右美托咪啶对肾脏缺血再灌注致肾及肺损伤的保护作用和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肾脏缺血再灌注(IR)导致的急性肾损伤(AKI)或急性肾衰(ARF)是围手术期常见并发症之一,常常造成住院时间延长,诊治费用增加,死亡率增高。近期调查显示,尽管透析技术和治疗方法在过去二十年里改进不少,但与AKI相关的发病率和死亡率无明显下降。AKI很少独立出现,往往同时伴随肾外器官的病理性损伤和功能障碍。其中,由于肺脏拥有巨大的毛细血管网络,对于肾脏IR引起的血循环促炎调节因子更为敏感,使之更容易发生急性肺损伤(ALI)。AKI合并ALI时,死亡率可高达80%。然而,当前仍缺乏一种方法能有效防阻肾脏IR导致的肾和肺损伤。因此,进一步探寻有效方法降低肾脏缺血再灌注损伤(IRI)及其导致的ALI具有重要意义。
     近年研究证实,肾小管上皮细胞凋亡以及由Toll样受体4(TLR4)介导的免疫炎症反应是导致肾脏IRI的重要机制。通过激活细胞抗凋亡信号级联反应,减少肾小管细胞凋亡;或者通过阻断TLR4信号通路,降低炎症反应,已成为减轻肾脏IRI一种思路与策略。
     右美托咪啶(Dexmedetomidine,Dex)是一种新型高选择性α2肾上腺素能受体(α2AR)激动剂,具有镇静、镇痛、稳定血流动力学和利尿的作用,目前主要应用于ICU镇静和临床麻醉。近来实验发现,Dex还可激活神经系统相关保护信号通路,减少神经细胞凋亡;心机缺血时能减少梗阻面积,改善围手术期心功能;在脓毒症镇静中还可减少促炎细胞因子,降低炎症反应,提高生存率。这些研究反映了Dex具有细胞保护和抗炎的作用。据此我们推测,肾脏IRI时Dex可提供肾和肺的双重保护,改善生存率。本实验目的就是验证肾脏IR后Dex的肾肺保护效应,并探索其相关的机制。
     研究内容:
     1.C57BL/6J小鼠双肾IR前或后应用Dex,通过HE染色检测肾脏组织病理学变化,TUNEL染色检测肾实质细胞凋亡水平,血生化测定肾功能,免疫组化和Western blot检测肾脏TLR4蛋白表达,以及ILISA测定血浆高迁移率族蛋白1(HMGB1)水平。左肾脏切除,右肾IR,评估Dex对ARF C57BL/6J小鼠存活率的影响。
     2.传代培养人近曲肾小管上皮细胞(HK2),用MTT法检测Dex对OGD诱导HK2损伤的影响。并应用Wester blot检测Dex对HK2中总Akt(Akt蛋白表达)以及磷酸化Akt(pAkt蛋白表达)的作用。
     3. C57BL/6J小鼠双肾IR前或后应用Dex,通过HE染色检测肺脏组织病理学变化,测定肺湿干比重,血生化检测肺髓过氧化物酶(MPO),并应用RT-PCR和Real-time PCR测定肺脏ICAM-1和TNF-αmRNA表达。
    
     结果: 1.肾脏缺血25min再灌注24h后,肾组织病理损伤明显,细胞凋亡增多,血浆肌酐(Cr)和尿素氮(Ur)显著升高。IR前或后应用Dex25μg/kg,组织病理损伤降低53%和38%;细胞凋亡减少72%和58%;血清Cr和Ur明显降低。α2AR拮抗剂阿替美唑(Atipamezole,Atip)250μg/kg可完全抑制上述Dex的肾保护效应。
     2.肾脏缺血25min再灌注24h后,肾脏TLR4蛋白表达和血浆HMGB1浓度显著升高,缺血前应用Dex 25μg/kg,显著下调TLR4表达和HMGB1浓度。应用Atip 250μg/kg后,Dex下调TLR4蛋白表达以及血清HMGB1水平的作用消失。
     3.生存率实验显示,IR前或后经Dex处理的动物生存率分别为70%和60%。无处理或联合应用Atip与Dex,3天后死亡率约为65%,所有动物存活时间未超过5天。
     4.经OGD处理的HK2,随时间延长,细胞死亡逐渐增多。OGD处理180min时,细胞死亡达到60%。Dex 0.001、0.01、0.1nM预处理HK2后,其存活率呈剂量相关性增加。经Dex 0.1nM处理HK2,其存活率达94%。Atip 1nM完全抑制Dex对HK2的保护效应。
     5.HK2经0.1nM Dex处理5、10、20、30、45 min,各时间点pAkt蛋白表达均升高,20min时达到峰值,之后逐渐降低,而总Akt表达未发生变化。Atip1nM不能完全抑制Dex上调pAkt表达的效应。Dex上调pAkt蛋白表达的作用可被PI3K抑制剂LY294002(50μM)完全抑制,而MAPK抑制剂PD98059(50μM)无此效应。
     6.双肾缺血45min,再灌注6h后,肺脏间质固有层解体并伴出血,肺间质细胞增多,肺泡腔缩窄甚至消失;肺湿干比重升高3.5倍;MPO活性增加1倍;ICAM-1和TNF-αmRNA表达分别升高7倍和10倍。IR前或后应用Dex,肺湿干比重下降约三分之一,MPO活性分别降低58%和16%,并且抑制ICAM-1和TNF-αmRNA过表达,肺组织病理损伤明显减轻。Atip可抑制Dex下调肺湿干比重以及MPO活性的作用,但不能抑制其下调ICAM-1和TNF-αmRNA过表达的效应。
     结论:
     1.右美托咪啶对C57BL/6J小鼠肾脏IRI具有保护性作用。
     2.右美托咪啶通过激动α2AR,抑制肾脏细胞凋亡,下调TLR4蛋白表达以及血清HMGB1的水平,是其肾保护的主要机制。
     3.右美托咪啶可减轻OGD诱导的HK2损伤。通过α2AR依赖和非依赖途径,激活PI3K-Akt信号通路可能是其主要机制。
     4.右美托咪啶可减轻C57BL/6J小鼠肾脏IR所致的肺损伤。
     5.通过激动α2AR依赖和非依赖信号途径,减轻肺部炎症反应,是右美托咪啶保护肾脏IR所致肺损伤的机制。
Acute kidney injury(AKI) or Acute renal failure(ARF) induced by renal ischemia reperfusion(IR) is a common complication during perioperation, which is usually associated with increased duration of hospital stay, healthcare cost and mortality. Recent investigations demonstrated that despite improvements in dialysis technology and advances in supportive care, the morbidity and mortality associated with AKI has remained unchanged over the past two decades. AKI rarely occurs in isolation and is usually accomplicated by extrarenal organ pathologic injury and dysfunction. The lung, as an organ with large microcapillary network, is highly susceptible to injury caused by circulating pro-inflammatory mediators from kidney inflicted with ischemia reperfusion. The mortality rate of combined ARF and acute lung injury (ALI) could be up to 80%. Unfortunately, currently more effective methods to reduce renal ischemia reperfusion injury(IRI) and its induced ALI are still deficiency and anticipated. Therefore, it is significantly and necessarily to explore more better curative methods to reduce them.
