免疫调节剂在小鼠动脉粥样硬化及肺纤维化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心脑血管疾病是目前第一大致死因素,严重威胁人类健康。动脉粥样硬化是导致心脑血管疾病的首要病理基础,以血管内脂质、纤维成分堆积,管腔狭窄,血管壁慢性炎症为主要特征,其发生发展与机体免疫系统密切相关。各种免疫细胞,包括单核-巨噬细胞、树突状细胞、T淋巴细胞等在病灶局部浸润并发挥不同功能导致疾病转归或恶化。目前普遍认为免疫失衡是重要的致病因素之一。过去的20年里,他汀类药物因为在降低血脂和降低心血管疾病风险方面的优秀功效,成为预防和治疗动脉粥样硬化的首选和支柱。然而,仍有众多患者最终需要承受急性心血管事件发作的风险。随着对动脉粥样硬化发病机制和影响因素的不断研究,将基础研究向临床应用转化,筛选出更多的治疗靶点,有望为疾病防治带来突破。
     Toll样受体(Toll like receptors,TLRs)是模式识别受体家族成员,能够识别内、外致病原介导先天免疫反应,同时影响获得性免疫发展方向。大量研究证明TLRs参与动脉粥样硬化的发生发展,尤其TLR2对小鼠动脉粥样硬化发生具有决定作用。我们的实验首次报道,对于已经确立动脉粥样硬化病变的40周龄Apoe-/-小鼠,使用中和性抗体阻断TLR2活性显著改善头臂干血管动脉粥样硬化病变,表现为显著减小斑块面积,管腔狭窄程度和斑块内坏死核心比重,增加中膜厚度,斑块内胶原含量和α-SMA+平滑肌细胞表达,发挥减小和稳定晚期动脉粥样硬化斑块的作用。这种血管保护作用可能与阻断TLR2活性后巨噬细胞募集减少和炎性介质释放降低相关。此外,阻断TLR2活性对于改善过高的内质网应激压力,减少巨噬细胞凋亡有重要贡献。CFX是真菌多糖复合物,能够调节免疫细胞活性,具有强大的免疫调节作用。实验室前期研究证明,CFX能够改善病变组织局部免疫微环境,在肿瘤转移、器官纤维化等疾病模型中展现出良好的效果。应用高脂高胆固醇饮食诱导的Apoe-/-小鼠动脉粥样硬化模型我们初步确定了CFX的血管保护作用,证明1g/kg和3g/kg给予CFX能够显著抑制主动脉内表面病变,减小主动脉根部及头臂干血管斑块面积。使用血管紧张素1型受体拮抗剂厄贝沙坦作为阳性对照,我们发现给予CFX治疗40周龄Apoe-/-小鼠18周能够显著降低血管炎症反应,减小和稳定Apoe-/-小鼠头臂干晚期动脉粥样硬化病变。
     与动脉粥样硬化相似,肺纤维化也起始于损伤引起的炎症反应,反复的损伤导致免疫反应失调,组织修复失败。我们初步发现TLR5激动剂鞭毛蛋白能够改善博来霉素诱导的小鼠肺纤维化。以TLR5为靶点筛选小分子激动剂可能为新药开发提供更为广阔的前景。
Atherosclerosis is the major cause of cardiovascular disease, which increasingly threatens human health worldwide. Depending on lipids lowing effects, statins dramatically decrease clinical events and mortality caused by atherosclerosis. However, heart disease and stroke remain by far the most common causes of death. Thus there is a growing quest for novel drugs in clinical therapy. Inflammatory process plays a major role during different steps, from an early stable atherosclerotic plaque to an advanced plaque prone to rupture. As abnormal immune responses act as an important driving factor, application of immunomodulatory agents offers the possibility of new pharmacological interventions in atherosclerosis.
     Toll like receptors (TLRs) are a family of pattern-recognition receptors of innate immunity that initiate inflammatory pathways, and their importance in atherosclerosis pathogenesis, especially TLR2, has been well established. In this study, we firstly demonstrated that treatment with anti-TLR2 antibody resulted in reduction and stabilization of advanced atherosclerotic lesions by decreasing the plaque size and necrotic cores, higher expression of collagen andα-SMA in lesions in the brachiocephalic artery of Apoe-/- mice. With the equal effect of TLR2 deficiency, treatment with anti-TLR2 antibody inhibited the accumulation of macrophage in plaques, the expression of inflammatory mediators in the aortas, including MMP-2, TNF-αand IL-6, and the activation of transcription factor NF-κB. ER-stressed macrophage apoptosis in advanced lesions were also dramatically inhibited in the treatment groups, partially depending on regulation of CHOP expression. In summary, the results of this study, compared with recent findings in TLR2-deficient mouse model of atherosclerosis, indicate that anti-TLR2 antibody treatment could act as an effective therapeutic method to protect from advanced atherosclerosis. While TLR2 expressed on endothelial cells is required for disease initiation, in advanced atherosclerotic lesions in which macrophages undergoing apoptosis TLR2 on macrophage surfaces may mediate or amplify the apoptosis signal. So antibodies or antagonists of TLR2 should be developed as a key therapeutic drug in future. CFX is the fermentative polysaccharides of medical mushroom with potent immunomodulatory activity. We found that CFX treatment markedly inhibited the formation of atherosclerosis in the whole aortas, the aortic root and the brachiocephalic arteries of Apoe mice on atherogenic diets. And in Apoe-/-mice with established atherosclerosis, administration of CFX significantly improved advanced atherosclerotic lesions, which were related to suppression of inflammatory responses.
     Although the detailed mechanisms are still not well understood, inflammatory responses also contribute to the pathogenesis of pulmonary fibrosis, a disease characterized by excessive matrix deposition and destruction of the normal lung architecture. Using the mouse model of bleomycin-induced pulmonary fibrosis, our preliminary findings demonstrated the protective effects of TLR5 agonist on inflammation and fibrosis. These findings will contribute to identifying the new molecular targets of pulmonary fibrosis, and providing research clues for the development of new drugs.
引文
[1]Murray, C. J. L.& Lopez, A. D. Global mortality, disability, and the contribution of risk factors:Global Burden of Disease Study [J]. The Lancet,1997,349 (9063), 1436-1442.
    [2]Fuster, V, Moreno, P. R., Fayad, Z. A., Corti, R.& Badimon, J. J. Atherothrombosis and High-Risk Plaque:Part Ⅰ:Evolving Concepts [J]. Journal of the American College of Cardiology,2005,46 (6),937-954.
    [3]Schwartz, S. M., Galis, Z. S., Rosenfeld, M. E.& Falk, E. Plaque Rupture in Humans and Mice [J]. Arterioscler Thromb Vasc Biol,2007,27 (4),705-713.
    [4]AC., I. Influence of animal food on the organism of rabbits. [J]. S Peterb Izviest Imp Voyenno-Med. Akad,1908,16,154-173.
