumulation in severe experimental hyaline membrane disease [J]. Pediatr Res 1997, 41(4 Pt 1): 457-463.
    
    65. Speer CP, Ruess D, Harms K, et al. Neutrophil elastase and acute pulmonary damage in neonates with severe respiratory distress syndrome [J]. Pediatrics 1993, 91(4): 794-799.
    
    66. Kourembanas S, MeQuillan LP, Leung GK, et al. Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia [J]. J Clin Invest 1993, 92(1): 99-104.
    
    67. Bloomfield GL, Holloway S, Ridings PC, et al. Pretreatment with inhaled nitric oxide inhibits neutrophil migration and oxidative activity resulting in attenuated sepsis-induced acute lung injury [J]. Crit Care Med 1997, 25(4):584-593.
    
    68. Razavi HM, Werhun R, Scott JA, et al. Effects of inhaled nitric oxide in a mouse model of sepsis-induced acute lung injury [J]. Crit Care Med 2002;30(4): 868-873.
    
    69. Chollet-Martin S, Gatecel C, Kermarrec N, et al. Alveolar neutrophil functions and cytokine levels in patients with adult respiratory distress syndrome during nitric oxide inhalation [J]. Am J Respir Crit Care Med 1996; 153(3): 985-990.
    
    70. Bloomfield GL, Sweeney LB, Fisher BJ, et al. Delayed administration of inhaled nitric oxide preserves alveolar-capillary membrane integrity in porcine Gram-negative sepsis [J]. Arch Surg 1997; 132(1): 65-75.
    
    71. Issa A, Lappalainen U, Kleinman M, et al. Inhaled nitric oxide decreases hyperoxia-induced surfactant abnormality in preterm rabbits [J]. Pediatr Res 1999; 45(2): 247-254.
    
    72. Walti H, Polla BS, Bachelet M. Modified natural porcine surfactant inhibits superoxide anions and proinflammatory mediators released by resting and stimulated human monocytes [J]. Pediatr Res 1997, 41(1): 114-119.
    
    73. Brenner B, Junge S, Birle A, et al. Surfactant modulates intracellular signaling of the adhesion receptor L-selectin [J]. Pediatr Res 2000, 48(3): 283-288.
    
    74. Tegtmeyer FK, Moller J, Zabel P. Inhibition of granulocyte activation by surfactant in a 2-yr-old female with meningococcus-induced ARDS [J]. Eur Respir J 2002, 19(4): 776-779.
    
    75. Antal JM, Divis LT, Erzurum SC, et al. Surfactant suppreses NF-Kappa B activation in human monocytic cells [J]. Am J Respir Cell Mol Biol 1996,14(4): 374-379.
    
    76. Thomassen MJ, Meeker DP, Antal JM, et al. Synthetic surfactant (exosurf) inhibits endotoxin-stimulated cytokine secretion by human alveolar macrophages [J]. Am J Respir Cell Mol Biol 1992, 7(3): 257-260.
    
    77. Goodman RB, Strieter RM, Martin DP, et al. Inflammatory cytokines in patients with persistence of the acute respiratory distress syndrome [J]. Am J Respir Crit Care Med 1996; 154(3): 602-611.
    
    78. Kurdowska A, Noble JM, Grant IS, et al. Anti-interleukin-8 autoantibodies in patients at risk for acute respiratory distress syndrome [J]. Crit Care Med 2002,30(10): 2335-2337.
    
    79. Meduri GU, Headley S, Kohler G, et al. Persistent elevation of inflammatory cytokines predicts a poor outcome in ards - plasma IL-1-beta and IL-6 levels are consistent and efficient predictors of outcome over time [J]. Chest 1995,107(4): 1062-1073.
    
    80. Ichiba S, Killer HM, Firmin RK, et al. Pilot investigation of hypothermia in neonates receiving extracorporeal membrane oxygenation [J]. Arch Dis Child Fetal Neonatal Ed, 2003, 88(2): F128-F133.
    
    81. Parsons PE, Eisner MD, Thompson BT, et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury [J]. Crit Care Med 2005, 33(1): 1-6.
    
    82. Liu KD, Glidden DV, Eisner MD, et al. Predictive and pathogenetic value of plasma biomarkers for acute kidney injury in patients with acute lung injury [J]. Crit Care Med 2007, 35(12): 2755-2761.
    