     Recently, some studies have proved that apoptosis in tubular epithelium and immune inflammatory reaction mediated via TLR4 are the critical mechanisms leading to renal IRI. Trigger of anti-apoptosis signal cascade to reduce epithelia apoptosis or inhibition of TLR4 signaling to relieve inflammation are becoming a novel strategy to ameliorate renal IRI
     Dexmedetomeding(Dex), applied in ICU sedation and clinical anesthesia currently, is a highly potentα2 adrenergic agonist with sedative, analgesic, hemodynamic stabilizing and diuretic effects. Some recent experiments demonstrated that Dex was able to activate protective signaling pathway to reduce neural cell apoptosis, it also could reduce myocardial infarct size and improve perioperative cardiac function as well as exert anti-inflammatory effects and improve survival rate by decreasing pro-inflammatory mediators during sedation for sepsis. Therefore, it may be naturally speculated that Dex can probably provide kidney and lung protection to improve mortality following renal IRI. The purpose of this research is to verify the hypothesis and further explore related mechanisms.
     Methods
     1. C57BL/6J mice were subjected to bilateral renal IR with or without Dex treatment and then followed by HE staining for renal histopathological assessment, TUNEL staining for tubular cell apoptosis evaluation, biochemical analysis for renal function, immuohistochemistry and Western blot for expression of kidney TLR4, ILISA for plasma HMGB1 level. The mortality was assessed after right renal IR and left nephrectomy with or without Dex treatment.
     2. HK2 were subcultured and the effects of Dex on HK2 injury induced by OGD were evaluated by MTT assay. Protein expressions of total Akt and phosphorylation Akt(pAkt) in HK2 with Dex treatment were determined by Western blot.
     3. Lungs were obtained from C57BL/6J mice subjected to bilateral renal IR with or without Dex treatment and then followed by HE staining for histopathological assessment, lung wet/dry ratio evaluation, biochemical analysis for MPO activity, RT-PCR and FQ-PCR for mRNA expression of ICAM-1and TNF-α.
     Results
     1. Increased kidney histopathological injury, tubular cell apoptosis and plasma creatinin and urea level were detected after renal ischemia 25 min and reperfuse 24 h. Pre- or post-treatment with Dex 25μg/kg resulted in 53% and 38% reduction in damage, 72% and 58% reduction in cell apoptosis as well as significant decrease in plasma creatinin and urea level.α2 adrenoceptor antagonist Atipamezole(Atip) 250μg/kg abrogated renal protective effects of Dex.
     2. Expression of TLR4 proteins and plasma HMGB1 level were increased after renal ischemia 25 min and reperfuse 24 h. Pre-treatment with Dex 25μg/kg downregulated them. Atip 250μg/kg reversed the downregulated effects of Dex on TLR4 and HMGB1.
     3. Long-term survival was noted in 70% and 60% of animal treated with Dex before and after renal IRI within 7 day. By contrast, animal not treated with Dex or receiving Atip combined Dex fared much worse. Within 3 day, 65% of these animals were dead and no animal survived beyond 5 day.
     4. HK2 viability analysis using MTT assay showed a time-dependent induction of injury with marked cell death(60% reduction in viability) occurring after 180-min OGD. Incubating HK2 with Dex(0.001, 0.01 and 0.1 nM) before OGD exposure dose- dependently inhibited injury. Treatment with 0.1 nM Dex increased cell viability to 94%. The cytoprotective effect of Dex was abolished by co-treatment with Atip 1 nM.
     5. HK2 incubated with media containing 0.1 nM Dex for 5, 10, 20, 30, 45 min. pAkt was increased at all time points and peaked after 20 min whereas total Akt were not altered. Atip 1 nM reduced but not completely abolish Dex induced upregulation of pAkt. PI3-Akt inhibitor LY294002(50μM) rather than MAPK inhibitor PD98059 (50μM) completely abolished Dex-induced activation of Akt.