    [5]Jawien J, N. P., Korbut R. Mouse models of experimental atherosclerosis [J]. J Physiol Pharmacol.,200455 (3),503-17.
    [6]Moghadasian, M. H. et al. Pathophysiology of apolipoprotein E deficiency in mice:relevance to apo E-related disorders in humans [J]. The FASEB Journal, 2001,15(14),2623-2630.
    [7]Zhang, S. H., Reddick, R L., Piedrahita, J. A.& Maeda, N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E [J]. Science,1992,258 (5081),468-471.
    [8]Meir, K. S.& Leitersdorf, E. Atherosclerosis in the Apolipoprotein E-Deficient Mouse:A Decade of Progress [J]. Arterioscler Thromb Vasc Biol,2004,24 (6), 1006-1014.
    [9]Y Nakashima, A. P., EW Raines, JL Breslow, and R Ross ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree [J]. Arterioscler Thromb Vasc Biol 1994,14,133-140.
    [10]Rosenfeld, M. E. et al. Advanced Atherosclerotic Lesions in the Innominate Artery of the ApoE Knockout Mouse [J]. Arterioscler Thromb Vase Biol,2000, 20(12),2587-2592.
    [11]Zadelaar, S. et al. Mouse Models for Atherosclerosis and Pharmaceutical Modifiers [J]. Arterioscler Thromb Vasc Biol,2007,27 (8),1706-1721.
    [12]Galkina, E.& Ley, K. Vascular Adhesion Molecules in Atherosclerosis [J]. Arterioscler Thromb Vasc Biol,2007,27 (11),2292-2301.
    [13]Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata [J]. The Journal of Clinical Investigation,2007,117 (1),195-205.
    [14]Okamura, Y et al. The Extra Domain A of Fibronectin Activates Toll-like Receptor 4 [J]. J. Biol. Chem.,2001,276 (13),10229-10233.
    [15]Meneghin, A. et al. TLR9 is expressed in idiopathic interstitial pneumonia and its activation promotes in vitro myofibroblast differentiation [J]. Histochemistry and Cell Biology,2008,130 (5),979-992.
    [16]Tabas, I. Macrophage death and defective inflammation resolution in atherosclerosis [J]. Nat Rev Immunol,2010,10 (1),36-46.
    [17]Sun, J. et al. Mast cells promote atherosclerosis by releasing proinflammatory cytokines [J]. Nat Med,2007,13 (6),719-724.
    [18]Sun, J. et al. Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice [J]. The Journal of Clinical Investigation,2007,117(11), 3359-3368.
    [19]Guo, T., Chen, W. Q., Zhang, C., Zhao, Y. X.& Zhang, Y. Chymase activity is closely related with plaque vulnerability in a hamster model of atherosclerosis [J]. Atherosclerosis,2009,207 (1),59-67.
    [20]Sun, J. et al. Critical Role of Mast Cell Chymase in Mouse Abdominal Aortic Aneurysm Formation [J]. Circulation,2009,120 (11),973-982.
    [21]Erbel, C. et al. Functional profile of activated dendritic cells in unstable atherosclerotic plaque [J]. Basic Research in Cardiology,2007,102 (2),123-132.
    [22]Niessner, A. et al. Synergistic Proinflammatory Effects of the Antiviral Cytokine Interferon- {alpha} and Toll-Like Receptor 4 Ligands in the Atherosclerotic Plaque [J]. Circulation,2007,116 (18),2043-2052.
    [23]Millonig, G., Schwentner, C., Mueller, P., Mayerl, C.& Wick, G The vascular-associated lymphoid tissue:a new site of local immunity [J]. Current Opinion in Lipidology,2001,12 (5),547-553.
    [24]Angeli, V. et al. Dyslipidemia Associated with Atherosclerotic Disease Systemically Alters Dendritic Cell Mobilization [J]. Immunity,2004,21 (4), 561-574.
    [25]Zhou, X., Nicoletti, A., Elhage, R.& Hansson, G K. Transfer of CD4+ T Cells Aggravates Atherosclerosis in Immunodeficient Apolipoprotein E Knockout Mice [J]. Circulation,2000,102 (24),2919-2922.
    [26]Buono C et al. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. [J]. Proc Natl Acad Sci USA.,2005,102 (5),1596-601.
    [27]Zhou X, Paulsson Q Stemme S & GK., H. Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. [J]. J Clin Invest.,1998 101 (8),1717-25.
    [28]King, V. L., Szilvassy, S. J.& Daugherty, A. Interleukin-4 Deficiency Decreases Atherosclerotic Lesion Formation in a Site-Specific Manner in Female LDL Receptor-/- Mice [J]. Arterioscler Thromb Vasc Biol,2002,22 (3),456-461.
    [29]Mallat, Z. et al. Induction of a Regulatory T Cell Type 1 Response Reduces the Development of Atherosclerosis in Apolipoprotein E-Knockout Mice [J]. Circulation,2003,108 (10),1232-1237.
    [30]Ait-Oufella, H. et al. Natural regulatory T cells control the development of atherosclerosis in mice [J]. Nat Med,2006,12 (2),178-180.
    [31]Sioud, M. Innate sensing of self and non-self RNAs by Toll-like receptors [J]. Trends in Molecular Medicine,2006,12 (4),167-176.
    [32]Kanzler, H., Barrat, F. J., Hessel, E. M.& Coffman, R. L. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists [J]. Nat Med, 2007,13 (5),552-559.
    [33]Kawai, T.& Akira, S. TLR signaling [J]. Cell Death Differ,2006,13 (5), 816-825.
    [34]Chau, T. A. et al. Toll-like receptor 2 ligands on the staphylococcal cell wall downregulate superantigen-induced T cell activation and prevent toxic shock syndrome [J]. Nat Med,2009,15 (6),641-648.
    [35]Wertheim, H. F. L. et al. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers [J]. The Lancet,2004,364 (9435),703-705.
    [36]Mele, T & Madrenas, J. TLR2 signalling:At the crossroads of commensalism, invasive infections and toxic shock syndrome by Staphylococcus aureus [J]. The International Journal of Biochemistry & Cell Biology,2010,42 (7),1066-1071.
    [37]Edfeldt, K., Swedenborg, J., Hansson, G. K.& Yan, Z.-q. Expression of Toll-Like Receptors in Human Atherosclerotic Lesions:A Possible Pathway for Plaque Activation [J]. Circulation,2002,105 (10),1158-1161.
    [38]Geng, H. L. et al. Increased expression of Toll like receptor 4 on peripheral-blood mononuclear cells in patients with coronary arteriosclerosis disease [J]. Clinical & Experimental Immunology,2006,143 (2),269-273.
    [39]Methe, H. et al. Expansion of Circulating Toll-Like Receptor 4-Positive Monocytes in Patients With Acute Coronary Syndrome [J]. Circulation,2005,111 (20),2654-2661.