    83. Meduri GU, Headley S, Kohler G, et al. Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS - plasma IL-1-BETA and IL-6 levels are consistent and efficient predictors of outcome over time [J]. Chest 1995, 107(4): 1062-1073.
    
    84. Meduri GU, Kohler G, Hendley S, et al. Inflammatory cytokines in the BAL of patients with ARDS - Persistent elevation over time predicts poor outcome [J].Chest 1995,108(5): 1303-1314.
    
    85. Hauser GJ, Ben-Ari J, Colvin MP, et al. Interleukin-6 levels in serum and lung lavage fluid of children undergoing open heart surgery correlate with postoperative morbidity [J]. Intensive Care Med, 1998, 24(5): 481-486.
    
    86. Scott JA, McCormack DG. Nonadrenergic noncholinergic vasodilation of guinea pig pulmonary arteries is mediated by nitric oxide [J]. Can J Physiol Pharmacol 1999; 77(2): 89-95.
    
    87. Scott JA, Craig I, McCormack DG. Nonadrenergic noncholinergic relaxation of human pulmonary arteries is partially mediated by nitric oxide [J]. Am J Respir Crit Care Med 1996; 154(3): 629-632.
    
    88. Ermert M, Ruppert C, Gunther A, et al. Cell-specific nitric oxide synthase-isoenzyme expression and regulation in response to endotoxin in intact rat lungs [J]. Lab Invest 2002; 82(4): 425-441.
    
    89. Scott JA, Mehta S, Duggan M, et al. Functional inhibition of constitutive nitric oxide synthase in a rat model of sepsis [J]. Am J Respir Crit Care Med 2002;165(10): 1426-1432.
    
    90. Guo FH, De Raeve HR, Rice TW, et al. Continuous nitric oxide synthesis by inducible nitric oxide synthase in normal human airway epithelium in vivo [J].Pro Nati Acad of Sci USA 1995; 92(17): 7809-7813.
    
    91. Bratt J, Gyllenhammar H. The role of nitric oxide in lipoxin A4-induced polymorphonuclear neutrophil-dependent cytotoxicity to human vascular endothelium in vitro [J]. Arthritis Rheumatism 1995; 38(6): 768-776.
    
    92. Nicholson S, Bonecini-Almeida MG, Nathan C, et al. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis [J]. Journal of Experimental Medicine 1996; 183(5): 2293-2302.
    
    93. Wheeler MA, Smith SD, Garcia-Cardena G, et al. Bacterial infection induces nitric oxide synthase in human neutrophils [J]. Journal of Clinical Investigation 1997; 99(1): 110-116.
    
    94. Kooguchi K, Kobayashi A, Kitamura Y, et al. Elevated expression of inducible nitric oxide synthase and inflammatory cytokines in the alveolar macrophages after esophagectomy [J]. Crit Care Med 2002; 30(1): 71-76.
    
    95. Sittipunt C, Steinberg KP, Ruzinski JT, et al. Nitric oxide and nitrotyrosine in the lungs of patients with acute respiratory distress syndrome [J]. Am J Respir Crit Care Med 2001, 163(2): 503-510.
    
    96. Mikawa K, Nishina K, Tamada M, et al. Aminoguanidine attenuates endotoxin-induced acute lung injury in rabbits [J]. Crit Care Med 1998, 26(5):905-911.
    
    97. Razavi HM, Wang LF, Weicker S, et al. Pulmonary oxidative injury in murine sepsis is due to inflammatory cell nitric oxide [J]. Crit Care Med 2005, 33(6):1333-1339.
    
    98. Baron RM, Carvajal IM, Fredenburgh LE, et al. Nitric oxide synthase-2 down-regulates surfactant protein-B expression and enhances endotoxin-induced lung injury in mice [J]. FASEB J 2004, 18(9): 1276-1278.
    
    99. Tremblay L, Valenza F, Riberio SP, et al. Injurious ventilation strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model [J]. J Clin Invest 1997, 99(5): 944-952.
    
    100. Parsons PE, Eisner MD, Thompson BT, et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury [J]. Crit Care Med 2005, 33(1): 1-6.
    
    101. Rich PB, Douillet CD, Hurd H, Boucher RC. Effect of ventilatory rate on airway cytokine levels and lung injury [J]. J Surg Res 2003(1), 113: 139-145.
    