     6. Bilateral renal ischemia 45 min followed by 6 h reperfusion induced histopathological injury, 3.5 fold increasing of lung wet/dry ratio, 1 fold increasing of MPO activity, 7 and 10 fold upregulation of mRNA expression of ICAM-1 and TNF-αin lung. Pre- or post-treatment with Dex resulted in about one third decreasing of lung wet/dry ratio, 58% and 16% decline of MPO activity, moreover significantly inhibited mRNA overexpression of CAM-1 and TNF-αand ameliorated lung injury. Atip abrogated the downregulated effects of Dex on wet/dry ration and MPO activity but failed to reverse the downregulated effects of Dex on ICAM-1 and TNF-αmRNA.
     Conclusions
     1. Dex provides renoprotection against ischemia-reperfusion injury in C57BL/6J mice.
     2. It is main renoprotective mechanism that Dex inhibits cell apoptosis and downregulates protein expression of TLR4 and plasma level of HMGB1 via activatingα2 adrenoceptor.
     3. Dex is able to reduce HK2 injury induced by OGD and the activation of PI3K-Akt signaling viaα2 adrenoceptor dependent and independent pathway is probably the main mechanism.
     4. Dex attenuates remote lung injury induced by renal ischemia-reperfusion in C57BL/6J mice.
     5. The mechanism of Dex’pulmonary protection is that lung inflammation may be ameliorated via triggeringα2 adrenoceptor dependent and independent signal pathway.
引文
1. Borthwick E, Ferguson A. Perioperative acute kidney injury: risk factors, recognition, management, and outcomes. BMJ. 2010; 341:c3365.
    2. Kheterpal S, Tremper KK, Heung M, Rosenberg AL, Englesbe M, Shanks AM, Campbell DA Jr. Development and validation of an acute kidney injury risk index for patients undergoing general surgery: results from a national data set. Anesthesiology. 2009; 110(3):505-15.
    3. Loef BG, Epema AH, Smilde TD, Henning RH, Ebels T, Navis G, Stegeman CA. Immediate postoperative renal function deterioration in cardiac surgical patients predicts in-hospital mortality and long-term survival. J Am Soc Nephrol. 2005; 16(1):195-200.
    4. Aronson S, Blumenthal R. Perioperative renal dysfunction and cardiovascular anesthesia: concerns and controversies. J Cardiothorac Vasc Anesth. 1998; 2(5): 567-86.
    5. Statius van Eps RG, Leurs LJ, Hobo R, Harris PL, Buth J; EUROSTAR Collaborators. Impact of renal dysfunction on operative mortality following endovascular abdominal aoritc aneurysm surgery. Br J Surg. 2007; 94(2):174-8.
    6. Liu M, Liang Y, Chigurupati S, Lathia JD, Pletnikov M, Sun Z, Crow M, Ross CA, Mattson MP, Rabb H. Acute kidney injury leads to inflammation and functional changes in the brain. J Am Soc Nephrol 2008; 19(7):1360-70.
    7. Hassoun HT, Lie ML, Grigoryev DN, Liu M, Tuder RM, Rabb H. Kidney ischemia-reperfusion injury induces caspase-dependent pulmonary apoptosis. Am J Physiol Renal Physiol 2009; 297(1): F125-37.
    8. Kelly KJ. Distant effects of experimental renal ischemia/reperfusion injury. J Am Soc Nephrol 2003; 14(6):1549-58.
    9. Park SW, Chen SW, Kim M, Brown KM, Kolls JK, D'Agati VD, Lee HT. Cytokines induce small intestine and liver injury after renal ischemia or nephrectomy. Lab Invest 2011; 91(1):63-84.
    10. Rabb H, Chamoun F, Hotchkiss J. Molecular mechanisms underlying combined kidney-lung dysfunction during acute renal failure. Contrib Nephrol 2001;(132):41-52.
    11. Davidson TA, Caldwell ES, Curtis JR, Hudson LD, Steinberg KP. Reduced quality of life in survivors of acute respiratory distress syndrome compared with critically ill control patients. JAMA 1999; 281(4):354-60.
    12. Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol.2000; 190(3): 255-266.
    13. Huang Y, Rabb H, Womer KL. Ischemia-reperfusion and immediate T cell responses. Cell Immunol. 2007; 248(1):4-11.
    14. Schrier RW, Wang W, Poole B, Mitra A. Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest. 2004; 114(1):5-14.
    15. Jassem W, Heaton ND. The role of mitochondria in ischemia/reperfusion injury in organ transplantation. Kidney Int. 2004; 66(2):514-7.
    16. Jang HR, Rabb H. The innate immune response in ischemic acute kidney injury. Clin Immuol. 2009; 130(1): 41-50.
    17. Bolisetty S, Agarwal A. Neutrophils in acute kidney injury: not neutral any more. Kidney Int. 2009; 75(7):674-6.
    18. Thurman JM. Triggers of inflammation after renal ischemia/reperfusion. Clin Immunol. 2007; 123(1):7-13.
    19. Jang HR, Ko GJ, Wasowska BA, Rabb H. The interaction between ischemia- reperfusion and immune response in the kidney. J Mol Med. 2009; 87(9): 859-64.
    20. Tukhvatulin AI, Logunov DY, Shcherbinin DN, Shmarov MM, Naroditsky BS, Gudkov AV, Gintsburg AL. Toll-like receptors and their adapter molecules. Biochemistry (Mosc). 2010;75(9):1098-114.
    21. Arumugam TV, Okun E, Tang SC, Thundyil J, Taylor SM, Woodruff TM. Toll-like receptors in ischemia-reperfusion injury. Shock.2009; 32(1):4-16.
    22. Kim BS, Lim SW, Li C, Kim JS, Sun BK, Ahn KO, Han SW, Kim J, Yang CW. Ischemia-reperfusion injury activates innate immunity in rat kidneys. Transplantation. 2005; 79(10):1370-7.
    23. Wu H, Chen G, Wyburn KR, Yin J, Bertolino P, Eris JM, Alexander SI, Sharland AF, Chadban SJ. TLR4 activation mediates kidney ischemia/ reperfusion injury. J Clin Invest. 2007; 117(10): 2847-59.