    [40]Xu, X. H. et al. Toll-Like Receptor-4 Is Expressed by Macrophages in Murine and Human Lipid-Rich Atherosclerotic Plaques and Upregulated by Oxidized LDL [J]. Circulation,2001,104 (25),3103-3108.
    [41]Bjorkbacka, H. et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways [J]. Nat Med,2004,10 (4),416-421.
    [42]Michelsen, K. S. et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E [J]. Proceedings of the National Academy of Sciences,2004, 101 (29),10679-10684.
    [43]Mullick AE, T. P., Curtiss LK,. Modulation of atherosclerosis in mice by Toll-like receptor 2 [J]. J Clin Invest,2005,115 (11),3149-56.
    [44]Mullick, A. E. et al. Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events [J]. The Journal of Experimental Medicine,2008,205 (2),373-383.
    [45]Kiechl, S. et al. Toll-like Receptor 4 Polymorphisms and Atherogenesis [J]. N Engl J Med,2002,347 (3),185-192.
    [46]Boekholdt, S. M. et al. Variants of Toll-Like Receptor 4 Modify the Efficacy of Statin Therapy and the Risk of Cardiovascular Events [J]. Circulation,2003,107 (19),2416-2421.
    [47]Zee, R. Y. L., Hegener, H. H., Gould, J.& Ridker, P. M. Toll-like Receptor 4 Asp299Gly Gene Polymorphism and Risk of Atherothrombosis [J]. Stroke,2005, 36(1),154-157.
    [48]Medeiros, L. A. et al. Fibrillar Amyloid Protein Present in Atheroma Activates CD36 Signal Transduction [J]. J. Biol. Chem.,2004,279 (11),10643-10648.
    [49]Moore, K. J. et al. A CD36-initiated Signaling Cascade Mediates Inflammatory Effects of beta -Amyloid [J]. J. Biol. Chem.,2002,277 (49),47373-47379.
    [50]Hoebe, K. et al. CD36 is a sensor of diacylglycerides [J]. Nature,2005,433 (7025),523-527.
    [51]Moore KJ, K. V, Koehn SL, Manning JJ, Tseng AA, Silver JM, McKee M, Freeman MW. Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. [J]. J Clin Invest.,2005,115 (8),2192-201.
    [52]Miller, Y. I. et al. Toll-Like Receptor 4-Dependent and -Independent Cytokine Secretion Induced by Minimally Oxidized Low-Density Lipoprotein in Macrophages [J]. Artenoscler Thromb Vasc Biol,2005,25 (6),1213-1219.
    [53]Castrillo, A. et al. Crosstalk between LXR and Toll-like Receptor Signaling Mediates Bacterial and Viral Antagonism of Cholesterol Metabolism [J]. Molecular Cell,2003,12 (4),805-816.
    [54]Dunzendorfer, S., Lee, H.-K.& Tobias, P. S. Flow-Dependent Regulation of Endothelial Toll-Like Receptor 2 Expression Through Inhibition of SP1 Activity [J]. Circ Res,2004,95 (7),684-691.
    [55]Harari, O. A., Alcaide, P., Ahl, D., Luscinskas, F. W.& Liao, J. K. Absence of TRAM Restricts Toll-Like Receptor 4 Signaling in Vascular Endothelial Cells to the MyD88 Pathway [J]. Circ Res,2006,98 (9),1134-1140.
    [56]Walton, K. A. et al. Receptors Involved in the Oxidized 1-Palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine-mediated Synthesis of Interleukin-8:A ROLE FOR TOLL-LIKE RECEPTOR 4 AND A GLYCOSYLPHOSPHATIDYLINOSITOL-ANCHORED PROTEIN [J]. J. Biol. Chem.,2003,278 (32),29661-29666.
    [57]Walton, K. A. et al. Specific Phospholipid Oxidation Products Inhibit Ligand Activation of Toll-Like Receptors 4 and 2 [J]. Arterioscler Thromb Vasc Biol, 2003,23(7),1197-1203.
    [58]Angeli V, L. J., Rong JX,Satoh K, Ishii S, Shimizu T, Fisher EA, Randolph GJ. Dyslipidemia associated with atherosclerotic disease systemically alters dendritic cell mobilization. [J]. Immunity,2004,21 (4),561-74.
    [59]Bluml, S. et al. Oxidized Phospholipids Negatively Regulate Dendritic Cell Maturation Induced by TLRs and CD40 [J]. J Immunol,2005,175 (1),501-508.
    [60]Jaulmes, A., Thierry, S., Janvier, B., Raymondjean, M.& Marechal, V Activation of sPLA2-IIA and PGE2 production by high mobility group protein B1 in vascular smooth muscle cells sensitized by IL-1 {beta} [J]. FASEB J.,2006,20 (10),1727-1729.
    [1]Lusis, A. J. Atherosclerosis [J]. Nature,2000,407 (6801),233-241.
    [2]Michelsen KS, A. M. Toll-like receptor signaling and atherosclerosis [J]. Curr Opin Hematol,2006,13 (3),163-8.
    [3]Gibson, F. C., Ⅲ et al. Innate Immune Recognition of Invasive Bacteria Accelerates Atherosclerosis in Apolipoprotein E-Deficient Mice [J]. Circulation, 2004,109(22),2801-2806.
    [4]Rubartelli, A.& Lotze, M. T. Inside, outside, upside down:damage-associated molecular-pattern molecules (DAMPs) and redox [J]. Trends in Immunology, 2007,28(10),429-436.
    [5]Bianchi, M. E. DAMPs, PAMPs and alarmins:all we need to know about danger [J]. J Leukoc Biol,2007,81 (1),1-5.
    [6]Mandal K, Jahangiri M & Q, X. Autoimmunity to heat shock proteins in atherosclerosis. [J]. Autoimmunity reviews,2004,3 (2),31-7
    [7]Q, X., R, K., W, W., H, D.& G, W. Increased expression of heat shock protein 65 coincides with a population of infiltrating T lymphocytes in atherosclerotic lesions of rabbits specifically responding to heat shock protein 65 [J]. J Clin Invest.,1993,91 (6),2693-2702.
    [8]H., B. Multiple roles of Toll-like receptor signaling in atherosclerosis [J]. Curr Opin Lipidol.,2006,17 (5),527-33.
    [9]Liao, D.-F. et al. Purification and Identification of Secreted Oxidative Stress-induced Factors from Vascular Smooth Muscle Cells [J]. J. Biol. Chem., 2000,275(1),189-196.
    [10]Svensson, P.-A. et al. Major role of HSP70 as a paracrine inducer of cytokine production in human oxidized LDL treated macrophages [J]. Atherosclerosis, 2006,185(1),32-38.
    [11]Xu, Q. et al. Serum Soluble Heat Shock Protein 60 Is Elevated in Subjects With Atherosclerosis in a General Population [J]. Circulation,2000,102 (1),14-20.