    102. Morita K, Ihnken K, Buckberg GD, et al. Pulmonary vasoconstriction due to impaired nitric oxide production after cardiopulmonary bypass [J]. Ann Thorac Surg 1996, 61(6): 1775-1780.
    
    103. Matthay MA, Zimmerman GA. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management [J]. Am J Respir Cell Mol Biol 2005, 33(4): 319-327.
    
    104. Grosjean J, Kiriakidis S, Reilly K, et al. Vascular endothelial growth factor signalling in endothelial cell survival: a role for NFkappaB [J]. BiochemBiophys Res Commun 2006, 340(3): 984-994.
    
    105. Lake AC, Vassy R, Di Benedetto M, et al. Low molecular weight fucoidan increases VEGF165-induced endothelial cell migration by enhancing VEGF165 binding to VEGFR-2 and NRP1 [J]. J Biol Chem 2006, 281(49):37844-37852.
    
    106. Kim CW, Son KN, Choi SY, et al. Human lactoferrin upregulates expression of KDR/Flk-1 and stimulates VEGF-A-mediated endothelial cell proliferation and migration [J]. FEBS Lett 2006, 580(18): 4332-4336.
    
    107. Raoul W, Chailley-Heu B, Barlier-Mur AM, et al. Effects of vascularendothelial growth factor on isolated fetal alveolar type II cells [J].Am J Physiol Lung Cell Mol Physiol 2004, 286(6): L1293-L1301.
    
    108. Kaner RJ, Crystal RG. Compartmentalization of vascular endothelial growth factor to the epithelial surface of the human lung [J]. Mol Med 2001, 7(4):240-246.
    
    109. Shalaby F, Rossant J, Yamaguchi TP, et al. Failure of blood-island formation and vasculogenesis in flk-1 -deficient mice [J]. Nature 1995, 376(6535): 62-66.
    
    110. Gerber HP, McMurtrey A, Kowalski J, et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation [J]. J Biol Chem 1998,273(46): 30336-30343.
    
    111. Mura M, dos Santos CC, Stewart D, et al. Vascular endothelial growth factor and related molecules in acute lung injury [J]. J Appl Physiol 2004, 97(5):1605-1617.
    
    112. Fukumura D, Gohongi T, Kadambi A, et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor- induced angiogensesis and vascular permeability [J]. Proc Natl Acad Sci USA 2001,98(5): 2604-2609.
    
    113. Shen BQ, Lee DY, Zioncheck TF. Vascular endothelial growth factor governs endothelial nitric- oxide synthase expression via a KDR/Flk- 1 receptor and a protein kinase C signaling pathway [J]. J Biol Chem 1999, 274(46):33057-33063.
    
    114. Lin YJ, Markham NE, Balasubramaniam V, et al. Inhaled nitric oxide enhances distal lung growth after exposure to Hyperoxia in neonatal rats. Pediatr Res 2005, 58(1): 22-29.
    
    115. Chelly N, Mouhieddine-Gueddiche OB, Barlier-Mur AM, et al. Keratinocyte growth factor enhances maturation of fetal rat lung type Ⅱ cells [J]. Am J Respir Cell Mol Biol 1999, 20(3): 423-432.
    
    116. Adamson IY, Bakowska J. Relationship of keratinocyte growth factor and hepatocyte growth factor levels in rat lung lavage fluid to epithelial cell regeneration after bleomycin [J]. Am J Pathol 1999, 155(3): 949-954.
    
    117. Matsumoto K, Nakamura T. Emerging multipotent aspects of hepatocyte growth factor [J]. J Biochem 1996, 119(4): 591-600.
    
    118. Panoskaltsis-Mortari A, Ingbar DH, Jung P, et al. KGF pretreatment decreases B7 and granzyme B expression and hastens repair in lungs of mice after allogeneic BMT [J]. Am J Physiol Lung Cell Mol Physiol 2000, 278(5):L988-L999.
    
    119. Shiratori M, Michalopoulos G, Shinozuka H, et al. Hepatocyte growth factor stimulates DNA synthesis in alveolar epithelial type II cells in vitro [J]. Am J Respir Cell Mol Biol 1995, 12(2): 171-180.
    
    120. Mason RJ, Leslie CC, McCormick-Shannon K, et al. Hepatocyte growth factor is a growth factor for rat alveolar type II cells [J]. Am J Respir Cell Mol Biol 1994,11(5): 561-567.
    