    24. Klune JR, Dhupar, P, Cardinal J, Billiar TR, Tsung A. HMGB1: endogenous danger signaling.Mol Med. 2008; 4(7-8): 476-484.
    25. Wu H, Ma J, Wang P, Corpuz TM, Panchapakesan U, Wyburn KR, Chadban SJ. HMGB1 contributes to kidney ischemia reperfusion injury. J Am Soc Nephrol. 2010; 21(11):1878-90.
    26. Rabb H, Wang Z, Nemoto T, Hotchkiss J, Yokota N, Soleimani M. Acute renal failure leads to dysregulation of lung salt and water channels. Kidney Int 2003; 63(2):600-6.
    27. Awad AS, Rouse M, Huang L, Vergis AL, Reutershan J, Cathro HP, Linden J, Okusa MD. Compartmentalization of neutrophils in the kidney and lung following acute ischemic kidney injury. Kidney Int 2009; 75(7): 689-98.
    28. Grigoryev DN, Liu M, Hassoun HT, Cheadle C, Barnes KC, Rabb H. The local and systemic inflammatory transcriptome after acute kidney injury. J Am Soc Nephrol 2008; 19(3): 547-58.
    29. Huupponen E, Maksimow A, Lapinlampi P, S?rkel? M, Saastamoinen A, Snapir A, Scheinin H, Scheinin M, Meril?inen P, Himanen SL, J??skel?inen S. Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep. Acta Anaesthesiol Scand. 2008; 52(2):289-94.
    30. Carollo DS, Nossaman BD, Ramadhyani U. Dexmedetomidine: a review of clinical applications. Curr Opin Anaesthesiol. 2008; 21(4):457-61.
    31. Aantaa R, Marjam?ki A, Scheinin M. Molecular pharmacology of alpha 2-adrenoceptor subtypes. Ann Med. 1995; 27(4): 439-449.
    32. Plato CF, Garvin JL. Alpha(2)-adrenergic-mediated tubular NO production inhibits thick ascending limb chloride absorption. Am J Physiol Renal Physiol. 2001; 281(4):F679-86.
    33. Xie L, Zheng X, Qin J, et al. Role of PI3-kinase/Akt signaling pathway in renal function and cell proliferation after renal ischaemia/reperfusion injury in mice. Nephrology. 2006; 11(3): 207-12.
    34. Mullonkal CJ, Toledo-Pereyra LH. Akt in ischemia and reperfusion. J Invest Surg. 2007; 20(3): 195-203.
    35. Frumento RJ, Logginidou HG, Wahlander S, Wagener G, Playford HR, Sladen RN. Dexmedetomidine infusion is associated with enhanced renal function after thoracicsurgery. J Clin Anesth. 2006;18(6):422-6.
    36. Sanders RD, Sun P, Patel S, Li M, Maze M, Ma D. Dexmedetomidine provides cortical neuroprotection: impact on anaesthetic-induced neuroapoptosis in the rat developing brain. Acta Anaesthesiol Scand. 2010; 54(6): 710-6.
    37. Okada H, Kurita T, Mochizuki T, Morita K, Sato S. The cardioprotective effect of dexmedetomidine on global ischaemia in isolated rat hearts. Resuscitation. 2007, 74(3): 538-45
    38. Qiao H, Sanders RD, Ma D, Wu X, Maze M. Sedation improves early outcome in severely septic Sprague Dawley rats. Critical Care. 2009; 13(4): R136.
    39. Paris A, Tonner PH. Dexmedetomidine in anaesthesia. Curr Opin Anaesthesiol, 2005, 18(4): 412-18.
    40. Gyires K, Zádori ZS, T?r?k T, Mátyus P. alpha(2)-Adrenoceptor subtypes-mediated physiological, pharmacological actions. Neurochem Int. 2009; 55(7): 447-53.
    41. Civantos Calzada B, Aleixandre de Arti?ano A. Alpha-adrenoceptor subtypes. Pharmacol Res. 2001. 44(3): 195-208.
    42. Aantaa R, Marjam?ki A, Scheinin M. Molecular pharmacology of alpha 2-adrenoceptor subtypes. Ann Med. 1995; 27(4): 439-49.
    43. Junaid A, Cui L, Penner SB, Smyth DD. Regulation of aquaporin-2 expression by the alpha(2)-adrenoceptor agonist clonidine in the rat. J Pharmacol Exp Ther 1999; 291(2): 920-23.
    44. Daemen MA, de Vries B, Buurman WA. Apoptosis and inflammation in renal reperfusion injury. Transplantation. 2002; 73(11): 1693-700.
    45. Schumer M, Colombel MC, Sawczuk IS, et al. Morphologic, biochemical, and molecular evidence of apoptosis during the reperfusion phase afterbrief periods of renal ischemia. Am J Pathol. 1992; 140(4): 831-8.
    46. Susin SA, Zamzami N, Castedo M, et al. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 1996; 184(4): 1331-41.
    47. Bonegio R, Lieberthal W. Role of apoptosis in the pathogenesis of acute renal failure. Curr Opin Nephrol Hypertens. 2002; 11(3):301-8.
    48. Ortiz A, Justo P, Sanz A, Lorz C, Egido J. Targeting apoptosis in acute tubular injury. Biochem Pharmacol. 2003, 15; 66(8):1589-94.
    49. Dahmani S, Rouelle D, Gressens P, Mantz J. Effects of dexmedetomidine on hippocampal focal adhesion kinase tyrosine phosphorylation in physiologic and ischemic conditions. Anesthesiology. 2005; 103(5):969-77.