    [12]Xu, Q. Role of Heat Shock Proteins in Atherosclerosis [J]. Arterioscler Thromb Vasc Biol,2002,22(10),1547-1559.
    [13]Kanwar, R. K., Kanwar, J. R., Wang, D., Ormrod, D. J.& Krissansen, G W Temporal Expression of Heat Shock Proteins 60 and 70 at Lesion-Prone Sites During Atherogenesis in ApoE-Deficient Mice [J]. Arterioscler Thromb Vasc Biol, 2001,21 (12),1991-1997.
    [14]Q., X. Infections, heat shock proteins, and atherosclerosis. [J]. Curr Opin Cardiol., 2003,18(4),245-52.
    [15]Yang, K., Li, D., Luo, M.& Hu, Y. Generation of HSP60-specific regulatory T cell and effect on atherosclerosis [J]. Cellular Immunology,2006,243 (2),90-95.
    [16]Gardella, S. et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. [J]. EMBO Rep.,2002,3, 995-1001.
    [17]Kalinina, N. et al. Increased Expression of the DNA-Binding Cytokine HMGB1 in Human Atherosclerotic Lesions:Role of Activated Macrophages and Cytokines [J]. Arterioscler Thromb Vasc Biol,2004,24 (12),2320-2325.
    [18]Porto, A. et al. Smooth muscle cells in human atherosclerotic plaques secrete and proliferate in response to high mobility group box 1 protein [J]. FASEB J.,2006, 20 (14),2565-2566.
    [19]Inoue, K. et al. HMGB1 expression by activated vascular smooth muscle cells in advanced human atherosclerosis plaques [J]. Cardiovascular Pathology,2007,16 (3),136-143.
    [20]Degryse, B. et al. The High Mobility Group (HMG) Boxes of the Nuclear Protein HMG1 Induce Chemotaxis and Cytoskeleton Reorganization in Rat Smooth Muscle Cells [J]. J. Cell Biol.,2001,152 (6),1197-1206.
    [21]Slevin, M. et al. Hyaluronan-mediated angiogenesis in vascular disease: Uncovering RHAMM and CD44 receptor signaling pathways [J]. Matrix Biology, 2007,26(1),58-68.
    [22]Jiang, D., Liang, J.& Noble, P. W. Hyaluronan in Tissue Injury and Repair [J]. Annual Review of Cell and Developmental Biology,2007,23 (1),435-461.
    [23]Turley, E. A. Extracellular Matrix Remodeling:Multiple Paradigms in Vascular Disease [J]. Circ Res,2001,88 (1),2-4.
    [24]Nieuwdorp, M. et al. Perturbation of hyaluronan metabolism predisposes patients with type 1 diabetes mellitus to atherosclerosis [J]. Diabetologia,2007,50 (6), 1288-1293.
    [25]Cuff CA, K. D., Azonobi I, Chun S, Zhang Y, Belkin R, Yeh C, Secreto A,Assoian RK, Rader DJ, Pure E. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation. [J]. J Clin Invest,2001 108(7),1031-40.
    [26]Chai, S. et al. Overexpression of Hyaluronan in the Tunica Media Promotes the Development of Atherosclerosis [J]. Circ Res,2005,96 (5),583-591.
    [27]Basta, G. Receptor for advanced glycation endproducts and atherosclerosis:From basic mechanisms to clinical implications [J]. Atherosclerosis,2008,196 (1), 9-21.
    [28]Reddy, M. A. et al. Key Role of Src Kinase in S100B-induced Activation of the Receptor for Advanced Glycation End Products in Vascular Smooth Muscle Cells [J]. J. Biol. Chem.,2006,281 (19),13685-13693.
    [29]Evis, H. et al. Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE-/- mice [J]. J. Clin. Invest.,2007,118 (1),183-194.
    [30]Ehlermann, P. et al. Increased proinflammatory endothelial response to S100A8/A9 after preactivation through advanced glycation end products [J]. Cardiovascular Diabetology,2006,5 (1),6.
    [31]Viemann, D. et al. MRP8/MRP14 impairs endothelial integrity and induces a caspase-dependent and -independent cell death program [J]. Blood,2007,109 (6), 2453-2460.
    [32]Viemann, D. et al. Myeloid-related proteins 8 and 14 induce a specific inflammatory response in human microvascular endothelial cells [J]. Blood,2005, 105,2955-2962.
    [33]Eue, I., Langer, C., Eckardstein, A. v.& Sorg, C. Myeloid related protein (MRP) 14 expressing monocytes infiltrate atherosclerotic lesions of ApoE null mice [J]. Atherosclerosis,2000,151 (2),593-597.
    [34]McCormick, M. M. et al. S100A8 and S100A9 in Human Arterial Wall: IMPLICATIONS FOR ATHEROGENESIS [J]. J. Biol. Chem.,2005,280 (50), 41521-41529.
    [35]Schneider, M., Hansen, J.& Sheikh, S. S100A4:a common mediator of epithelial-mesenchymal transition, fibrosis and regeneration in diseases? [J]. Journal of Molecular Medicine,2008,86 (5),507-522.
    [36]Greenway, S. et al. S100A4/Mts1 Produces Murine Pulmonary Artery Changes Resembling Plexogenic Arteriopathy and Is Increased in Human Plexogenic Arteriopathy [J]. Am J Pathol,2004,164 (1),253-262.
    [37]Brisset, A. C. et al. Intimal Smooth Muscle Cells of Porcine and Human Coronary Artery Express S100A4, a Marker of the Rhomboid Phenotype In Vitro [J]. Circ Res,2007,100 (7),1055-1062.
    [38]Danen, E. H. J.& Yamada, K. M. Fibronectin, integrins, and growth control [J]. Journal of Cellular Physiology,2001,189 (1),1-13.
    [39]Sottile, J.& Hocking, D. C. Fibronectin Polymerization Regulates the Composition and Stability of Extracellular Matrix Fibrils and Cell-Matrix Adhesions [J]. Mol. Biol. Cell,2002,13 (10),3546-3559.
    [40]Saito, S. et al. The Fibronectin Extra Domain A Activates Matrix Metalloproteinase Gene Expression by an Interleukin-1-dependent Mechanism [J]. J. Biol. Chem.,1999,274 (43),30756-30763.
    [41]Okamura, Y. et al. The Extra Domain A of Fibronectin Activates Toll-like Receptor 4 [J]. J. Biol. Chem.,2001,276 (13),10229-10233.
    [42]Tan, M. H. et al. Deletion of the alternatively spliced fibronectin EⅢA domain in mice reduces atherosclerosis [J]. Blood,2004,104 (1),11-18.
    [43]Sanz, J.& Fayad, Z. A. Imaging of atherosclerotic cardiovascular disease [J]. Nature,2008,451 (7181),953-957.
    [1]Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia [J]. Nat Genet,2003,34 (2),154-156.