    121. Ohmichi H, Matsumoto K, Nakamura T. In vivo mitogenic action of HGF on lung epithelial cells: pulmotrophic role in lung regeneration [J]. Am J Physiol 1996, 270(6 Pt 1): L1031-L1039.
    
    122. Yaekashiwa M, Nakayama S, Ohnuma K, et al. Simultaneous or delayed administration of hepatocyte growth factor equally represses the fibrotic changes in murine lung injury induced by bleomycin. A morphologic study [J].Am J Respir Crit Care Med 1997, 156(6): 1937-1944.
    
    123. Cavalleri A, Gobba F, Bacchella L, et al. Serum type III procollagen peptide in asbestos workers: an early indicator of pulmonary fibrosis [J]. Br J Ind Med 1988, 45(12): 818-823.
    
    124. Raghu G, Striker LJ, Hudson LD, et al. Extracellular matrix in normal and fibrotic human lungs [J]. Am Rev Respir Dis 1985, 131(2): 281-289.
    
    125. Alho HS, Inkinen KA, Salminen US, et al. Collagens I and III in a porcine bronchial model of obliterative bronchiolitis [J]. Am J Respir Crit Care Med 2001, 164(8 Pt 1): 1519-1525.
    
    126. Hagiwara S, Iwasaka H, Matsumoto S, et al. Coexpression of HSP47 gene and type I and type III collagen genes in LPS-induced pulmonary fibrosis in rats [J].Lung 2007, 185(1): 31-37.
    1. Matthay MA, Zimmerman GA. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management [J], Am J Respir Cell Mol Biol 2005, 33(4): 319-327.
    2. Abadie Y, Bregeon F, Papazian L, et al. Decreased VEGF concentration in lung tissue and vascular injury during ARDS [J]. Eur Respir J 2005, 25(1): 139-146
    3. Grosjean J, Kiriakidis S, Reilly K, et al. Vascular endothelial growth factor signalling in endothelial cell survival: a role for NFkappaB [J]. Biochem Biophys Res Commun 2006, 340(3): 984-994.
    4. Lake AC, Vassy R, Di Benedetto M, et al. Low molecular weight fucoidan increases VEGF165-induced endothelial cell migration by enhancing VEGF165 binding to VEGFR-2 and NRP1 [J]. J Biol Chem 2006, 281(49): 37844-37852.
    5. Kim CW, Son KN, Choi SY, et al. Human lactoferrin upregulates expression of KDR/Flk-1 and stimulates VEGF-A-mediated endothelial cell proliferation and migration [J]. FEBS Lett 2006, 580(18): 4332-4336.
    6. Raoul W, Chailley-Heu B, Barlier-Mur AM, et al. Effects of vascular endothelial growth factor on isolated fetal alveolar type II cells [J]. Am J Physiol Lung Cell Mol Physiol 2004, 286(6): L1293-L1301.
    7. Kaner RJ, Crystal RG. Compartmentalization of vascular endothelial growth factor to the epithelial surface of the human lung [J]. Mol Med 2001, 7(4):240-246.
    8. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors [J]. Nat Med 2003, 9(6): 669-676.
    9. Gille H, Kowalski J, Li B, et al. Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific vascular endothelial growth factor mutants [J]. J Biol Chem 2001, 276(5): 3222-3230.
    10. Mura M, dos Santos CC, Stewart D, et al. Vascular endothelial growth factor and related molecules in acute lung injury [J]. J Appl Physiol 2004, 97(5): 1605-1617
    
    11. Soker S, Takashime S, Miao HQ, et al. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor [J]. Cell 1998, 92(6): 734-745.
    
    12. Watkins RH, D'Angio CT, Ryan RM, et al. Differential expression of VEGF mRNA splice variants in newborn and adult hyperoxic lung injury [J]. Am J Physiol 1999, 276(5 pt 1): L858-L867.
    
    13. Maniscalco WM, Watkins RH, Roper JM, et al. Hyperoxic ventilated premature baboons have increased p53, oxidant DNA damage and decreased VEGF expression [J]. Pediatr Res 2005, 58(3): 549-556.
    
    14. Klekamp JG, Jarzecka K, Perkett EA. Exposure to hyperoxia decreases the expression of vascular endothelial growth factor and its receptors in adult rat lungs [J]. Am J Pathol 1999,154(3): 823-831.
    