    50. Engelhard K, Werner C, Ebersp?cher E, Bachl M, Blobner M, Hildt E, Hutzler P, Kochs E. The effect of the alpha 2-agonist dexmedetomidine and the N-methyl-D- aspartate antagonist S(+)-ketamine on the expression of apoptosis-regulating proteins after incomplete cerebral ischemia and reperfusion in rats. Anesth Analg. 2003; 96(2):524-31.
    51. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette sp?tzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996; 86(6):973-83.
    52. Robson MG. Toll-like receptors and renal disease. Nephron Exp Nephrol. 2009; 113(1): e1-7.
    53. Hua F, Ha T, Ma J, Li Y, Kelley J, Gao X, Browder IW, Kao RL, Williams DL, Li C. Protection against myocardial ischemia/reperfusion injury in TLR4-deficient mice is mediated through a phosphoinositide 3-kinase-dependent mechanism. J Immunol. 2007; 178(11):7317-24.
    54. Ellett JD, Evans ZP, Atkinson C, Schmidt MG, Schnellmann RG, Chavin KD. Toll-like receptor 4 is a key mediator of murine steatotic liver warm ischemia/reperfusion injury. Liver Transpl. 2009; 15(9):1101-9.
    55. Hua F, Ma J, Ha T, et al. Activation of Toll-like receptor 4 signaling contributes to hippocampal neuronal death following global cerebral ischemia/ reperfusion. J Neuroimmunol. 2007; 190(1-2): 101-11.
    56. Zanotti G, Casiraghi M, Abano JB, Tatreau JR, Sevala M, Berlin H, Smyth S, Funkhouser WK, Burridge K, Randell SH, Egan TM. Novel critical role of Toll-like receptor 4 in lung ischemia-reperfusion injury and edema. Am J Physiol Lung Cell Mol Physiol. 2009; 297(1):L52-63.
    57. Pope MR, Hoffman SM, Tomlinson S, Fleming SD. Complement regulates TLR4-mediated inflammatory responses during intestinal ischemia reperfusion. Mol Immunol. 2010; 48(1-3):356-64.
    58. Jin MS, Lee JO. Structures of the toll-like receptor family and its ligand complexes.Immunity. 2008 Aug 15; 29(2):182-91.
    59. Muzio M, Polentarutti N, Bosisio D, Manoj Kumar PP, Mantovani A. Toll-like receptor family and signalling pathway. Biochem Soc Trans. 2000; 28(5):563-6.
    60. Wang H , Li Z Y, Wu H S , et al . Endogenous danger signals t rigger hepatic ischemia/ reperfusion injury through toll-like receptor 4/ nuclear factor-kappa B pathway. Chin Med J(Engl). 2007; 120(6): 509-14.
    61. Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A, Latz E, Monks B, Pitha PM, Golenbock DT.. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves t he toll adapters TRAM and TRIF. J Exp Me. 2003, 198(7): 1043-55.
    62. Rowe DC, McGettrick AF, Latz E, Monks BG, Gay NJ, Yamamoto M, Akira S, O'Neill LA, Fitzgerald KA, Golenbock DT. The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proc Natl Acad Sci USA. 2006;103: 6299-304.
    63. Pulskens WP, Teske GJ, Butter LM, Roelofs JJ, van der Poll T, Florquin S, Leemans JC. Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury. PLoS One. 2008; 3(10):e3596.
    64. Wolf G, Bohlender J, Bondeva T, Roger T, Thaiss F, Wenzel UO. Angiotensin II upregulates toll-like receptor 4 on mesangial cells. J Am Soc Nephrol. 2006; 17(6):1585-93.
    65. Thomas JO. HMG1 and 2: architectural DNA-binding proteins. Biochem Soc Trans. 2001; 29(Pt 4):395-401.
    66.金绿英,杨俊.高迁移率族蛋白B1在缺血再灌注损伤中的作用.生命的化学. 2009; 29(5): 658-61.
    67. Yang QW, Wang JZ, Li JC, Zhou Y, Zhong Q, Lu FL, Xiang J. High-mobility group protein box-1 and its relevance to cerebral ischemia. J Cereb Blood Flow Metab. 2010; 30(2): 243-54.
    68. Hou LC, Qin MZ, Zheng LN, Lu Y, Wang Q, Peng DR, Yu XP, Xin YC, Ji GL, Xiong LZ. Severity of sepsis is correlated with the elevation of serum high-mobility group box 1 in rats. Chin Med J (Engl). 2009; 122(4): 449-54.
    69. Campana L, Bosurgi L, Rovere-Querini P. HMGB1: a two-headed signal regulating tumor progression and immunity. Curr Opin Immunol. 2008; 20(5):518-23.
    70. Yamada S, Maruyama I. HMGB1, a novel inflammatory cytokine.Clin Chim Acta. 2007; 375(1-2):36-42.
    71. Lu CY, Hartono J, Senitko M, Chen J. The inflammatory response to ischemic acute kidney injury: a result of the 'right stuff' in the 'wrong place'? Curr Opin Nephrol Hypertens. 2007; 16(2):83-9.
    72. Qiu J, Nishimura M, Wang Y, Sims JR, Qiu S, Savitz SI, Salomone S, Moskowitz MA. Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab. 2008; 28(5):927-38.
    73. Dhupar R, Klune JR, Evankovich J, Cardinal J, Zhang M, Ross M, Murase N, Geller DA, Billiar TR, Tsung A. Interferon regulatory factor 1 mediates acetylation and release of high mobility group box 1 from hepatocytes during murine liver ischemia-reperfusion injury. Shock. 2011; 35(3):293-301.
    74. Andrassy M, Volz HC, Igwe JC, Funke B, Eichberger SN, Kaya Z, Buss S, Autschbach F, Pleger ST, Lukic IK, Bea F, Hardt SE, Humpert PM, Bianchi ME, Mairb?url H, Nawroth PP, Remppis A, Katus HA, Bierhaus A. High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation. 2008; 117(25):3216-26.