    [2]Benjannet, S. et al. NARC-1/PCSK9 and Its Natural Mutants [J]. Journal of Biological Chemistry,2004,279 (47),48865-48875.
    [3]Rashid, S. et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9 [J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102 (15),5374-5379.
    [4]DJ., R. Molecular regulation of HDL metabolism and function:implications for novel therapies. [J]. J Clin Invest.,2006,116 (12),3090-100.
    [5]Dudley-Brown, S. A Shot of Good Cholesterol:Synthetic HDL, A New Intervention for Atherosclerosis [J]. Journal of Cardiovascular Nursing,2004,19 (6),421-424.
    [6]Tardif, J.-C. et al. Effects of Reconstituted High-Density Lipoprotein Infusions on Coronary Atherosclerosis [J]. JAMA:The Journal of the American Medical Association,2007,297 (15),1675-1682.
    [7]Maxfield, F. R. & Tabas, I. Role of cholesterol and lipid organization in disease [J]. Nature,2005,438 (7068),612-621.
    [8]Hobbs, H. H.& Rader, D. J. ABC1:connecting yellow tonsils, neuropathy, and very low HDL [J]. J Clin Invest,1999,104 (8),1015-7.
    [9]Wang, N., Lan, D., Chen, W., Matsuura, F.& Tall, A. R. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101 (26),9774-9779.
    [10]Joseph, S. B. et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice [J]. Proceedings of the National Academy of Sciences, 2002,99(11),7604-7609.
    [11]Naik, S. U. et al. Pharmacological Activation of Liver X Receptors Promotes Reverse Cholesterol Transport In Vivo [J]. Circulation,2006,113(1),90-97.
    [12]Levin, N. et al. Macrophage Liver X Receptor Is Required for Antiatherogenic Activity of LXR Agonists [J]. Arterioscler Thromb Vasc Biol,2005,25 (1), 135-142.
    [13]Brousseau, M. E. et al. Effects of an Inhibitor of Cholesteryl Ester Transfer Protein on HDL Cholesterol [J]. New England Journal of Medicine,2004,350 (15),1505-1515.
    [14]Barter, P. J. et al. Effects of Torcetrapib in Patients at High Risk for Coronary Events [J]. New England Journal of Medicine,2007,357 (21),2109-2122.
    [15]Daugherty, A., Manning, M. W.& Cassis, L. A. Angiotensin Ⅱ promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice [J]. J Clin Invest,2000,105(11),1605-12.
    [16]Weiss, D., Kools, J. J.& Taylor, W. R. Angiotensin II-induced hypertension accelerates the development of atherosclerosis in apoE-deficient mice [J]. Circulation,2001,103 (3),448-54.
    [17]Keul, P. et al. The Sphingosine-1-Phosphate Analogue FTY720 Reduces Atherosclerosis in Apolipoprotein E-Deficient Mice [J]. Arterioscler Thromb Vasc Biol,2007,27 (3),607-613.
    [18]Yusuf, S. et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators [J]. N Engl J Med,2000,342 (3),145-53.
    [19]Kobayashi, T. et al. Roles of thromboxane A2 and prostacyclin in the development of atherosclerosis in apoE-deficient mice [J]. J. Clin. Invest.,2004, 114 (6),784-794.
    [20]Wang, M. et al. Deletion of microsomal prostaglandin E synthase-1 augments prostacyclin and retards atherogenesis [J]. Proceedings of the National Academy of Sciences,2006,103 (39),14507-14512.
    [21]Gibson, F. C., Ⅲ et al. Innate Immune Recognition of Invasive Bacteria Accelerates Atherosclerosis in Apolipoprotein E-Deficient Mice [J]. Circulation, 2004,109(22),2801-2806.
    [22]Helgadottir, A. et al. A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction [J]. Nat Genet,2006,38 (1),68-74.
    [23]Hakonarson, H. et al. Effects of a 5-lipoxygenase-activating protein inhibitor on biomarkers associated with risk of myocardial infarction:a randomized trial [J]. JAMA,2005,293 (18),2245-56.
    [24]Cybulsky, M. I. et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis [J]. J Clin Invest,2001,107 (10),1255-62.
    [25]Cuff CA, K. D., Azonobi I, Chun S, Zhang Y, Belkin R, Yeh C, Secreto A,Assoian RK, Rader DJ, Pure E. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation. [J]. J Clin Invest,2001108 (7),1031-40.
    [26]Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata [J]. The Journal of Clinical Investigation,2007,117 (1),195-205.
    [27]Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques [J]. J Clin Invest,2007, 117(1),185-94.
    [28]Michelsen, K. S. et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E [J]. Proceedings of the National Academy of Sciences,2004, 101 (29),10679-10684.
    [29]Mullick AE, T. P., Curtiss LK,. Modulation of atherosclerosis in mice by Toll-like receptor 2 [J]. J Clin Invest,2005,115(11),3149-56.
    [30]Bjorkbacka, H. et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways [J]. Nat Med,2004,10 (4),416-421.
    [31]Michelsen, K. S.& Arditi, M. Toll-like receptor signaling and atherosclerosis [J]. Curr Opin Hematol,2006,13 (3),163-8.
    [32]Frantz, S., Ertl, G.& Bauersachs, J. Mechanisms of disease:Toll-like receptors in cardiovascular disease [J]. Nat Clin Pract Cardiovasc Med,2007,4 (8),444-54.
    [33]Takahito Kondo, Makoto Hirose & Kageyama, K. Roles of Oxidative Stress and Redox Regulation in Atherosclerosis [J]. Journal of Atherosclerosis and Thrombosis,2009,16 (5),532-538.
    [34]Navab, M. et al. The oxidation hypothesis of atherogenesis:the role of oxidized phospholipids and HDL [J]. J Lipid Res,2004,45 (6),993-1007.
    [35]Webb, N. R. Secretory phospholipase A2 enzymes in atherogenesis [J]. Curr Opin Lipidol,2005,16(3),341-4.
    [36]Choy, K. et al. Processes Involved in the Site-Specific Effect of Probucol on Atherosclerosis in Apolipoprotein E Gene Knockout Mice [J]. Arterioscler Thromb Vasc Biol,2005,25 (8),1684-1690.
    [37]Gough, P. J., Gomez, I. G, Wille, P. T.& Raines, E. W. Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice [J]. J Clin Invest,2006,116 (1),59-69.
    [38]Vasku, A. et al. A haplotype constituted of four MMP-2 promoter polymorphisms (-1575G/A,-1306C/T,-790T/G and -735C/T) is associated with coronary triple-vessel disease [J]. Matrix Biology,2004,22 (7),585-591.
    [39]Pollanen, P. J. et al. Matrix metalloproteinase 3 and 9 gene promoter polymorphisms:joint action of two loci as a risk factor for coronary artery complicated plaques [J]. Atherosclerosis,2005,180 (1),73-78.