    15. Corne J, Chupp G, Lee CG, et al. IL-13 stimulates vascular endothelial cell growth factor and protects against hyperoxic acute lung injury [J]. J Clin Invest 2000,106(6): 783-791.
    
    16. Ito Y, Betsuyaku T, Nagai K, et al. Expression of pulmonary VEGF family declines with age and is further down-regulated in lipopolysaccharide (LPS)-induced lung injury [J]. Exp Gerontol 2005,40(4): 315-323.
    
    17. Ekekezie II, Thibeault DW, Rezaiekhaligh MH, et al. Endostatin and vascular endothelial cell growth factor (VEGF) in piglet lungs: effect of inhaled nitric oxide and hyperoxia [J]. Pediatr Res 2003, 53(3): 440-446.
    
    18. Maitre B, Boussat S, Jean D, et al. Vascular endothelial growth factor synthesis in the acute phase of experimental and clinical lung injury [J]. Eur Respir J 2001,18(1): 100-106.
    
    19. Karmpaliotis D, Kosmidou I, Ingenito EP, et al. Angiogenic growth factors in the pathophysiology of a murine model of acute lung injury [J]. Am J Physiol Lung Cell Mol Physiol 2002, 283(3): L585-L595.
    
    20. Fehrenbach A, Pufe T, Wittwer T, et al. Reduced vascular endothelial growth factor correlates with alveolar epithelial damage after experimental ischemia and reperfusion [J]. J Heart Lung Transplant 2003, 22(9): 967-978.
    
    21. Compemolle V, Brusselmans K, Acker T, et al. Loss of HIF-2a and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice [J]. Nat Med 2002, 8(7): 702-710.
    
    22. Thickett DR, Armstrong L, Millar AB. A role for vascular endothelial growth factor in acute and resolving lung injury [J]. Am J Respir Crit Care Med 2002,166(10): 1332-1337.
    
    23. Koyama S, Sato E, Tsukadaira A, et al. Vascular endothelial growth factor mRNA and protein expression in airway epithelial cell lines in vitro [J]. Eur Respir J 2002, 20(6): 1449-1456.
    1. Dong X, Liu YL, Du M, et al. P38 mitogen-activated protein kinase inhibition attenuates pulmonary inflammatory response in a rat cardiopulmonary bypass model [J]. Eur J Cardiothorac Surg 2006, 30(1): 77-84.
    2. Adrian K, Skogby M, Friberg LG, et al. The effect of s-nitroso-glutathione on platelet and leukocyte function during experimental extracorporeal circulation [J]. Artif Organs 2003, 27(6): 570-575.
    3. Golej J, Winter P, Schoffmann G, et al. Impact of extracorporeal membrane oxygenation modality on cytokine release during rescue from infant hypoxia [J]. Shock 2003,20(2): 110-115.
    4. Chew MS, Brandslund I, Brix-Christensen V, et al. Tissue injury and the inflammatory response to pediatric cardiac surgery with cardiopulmonary bypass - A descriptive study [J]. Anesthesiology 2001, 94 (5): 745-753.
    5. Honore PM, Jacquet LM, Beale RJ, et al. Effects of normothermia versus hypothermia on extravascular lung water and serum cytokines during cardiopulmonary bypass: a randomized, controlled trial [J]. Crit Care Med 2001, 29(10): 1903-1909.
    6. Harmon D, Coleman E, Marshall C, et al. The effect of clomethiazole on plasma concentrations of interleukin-6, -8, -1 beta, tumor necrosis factor-alpha, and neutrophil adhesion molecule expression during experimental extracorporeal circulation [J]. Anesth Analg 2003, 97(1): 13-18.
    7. Alcaraz AJ, Manzano L, Sancho L, et al. Different proinflammatory cytokine serum pattern in neonate patients undergoing open heart surgery, relevance of IL-8 [J]. J Clin Immunol 2005, 25(3): 238-245.
    8. Duggan E, Caraher E, Gately K, et al. Tumor necrosis factor-alpha and interleukin-10 gene expression in peripheral blood mononuclear cells after cardiac surgery [J]. Crit Care Med 2006, 34(8): 2134-2139.
    9. Ichiba S, Killer HM, Firmin RK, et al. Pilot investigation of hypothermia in neonates receiving extracorporeal membrane oxygenation [J]. Arch Dis Child Fetal Neonatal Ed 2003, 88(2): F128-F133.
    