    75. Chung KY, Park JJ, Kim YS. The role of high-mobility group box-1 in renal ischemia and reperfusion injury and the effect of ethyl pyruvate. Transplant Proc. 2008; 40(7):2136-8.
    76. Zhu S, Li W, Ward MF, Sama AE, Wang H. High mobility group box 1 protein as a potential drug target for infection- and injury-elicited inflammation. Inflamm Allergy Drug Targets. 2010; 9(1):60-72.
    77. Rouch AJ, Kudo LH, Hébert C. Dexmedetomidine inhibits osmotic water permeability in the rat cortical collecting duct. J Pharmacol Exp Ther. 1997; 281(1): 62-9.
    78. Villela NR, do Nascimento Júnior P, de Carvalho LR, Teixeira A. Effects of dexmedetomidine on renal system and on vasopressin plasma levels. Experimental study in dogs. Rev Bras Anestesiol. 2005; 55(4):429-40.
    79. Billings FT 4th, Chen SW, Kim M, et al.α2-Adrenoceptor agonists protect against radiocontrast-induced nephropathy in mice. Am J Physiol Renal Physiol, 2008, 295(3): F741-748.
    80. Ma D, Lim T, Xu J, Tang H, Wan Y, Zhao H, Hossain M, Maxwell PH, Maze M.Xenon preconditioning protects against renal ischemic-reperfusion injury via HIF-1alpha activation. J Am Soc Nephrol. 2009; 20(4):713-20.
    81. Goldberg MP, Choi DW. Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci. 1993; 13(8):3510-24.
    82. Rizvi M, Jawad N, Li Y, Vizcaychipi MP, Maze M, Ma D. Effect of noble gases on oxygen and glucose deprived injury in human tubular kidney cells. Exp Biol Med (Maywood). 2010; 235(7):886-91.
    83. Legrand M, Mik EG, Johannes T, Payen D, Ince C. Renal hypoxia and dysoxia after reperfusion of the ischemic kidney. Mol Med. 2008; 14(7-8):502-16.
    84. Vanhoutte PM. Endothelial adrenoceptors. J Cardiovasc Pharmacol. 2001; 38(5):796-808.
    85. Paez J, Sellers WR. PI3K/PTEN/AKT pathway. A critical mediator of oncogenic signaling. Cancer Treat Res. 2003; 115: 145-67.
    86. Kandel ES, Hay N. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res. 1999; 253(1):210-29.
    87. Song JQ, Teng X, Cai Y, Tang CS, Qi YF. Activation of Akt/GSK-3beta signaling pathway is involved in intermedin(1-53) protection against myocardial apoptosis induced by ischemia/reperfusion. Apoptosis. 2009; 14(11):1299-307.
    88. Park SW, Chen SW, Kim M, Brown KM, D'Agati VD, Lee HT. Protection against acute kidney injury via A(1) adenosine receptor-mediated Akt activation reduces liver injury after liver ischemia and reperfusion in mice. J Pharmacol Exp Ther. 2010; 333(3): 736-47.
    89. Sable CL, Filippa N, Hemmings B, Van Obberghen E. cAMP stimulates protein kinase B in a Wortmannin-insensitive manner. FEBS Lett. 1997; 409(2):253-7.
    90. Filippa N, Sable CL, Filloux C, Hemmings B, Van Obberghen E. Mechanism of protein kinase B activation by cyclic AMP-dependent protein kinase. Mol Cell Biol. 1999; 19(7):4989-5000.
    91. Pérez-García MJ, Ce?a V, de Pablo Y, Llovera M, Comella JX, Soler RM. Glial cell line-derived neurotrophic factor increases intracellular calcium concentration. Role of calcium/calmodulin in the activation of the phosphatidylinositol 3-kinase pathway. JBiol Chem. 2004; 279(7):6132-42.
    92. Konishi H, Matsuzaki H, Tanaka M, Takemura Y, Kuroda S, Ono Y, Kikkawa U. Activation of protein kinase B (Akt/RAC-protein kinase) by cellular stress and its association with heat shock protein Hsp27. FEBS Lett. 1997; 410(2-3):493-8.
    93. Moule SK, Welsh GI, Edgell NJ, Foulstone EJ, Proud CG, Denton RM. Regulation of protein kinase B and glycogen synthase kinase-3 by insulin and beta-adrenergic agonists in rat epididymal fat cells. Activation of protein kinase B by wortmannin-sensitive and-insensitive mechanisms. J Biol Chem. 1997; 272(12):7713-9.
    94.袁向飞,陆敏. Ras/MAPK与PI3K/Akt信号转导通路及其相互作用.国际检验医学杂志.2006; 27(3):261-263.
    95. Rane MJ, Coxon PY, Powell DW, Webster R, Klein JB, Pierce W, Ping P, McLeish KRp38 Kinase-dependent MAPKAPK-2 activation functions as 3-phosphoinositide- dependent kinase-2 for Akt in human neutrophils. J Biol Chem. 2001; 276(5):3517-23.
    96. Sinha D, Bannergee S, Schwartz JH, Lieberthal W, Levine JS. Inhibition of ligand-independent ERK1/2 activity in kidney proximal tubular cells deprived of soluble survival factors up-regulates Akt and prevents apoptosis. J Biol Chem. 2004; 279(12):10962-72.
    97. VA/NIH Acute Renal Failure Trial Network, Palevsky PM, Zhang JH, O'Connor TZ, Chertow GM, Crowley ST, Choudhury D, Finkel K, Kellum JA, Paganini E, Schein RM, Smith MW, Swanson KM, Thompson BT, Vijayan A, Watnick S, Star RA, Peduzzi P. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008; 359(1):7-20.