    [40]Liu, J. et al. Lysosomal Cysteine Proteases in Atherosclerosis [J]. Arterioscler Thromb Vasc Biol,2004,24 (8),1359-1366.
    [41]Rader, D. J.& Daugherty, A. Translating molecular discoveries into new therapies for atherosclerosis [J]. Nature,2008,451 (7181),904-913.
    [1]Hansson, G K., Robertson, A. K.& Soderberg-Naucler C. INFLAMMATION AND ATHEROSCLEROSIS [J]. Annual Review of Pathology:Mechanisms of Disease,2006,1 (1),297-329.
    [2]Libby, P. Inflammation in atherosclerosis [J]. Nature,2002,420 (6917),868-874.
    [3]Fuster, V, Moreno, P. R., Fayad, Z. A., Corti, R.& Badimon, J. J. Atherothrombosis and High-Risk Plaque:Part I:Evolving Concepts [J]. Journal of the American College of Cardiology,2005,46 (6),937-954.
    [4]Tabas, I. Macrophage death and defective inflammation resolution in atherosclerosis [J]. Nat Rev Immunol,2010,10 (1),36-46.
    [5]Tabas, I. Macrophage Apoptosis in Atherosclerosis:Consequences on Plaque Progression and the Role of Endoplasmic Reticulum Stress [J]. Antioxidants & Redox Signaling,2009,11 (9),2333-2339.
    [6]Myoishi, M. et al. Increased Endoplasmic Reticulum Stress in Atherosclerotic Plaques Associated With Acute Coronary Syndrome [J]. Circulation,2007,116 (11),1226-1233.
    [7]Thorp, E. et al. Reduced Apoptosis and Plaque Necrosis in Advanced Atherosclerotic Lesions of Apoe-/- and Ldlr-/- Mice Lacking CHOP [J]. Cell Metabolism,2009,9 (5),474-481.
    [8]Tsukano, H. et al. The Endoplasmic Reticulum Stress-C/EBP Homologous Protein Pathway-Mediated Apoptosis in Macrophages Contributes to the Instability of Atherosclerotic Plaques [J]. Arterioscler Thromb Vasc Biol,2010, 30(10),1925-1932.
    [9]Sioud, M. Innate sensing of self and non-self RNAs by Toll-like receptors [J]. Trends in Molecular Medicine,2006,12 (4),167-176.
    [10]Pryshchep, O., Ma-Krupa, W., Younge, B. R., Goronzy, J. J.& Weyand, C. M. Vessel-Specific Toll-Like Receptor Profiles in Human Medium and Large Arteries [J]. Circulation,2008,118 (12),1276-1284.
    [11]Michelsen KS, A. M. Toll-like receptor signaling and atherosclerosis [J]. Curr Opin Hematol,2006,13 (3),163-8.
    [12]Curtiss, L. K.& Tobias, P. S. The Toll of Toll-Like Receptors, Especially Toll-Like Receptor 2, on Murine Atherosclerosis [J]. Current Drug Targets,2007, 8,1230-1238.
    [13]Edfeldt, K., Swedenborg, J., Hansson, G. K.& Yan, Z.-q. Expression of Toll-Like Receptors in Human Atherosclerotic Lesions:A Possible Pathway for Plaque Activation [J]. Circulation,2002,105 (10),1158-1161.
    [14]Monaco, C. et al. Toll-Like Receptor-2 Mediates Inflammation and Matrix Degradation in Human Atherosclerosis [J]. Circulation,2009,120 (24), 2462-2469.
    [15]Mullick AE, T. P., Curtiss LK,. Modulation of atherosclerosis in mice by Toll-like receptor 2 [J]. J Clin Invest,2005,115 (11),3149-56.
    [16]Madan, M.& Amar, S. Toll-Like Receptor-2 Mediates Diet and/or Pathogen Associated Atherosclerosis:Proteomic Findings [J]. PLoS ONE,2008,3 (9), e3204.
    [17]Liu, X. et al. Toll-like receptor 2 plays a critical role in the progression of atherosclerosis that is independent of dietary lipids [J]. Atherosclerosis,2008,196 (1),146-154.
    [18]Seimon, T. A. et al. Atherogenic Lipids and Lipoproteins Trigger CD36-TLR2-Dependent Apoptosis in Macrophages Undergoing Endoplasmic Reticulum Stress [J]. Cell Metabolism,2010,12 (5),467-482.
    [19]Hotchkiss, R S., Strasser, A., McDunn, J. E.& Swanson, P. E. Cell Death [J]. New England Journal of Medicine,2009,361 (16),1570-1583.
    [20]Brunk UT, Jones CB & RS., S. A novel hypothesis of lipofuscinogenesis and cellular aging based on interactions between oxidative stress and autophagocytosis [J]. Mutat Res.,1992,275 (3-6),395-403.
    [21]B. Levine & Yuan, J. Autophagy in cell death:an innocent convict? [J]. J Clin Invest.,2005,115 (10),2679-2688.
    [22]Yang, H.-Z. et al. Targeting TLR2 Attenuates Pulmonary Inflammation and Fibrosis by Reversion of Suppressive Immune Microenvironment [J]. The Journal of Immunology,2009,182 (1),692-702.
    [23]Xie, W. et al. Toll-like receptor 2 mediates invasion via activating NF-[kappa]B in MDA-MB-231 breast cancer cells [J]. Biochemical and Biophysical Research Communications,2009,379 (4),1027-1032.
    [24]Yang, H.-Z. et al. Blocking TLR2 Activity Attenuates Pulmonary Metastases of Tumor [J]. PLoS ONE,2009,4 (8), e6520.
    [25]Michelsen, K. S. et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E [J]. Proceedings of the National Academy of Sciences,2004, 101 (29),10679-10684.
    [26]Mullick, A. E. et al. Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events [J]. The Journal of Experimental Medicine,2008,205 (2),373-383.
    [27]Schoneveld, A. H. et al. Toll-like receptor 2 stimulation induces intimal hyperplasia and atherosclerotic lesion development [J]. Cardiovascular Research, 2005,66(1),162-169.
    [28]Chau, T. A. et al. Toll-like receptor 2 ligands on the staphylococcal cell wall downregulate superantigen-induced T cell activation and prevent toxic shock syndrome [J]. Nat Med,2009,15 (6),641-648.
    [29]Gharavi, N. M. et al. Role of the JAK/STAT Pathway in the Regulation of Interleukin-8 Transcription by Oxidized Phospholipids in Vitro and in Atherosclerosis in Vivo [J]. Journal of Biological Chemistry,2007,282 (43), 31460-31468.
    [30]Ortiz-Munoz, G et al. Suppressors of Cytokine Signaling Modulate JAK/STAT-Mediated Cell Responses During Atherosclerosis [J]. Arterioscler Thromb Vasc Biol,2009,29 (4),525-531.