    10. Hauser GJ, Ben-Ari J, Colvin MP, et al. Interleukin-6 levels in serum and lung lavage fluid of children undergoing open heart surgery correlate with postoperative morbidity [J]. Intensive Care Med 1998, 24(5): 481-486.
    
    11. Goudeau JJ, Clermont G, Guillery O, et al. In high-risk patients, combination of antiinflammatory procedures during cardiopulmonary bypass can reduce incidences of inflammation and oxidative stress [J]. J Cardiovasc Pharmacol 2007, 49(1): 39-45.
    
    12. Alatas O, Colak O, Buyukkidan B, et al. Soluble interleukin-2 receptor and interleukin-8 plasma levels during and after cardiopulmonary bypass:correlations with creatine kinase and creatine kinase MB [J]. Clin Exp Med 2001,1(1): 13-18.
    
    13. Gessler P, Hohl V, Carrel T, et al. Administration of steroids in pediatric cardiac surgery: impact on clinical outcome and systemic inflammatory response [J].Pediatr Cardiol 2005, 26(5): 595-600.
    
    14. Kotani T, Kotake Y, Morisaki H, et al. Activation of a neutrophil-derived inflammatory response in the airways during cardiopulmonary bypass [J].Anesth Analg 2006, 103(6): 1394-1399.
    
    15. Horan M, Ichiba S, Firmin RK, et al. A pilot investigation of mild hypothermia in neonates receiving extracorporeal membrane oxygenation (ECMO) [J]. J Pediatr 2004, 144(3): 301-308.
    
    16. Chen JC, Rollins SA, Shernan SK, et al. Pharmacologic C5-complement suppression reduces blood loss during on-pump cardiac surgery [J]. J Card Surg 2005, 20(1): 35-41.
    
    17. Haddad R, El-Hassan D, Araj A, et al. Some inflammation-related parameters in patients following normo- and hypothermic Cardio-Pulmonary Bypass [J].Immunopharmacol Immunotoxicol 2001, 23(2): 291-302.
    
    18. Rinder CS, Rinder HM, Smith MJ, et al. Antithrombin reduces monocyte and neutrophil CD11b up regulation in addition to blocking platelet activation during extracorporeal circulation [J]. Transfusion 2006, 46(7): 1130-1137.
    
    19. Cicekcioglu F, Cagli K, Emir M, et al. Effects of minimal dose aprotinin on blood loss and fibrinolytic system-complement activation in coronary artery bypass grafting surgery [J]. J Card Surg 2006, 21(4): 336-341.
    
    20. Lazar HL, Bokesch PM, van Lenta F, et al. Soluble human complement receptor 1 limits ischemic damage in cardiac surgery patients at high risk requiring cardiopulmonary bypass [J]. Circulation 2004, 110(suppl II): II274-II279.
    
    21. Graulich J, Sonntag J, Marcinkowski M, et al. Complement activation by in vivo neonatal and in vitro extracorporeal membrane oxygenation [J]. Mediators Inflamm 2002, 11(2): 69-73.
    
    22. Vallhonrat H, Swinford RD, Ingelfinger JR, et al. Rapid activation of the alternative pathway of complement by extracorporeal membrane oxygenation [J].ASAIO J 1999, 45(1): 113-114.
    
    23. Asberg AE, Videm V. Activation of neutrophil granulocytes in an in vitro model of a cardiopulmonary bypass [J]. Artif Organs 2005, 29(12): 927-936.
    
    24. Graulich J, Walzog B, Marcinkowski M, et al. Leukocyte and endothelial activation in a laboratory model of extracorporeal membrane oxygenation (ECMO) [J]. Pediatr Res 2000, 48(5): 679-684.
    
    25. Frass OM, Biihling F, T(?)ger M, et al. Antioxidant and antiprotease status in peripheral blood and BAL fluid after cardiopulmonary bypass [J]. Chest 2001,120(5): 1599-1608.
    
    26. Sheppard SV, Gibbs RV, Smith DC. Does leucocyte depletion during cardiopulmonary bypass improve oxygenation indices in patients with mild lung dysfunction [J]. Br J Anaesth 2004, 93(6): 789-792.
    
    27. Wakayama F, Fukuda I, Suzuki Y, et al. Neutrophil elastase inhibitor, Sivelestat,attenuates acute lung injury after cardiopulmonary bypass in the rabbit endotoxemia model [J]. Ann Thorac Surg 2007, 83(1): 153-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700