    98. Metnitz PG, Krenn CG, Steltzer H, Lang T, Ploder J, Lenz K, Le Gall JR, Druml W. Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit Care Med. 2002; 30(9):2051-8.
    99. Ko GJ, Rabb H, Hassoun HT. Kidney-lung crosstalk in the critically ill patient. Blood Purif. 2009; 28(2):75-83.
    100. Goes N, Urmson J, Ramassar V, Halloran PF. Ischemic acute tubular necrosis induces an extensive local cytokine response: evidence for induction of interferon-gamma, transforming growth factor-beta 1, granulocytemacrophage colony-stimulating factor, interleukin-2, and interleukin-10. Transplantation. 1995; 59(4): 565-72.
    101. Lemay S, Rabb H, Postler G, Singh AK. Prominent and sustained up-regulation of gp130-signaling cytokines and the chemokine MIP-2 in murine renal ischemia- reperfusion injury. Transplantation 2000; 69(5): 959-63.
    102. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, Kelly C, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P. Neutrophil gelatinase-associated lipocalin(NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 2005; 365(9466): 1231-8.
    103. Serteser M, Koken T, Kahraman A, Yilmaz K, Akbulut G, Dilek ON. Changes in hepatic tnf-alpha levels, antioxidant status, and oxidation products after renal ischemia/reperfusion injury in mice. J Surg Res 2002; 107(2): 234-40.
    104. Yildirim A, Gumus M, Dalga S, Sahin YN, Akcay F. Dehydroepiandrosterone improves hepatic antioxidant systems after renal ischemia-reperfusion injury in rabbits. Ann Clin Lab Sci. 2003; 33(4): 459-64.
    105. Fine A, Janssen-Heininger Y, Soultanakis RP, Swisher SG, Uhal BD. Apoptosis in lung pathophysiology. Am J Physiol Lung Cell Mol Physiol. 2000; 279(3): L423-7.
    106. Hassoun HT, Grigoryev DN, Lie ML, Liu M,Cheadle C, Tuder RM, Rabb H. Ischemic acute kidney injury induces a distant organ functional and genomic response distinguishable from bilateral nephrectomy. Am J Physiol Renal Physiol 2007; 293(1): F30–40.
    107. Kramer AA, Postler G, Salhab KF, Mendez C, Carey LC, Rabb H. Renal ischemia reperfusion leads to macrophage-mediated increase in pulmonary vascular permeability. Kidney Int. 1999; 55(6):2362-7.
    108. Taniguchi T, Kidani Y, Kanakura H, Takemoto Y, Yamamoto K: Effects of dexmedetomidine on mortality rate and inflammatory responses to endotoxin-induced shock in rats. Crit Care Med. 2004; 32(6):1322-6.
    109. Taniguchi T, Kurita A, Kobayashi K, Yamamoto K, Inaba H: Dose- and time-related effects of dexmedetomidine on mortality and inflammatory responses to endotoxin-induced shock in rats. J Anesth 2008; 22(3):221-8.
    110. Miksa M, Das P, Zhou M, Wu R, Dong W, Ji Y, Goyert SM, Ravikumar TS, Wang P. Pivotal role of the alpha(2A)-adrenoceptor in producing inflammation and organ injury in a rat model of sepsis. PLoS One 2009; 4(5): e5504.
    111. Flierl MA, Rittirsch D, Nadeau BA, Chen AJ, Sarma JV, Zetoune FS, McGuire SR, List RP, Day DE, Hoesel LM, Gao H, Van Rooijen N, Huber-Lang MS, Neubig RR, Ward PA. Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 2007; 449(7163):721-5.
    112. Regunathan S, Feinstein DL, Reis DJ: Anti-proliferative and anti-inflammatory actions of imidazoline agents. Are imidazoline receptors involved? Ann N Y Acad Sci 1999; 881: 410-9.
    113. Star RA. Treatment of acute renal failure. Kidney Int 1998; 54(6):1817-31.
    1. Civantos Calzada B, Aleixandre de Arti?ano A. Alpha-adrenoceptor subtypes. Pharmacol Res, 2001, 44(3): 195-208.
    2. Aantaa R, Marjam?ki A, Scheinin M. Molecular pharmacology of alpha 2-adrenoceptor subtypes. Ann Med, 1995, 27(4): 439-449.
    3. Paris A, Tonner PH. Dexmedetomidine in anaesthesia. Curr Opin Anaesthesiol, 2005, 18(4): 412-418.
    4.陈伯銮.临床麻醉药理学.人民卫生出版社. 2000年,386-387.
    5. Franciszek S, Anita K, Apolonia R, et al. 1-[(Imidazolidin-2-yl)imino]indazole. Highlyα2/I1 selective agonist: synthesis, X-ray structure, and biological activity. J Med Chem, 2008, 51(12): 3599-3608.
    6. Sanders RD, Brian D, Maze M. G-protein-coupled receptors. Handb Exp Pharmacol, 2008, 182: 93-117.
    7. Gyires K, Zádori ZS, T?r?k T, et al. alpha(2)-Adrenoceptor subtypes-mediated physiological, pharmacological actions. Neurochem Int, 2009, 55(7): 447-53.
    8. Ma D, Rajakumaraswamy N, Maze M. alpha2-Adrenoceptor agonists: shedding light on neuroprotection? Br Med Bull, 2005, 71: 77-92.
    9. Doze VA, Chen BX, Tinklenberg JA, et al. Pertussis toxin and 4-aminopyridine differentially affect the hypnotic-anesthetic action of dexmedetomidine and pentobarbital. Anesthesiology, 1990, 73(2): 304-307.