    [31]Cuervo, A. M. Autophagy:Many paths to the same end [J]. Molecular and Cellular Biochemistry,2004,263 (1),55-72.
    [32]Sanjuan, M. A. et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis [J]. Nature,2007,450 (7173),1253-1257.
    [1]Hansson, G K., Robertson, A.K.,& Soderberg-Naucler C., INFLAMMATION AND ATHEROSCLEROSIS [J]. Annual Review of Pathology:Mechanisms of Disease,2006,1 (1),297-329.
    [2]Rader, D. J.& Daugherty, A. Translating molecular discoveries into new therapies for atherosclerosis [J]. Nature,2008,451 (7181),904-913.
    [3]Schwartz, S. M., Galis, Z. S., Rosenfeld, M. E.& Falk, E. Plaque Rupture in Humans and Mice [J]. Arterioscler Thromb Vasc Biol,2007,27 (4),705-713.
    [4]Thim, T., Hagensen, M. K., Bentzon, J. F.& Falk, E. From vulnerable plaque to atherothrombosis [J]. Journal of Internal Medicine,2008,263 (5),506-516.
    [5]Frantz, S., Ertl, G. & Bauersachs, J. Mechanisms of disease:Toll-like receptors in cardiovascular disease [J]. Nat Clin Pract Cardiovasc Med,2007,4 (8),444-54.
    [6]Keith, C. T., Borisy, A. A.& Stockwell, B. R. Multicomponent therapeutics for networked systems [J]. Nat Rev Drug Discov,2005,4(1),71-78.
    [7]Xue, e. a. Studying Traditional Chinese Medicine [J]. Science,2003,300 (5620), 740-741.
    [8]Dosanjh, A. Pirfenidone:Anti-fibrotic agent with a potential therapeutic role in the management of transplantation patients [J]. European Journal of Pharmacology,2006,536 (3),219-222.
    [9]Oku, H., Nakazato, H., Horikawa, T., Tsuruta, Y.& Suzuki, R. Pirfenidone suppresses tumor necrosis factor-[alpha], enhances interleukin-10 and protects mice from endotoxic shock [J]. European Journal of Pharmacology,2002,446 (1-3),167-176.
    [10]Daugherty, A., Manning, M. W.& Cassis, L. A. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice [J]. J Clin Invest,2000,105(11),1605-12.
    [11]Weiss, D., Kools, J. J.& Taylor, W. R. Angiotensin II-induced hypertension accelerates the development of atherosclerosis in apoE-deficient mice [J]. Circulation,2001,103 (3),448-54.
    [12]Nussberger, J. et al. Renin Inhibition by Aliskiren Prevents Atherosclerosis Progression. Comparison With Irbesartan, Atenolol, and Amlodipine [J]. Hypertension,2008,51 (5),1306-1311.
    [13]Candido, R et al. Irbesartan but Not Amlodipine Suppresses Diabetes-Associated Atherosclerosis [J]. Circulation,2004,109 (12),1536-1542.
    [14]Dol, F. et al. Angiotensin ATI Receptor Antagonist Irbesartan Decreases Lesion Size, Chemokine Expression, and Macrophage Accumulation in Apolipoprotein E-Deficient Mice [J]. Journal of Cardiovascular Pharmacology,2001,38 (3), 395-405.
    [15]Zhou, H., Latham, C. W., Zander, D. S., Margolin, S. B.& Visner, G A. Pirfenidone Inhibits Obliterative Airway Disease in Mouse Tracheal Allografts [J]. The Journal of heart and lung transplantation:the official publication of the International Society for Heart Transplantation,2005,24 (10),1577-1585.
    [16]Shimizu, T. et al. Pirfenidone improves renal function and fibrosis in the post-obstructed kidney [J]. Kidney Int,1998,54 (1),99-109.
    [17]HZ., M. Demonstration of all connective tissue elements in a single section; pentachrome stains. [J]. AMA Arch Pathol.,1955,60 (3),289-95.
    [18]Michael E. Rosenfeld, M. M. A., Brian J. Bennett, Stephen M. Schwartz Progression and disruption of advanced atherosclerotic plaques in murine models [J]. Current Drug Targets,2008,9 (3),210-6.
    [19]Fuster, V, Moreno, P. R., Fayad, Z. A., Corti, R.& Badimon, J. J. Atherothrombosis and High-Risk Plaque:Part Ⅰ:Evolving Concepts [J]. Journal of the American College of Cardiology,2005,46 (6),937-954.
    [20]Shah, P. K. Molecular Mechanisms of Plaque Instability [J]. Current Opinion in Lipidology,2007,18 (5),492-499.
    [21]Tabas, I. Macrophage Apoptosis in Atherosclerosis:Consequences on Plaque Progression and the Role of Endoplasmic Reticulum Stress [J]. Antioxidants & Redox Signaling,2009,11 (9),2333-2339.
    [22]Rattazzi, M. et al. Calcification of Advanced Atherosclerotic Lesions in the Innominate Arteries of ApoE-Deficient Mice:Potential Role of Chondrocyte-Like Cells [J]. Arterioscler Thromb Vasc Biol,2005,25 (7),1420-1425.
    [23]Vattikuti, R.& Towler, D. A. Osteogenic regulation of vascular calcification:an early perspective [J]. American Journal of Physiology-Endocrinology And Metabolism,2004,286 (5), E686-E696.
    [24]Mallat, Z. et al. Inhibition of Transforming Growth Factor- {beta} Signaling Accelerates Atherosclerosis and Induces an Unstable Plaque Phenotype in Mice [J]. Circ Res,2001,89 (10),930-934.
    [25]Frutkin, A. D. et al. TGF-{beta}1 Limits Plaque Growth, Stabilizes Plaque Structure, and Prevents Aortic Dilation in Apolipoprotein E-Null Mice [J]. Arterioscler Thromb Vasc Biol,2009,29 (9),1251-1257.
    [26]Buday, A. et al. Elevated systemic TGF-beta impairs aortic vasomotor function through activation of NADPH oxidase-driven superoxide production and leads to hypertension, myocardial remodeling, and increased plaque formation in apoE-/-mice [J]. American Journal of Physiology-Heart and Circulatory Physiology, 2010,299(2), H386-H395.
    [27]Luttun, A. et al. Lack of Plasminogen Activator Inhibitor-1 Promotes Growth and Abnormal Matrix Remodeling of Advanced Atherosclerotic Plaques in Apolipoprotein E-Deficient Mice [J]. Arterioscler Thromb Vasc Biol,2002,22 (3), 499-505.
    [28]Kim, S.& Iwao, H. Molecular and Cellular Mechanisms of Angiotensin II-Mediated Cardiovascular and Renal Diseases [J]. Pharmacological Reviews, 2000,52(1),11-34.
    [29]Brasier, A. R., Recinos, A., Ⅲ & Eledrisi, M. S. Vascular Inflammation and the Renin-Angiotensin System [J]. Arterioscler Thromb Vasc Biol,2002,22 (8), 1257-1266.