    10. Bergendahl H, Lonnqvist PA, Eksborg S. Clonidine: An alternative to benzodiazepines for premedication in children. Curr Opin Anaesthesiol, 2005, 18(6): 608-613.
    11. Handa F, Fujii Y. The efficacy of oral clonidine premedication in the prevention of postperative vomiting in children following strabismus surgery. Paediatr Anaesth, 2001, 11(1): 71-74.
    12. Huupponen E, Maksimow A, Lapinlampi P, et al. Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep. Acta Anaesthesiol Scand. 2008, 52(2):289-294.
    13. Riker RR, Shehabi Y, Bokesch PM, et al. Dexmedetomidine vs midazolam for sedation of critically ill patients. A Randomized Trial. JAMA, 2009, 301(5): 489-498.
    14.吴新民,许幸,王俊科,等.静脉注射右美托咪啶辅助全身麻醉的有效性和安全性.中华麻醉学杂志, 2007, 27(9): 773-6.
    15. Dasta JF, Jacobi J, Sesti AM, et al. Addition of dexmedetomidine to standard sedation regimens after cardiac surgery: An outcomes analysis. Pharmacotherapy, 2006, 26(6): 798-805.
    16. Maze M, Fujinaga M:α2-Adrenoceptors in pain modulation: Which subtype should be targeted to produce analgesia? Anesthesiology, 2000, 92(4): 934-936.
    17. Arain SR, Ruehlow RW, Uhrich TD, et al. The efficacy of dexmedetomidine versus morphine for postoperative analgesia after major inpatient surgery. Anesth Analg, 2004, 98(1):153-158.
    18. Angst MS, Ramaswamy B, Davies MF, et al. Comparative analgesic and mental effects of increasing plasma concentrations of dexmedetomidine and alfentanil in humans. Anesthesiology, 2004, 101(3): 744-752.
    19. Hoffman WE, Kochs E, Werner C, et al. Dexmedetomedine improve neurologic outcome from incomplete ischemia in the rat. Reversal by theα2-Adrenogic antagonist atipamezole. Anesthesiology, 1991, 75(4): 328-332.
    20. Dahmani S, Rouelle D, Gressens P, et al. Effects of dexmedetomidine on hippocampal focal adhesion kinase tyrosine phosphorylation in physiologic and ischemic conditions. Anesthesiology, 2005, 103(5): 969-977.
    21. Sanders RD, Xu J, Shu Y, et al. Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats. Anesthesiology, 2009, 110(5): 1077-1085.
    22. Wijeysundera DN, Naik JS, Beattie WS. Alpha-2 adrenergic agonists to prevent perioperative cardiovascular complications: a Meta-analysis. Am J Med. 2003, 114(9): 742-752
    23. Guo H, Takahashi S, Cho S, et al. The effects of dexmedetomidine on left ventricular function during hypoxia and reoxygenation in isolated rat hearts. Anesth Analg, 2005, 100(3): 629-635.
    24. Okada H, Kurita T, Mochizuki T. The cardioprotective effect of dexmedetomidine on global ischaemia in isolated rat hearts. Resuscitation, 2007, 74(3): 538-545.
    25. Aantaa R, Jalonen J. Perioperative use ofα2-adrenoceptor agonists and the cardiac patient. Eur J Anaesthesiol. 2006; 23(5):361-72.
    26. Yang CL, Tsai PS, Huang CJ. Effects of dexmedetomidine on regulating pulmonary inflammation in a rat model of ventilator-induced lung injury. Acta Anaesthesiol Taiwan, 2008, 46(4): 151-159.
    27. Kumagai M, Horiguchi T, Nishikawa T, et al. Intravenous dexmedetomidine decreases lung permeability induced by intracranial hypertension in rats. Anesth Analg, 2008, 107(2): 643-647.
    28. Sheen MJ, Ho ST. Dexmedetomidine: More than a sedative and analgesic. Acta Anaesthesiol Taiwan, 2008, 46(4): 149-150.
    29. Rouch AJ, Kudo LH, Hébert C. Dexmedetomidine inhibits osmotic water permeability in the rat cortical collecting duct. J Pharmacol Exp Ther. 1997; 281(1): 62-9.
    30. Villela NR, do Nascimento Júnior P, de Carvalho LR, Teixeira A. Effects of dexmedetomidine on renal system and on vasopressin plasma levels. Experimental study in dogs. Rev Bras Anestesiol. 2005; 55(4):429-40.
    31. Frumento RJ, Logginidou HG, Wahlander S, et al. Dexmedetomidine infusion is associated with enhanced renal function after thoracic surgery. J Clin Anesth, 2006, 18(6): 422-426.
    32. Billings FT 4th, Chen SW, Kim M, et al.α2-Adrenoceptor agonists protect against radiocontrast-induced nephropathy in mice. Am J Physiol Renal Physiol, 2008, 295(3): F741-748.
    33. Hofer S, Steppan J, Wagner T, et al. Central sympatholytics prolong survival in experimental sepsis. Crit Care. 2009; 13(1): R11.
    34. Qiao H, Sanders RD, Ma D,et al. Sedation improves early outcome in severely septic Sprague Dawley rats. Crit Care. 2009; 13(4): R136.
    35. Memi? D, Hekimo?lu S, Vatan I, et al. Effects of midazolam and dexmedetomidine on inflammatory responses and gastric intramucosal pH to sepsis, in critically ill patients. Br J Anaesth. 2007, 98(4): 550-552
    36. Miksa M, Das P, Zhou M, et al. Pivotal role of theα(2A)-adrenoceptor in producing inflammation and organ injury in a rat model of sepsis. Plos one, 2009, 4(5): e5504.
    37. Filer MA, Rittirsch D, Nadeau BA, et al. Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature, 2007, 449(7163): 721-725.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700