    [30]Mazzolai, L. et al. Endogenous Angiotensin Ⅱ Induces Atherosclerotic Plaque Vulnerability and Elicits a Th1 Response in ApoE-/- Mice [J]. Hypertension,2004, 44 (3),277-282.
    [31]Ernsberger, P.& Koletsky, R. J. Metabolic actions of angiotensin receptor antagonists:PPAR-[gamma] agonist actions or a class effect? [J]. Current Opinion in Pharmacology,2007,7 (2),140-145.
    [1]Wynn, T. A. Fibrotic disease and the T(H)1/T(H)2 paradigm [J]. Nat Rev Immunol,2004,4 (8),583-94.
    [2]Wynn, T. A. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases [J]. J Clin Invest,2007,117 (3),524-9.
    [3]Wang, N., Lan, D., Chen, W., Matsuura, F.& Tall, A. R. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101 (26),9774-9779.
    [4]Reiman, R. M. et al. Interleukin-5 (IL-5) augments the progression of liver fibrosis by regulating IL-13 activity [J]. Infect Immun,2006,74 (3),1471-9.
    [5]Tipping, P. G Toll-like receptors:the interface between innate and adaptive immunity [J]. J Am Soc Nephrol,2006,17 (7),1769-71.
    [6]Shimosato, T. et al. Augmentation of T(H)-1 type response by immunoactive AT oligonucleotide from lactic acid bacteria via Toll-like receptor 9 signaling [J]. Biochem Biophys Res Commun,2005,326 (4),782-7.
    [7]Razonable, R. R., Henault, M.& Paya, C. V. Stimulation of toll-like receptor 2 with bleomycin results in cellular activation and secretion of pro-inflammatory cytokines and chemokines [J]. Toxicol Appl Pharmacol,2006,210 (3),181-9.
    [8]Vasselon, T., Hanlon, W. A., Wright, S. D.& Detmers, P. A. Toll-like receptor 2 (TLR2) mediates activation of stress-activated MAP kinase p38 [J]. J Leukoc Biol, 2002,71 (3),503-10.
    [9]Kawai, T.& Akira, S. TLR signaling [J]. Cell Death Differ,2006,13 (5), 816-825.
    [10]Wagner, H. The immunobiology of the TLR9 subfamily [J]. Trends Immunol, 2004,25(7),381-6.
    [11]Hirsch, I., Caux, C., Hasan, U., Bendriss-Vermare, N.& Olive, D. Impaired Toll-like receptor 7 and 9 signaling:from chronic viral infections to cancer [J]. Trends in Immunology,31 (10),391-397.
    [12]Means, T. K., Hayashi, F., Smith, K. D., Aderem, A.& Luster, A. D. The Toll-Like Receptor 5 Stimulus Bacterial Flagellin Induces Maturation and Chemokine Production in Human Dendritic Cells [J]. The Journal of Immunology, 2003,170(10),5165-5175.
    [13]Viemann, D. et al. Myeloid-related proteins 8 and 14 induce a specific inflammatory response in human micro vascular endothelial cells [J]. Blood,2005, 105,2955-2962.
    [14]Gewirtz, A. T. Flag in the crossroads:flagellin modulates innate and adaptive immunity [J]. Current Opinion in Gastroenterology,2006,22 (1),8-12.
    [15]Sanders, C. J., Moore, D. A., Williams, I. R.& Gewirtz, A. T. Both Radioresistant and Hemopoietic Cells Promote Innate and Adaptive Immune Responses to Flagellin [J]. The Journal of Immunology,2008,180 (11),7184-7192.
    [16]Sfondrini, L. et al. Antitumor Activity of the TLR-5 Ligand Flagellin in Mouse Models of Cancer [J]. The Journal of Immunology,2006,176 (11),6624-6630.
    [17]Yang, H.-Z. et al. Targeting TLR2 Attenuates Pulmonary Inflammation and Fibrosis by Reversion of Suppressive Immune Microenvironment [J]. J Immunol, 2009,182(1),692-702.
    [18]Xin, B.-m. et al. Activation of Toll-like receptor 9 attenuates unilateral ureteral obstruction-induced renal fibrosis [J]. Acta Pharmacol Sin,2010,31 (12), 1583-1592.
    [19]191 Krieg, A. M. Therapeutic potential of Toll-like receptor 9 activation [J]. Nat Rev Drug Discov,2006,5 (6),471-484.
    [20]Vollmer, J.& Krieg, A. M. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists [J]. Advanced Drug Delivery Reviews,2009, 61 (3),195-204.
    [21]Katakura, K. et al. Toll-like receptor 9-induced type I IFN protects mice from experimental colitis [J]. J Clin Invest,2005,115 (3),695-702.
    [22]Meneghin, A. et al. TLR9 is expressed in idiopathic interstitial pneumonia and its activation promotes in vitro myofibroblast differentiation [J]. Histochemistry and Cell Biology,2008,130 (5),979-992.
    [23]Mizel, S. B., Honko, A. N., Moors, M. A., Smith, P. S.& West, A. P. Induction of Macrophage Nitric Oxide Production by Gram-Negative Flagellin Involves Signaling Via Heteromeric Toll-Like Receptor 5/Toll-Like Receptor 4 Complexes [J]. The Journal of Immunology,2003,170 (12),6217-6223.
    [24]McDermott, P. F., Ciacci-Woolwine, F., Snipes, J. A.& Mizel, S. B. High-Affinity Interaction between Gram-Negative Flagellin and a Cell Surface Polypeptide Results in Human Monocyte Activation [J]. Infect. Immun.,2000,68 (10), 5525-5529.
    [25]Agrawal, S. et al. Cutting Edge:Different Toll-Like Receptor Agonists Instruct Dendritic Cells to Induce Distinct Th Responses via Differential Modulation of Extracellular Signal-Regulated Kinase-Mitogen-Activated Protein Kinase and c-Fos [J]. The Journal of Immunology,2003,171 (10),4984-4989.
    [26]Didierlaurent, A. et al. Flagellin Promotes Myeloid Differentiation Factor 88-Dependent Development of Th2-Type Response [J]. The Journal of Immunology,2004,172 (11),6922-6930.
    [27]Cunningham, A. F. et al. Responses to the soluble flagellar protein FliC are Th2, while those to FliC on Salmonella are Thl [J]. European Journal of Immunology, 2004,34(11),2986-2995.
    [28]Applequist, S. E. et al. Activation of Innate Immunity, Inflammation, and Potentiation of DNA Vaccination through Mammalian Expression of the TLR5 Agonist Flagellin [J]. The Journal of Immunology,2005,175 (6),3882-3891.
    [29]Burdelya, L. G et al. An Agonist of Toll-Like Receptor 5 Has Radioprotective Activity in Mouse and Primate Models [J]. Science,2008,320 (5873),226-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700