用户名: 密码: 验证码:
3.0T MR肺癌扫描序列优化及功能学成像的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:3.0T MR胸部不同扫描序列的图像质量分析
     目的:比较FSE-T1、FSE-T2、FSE-T2-FS、T2~*序列及LAVA增强扫描序列对胸部扫描的图像质量,以摸索3.0T MR进行胸部扫描的合理扫描序列及序列组合。材料和方法:采用3.0T MR对53例肺部肿瘤的患者进行胸部扫描,其中1例伴阻塞性炎症或阻塞性肺不张。均进行FSE-T1、FSE-T2及FSE-T2-FS扫描,其中48例进行T2~*扫描,48例进行LAVA增强扫描,就各序列对整体图像质量、病变、支气管、纵隔大血管、胸壁的显示情况、伪影及肿物与阻塞性病变的边界显示情况分别进行评分和比较。
     结果:五个序列间在图像整体质量、对病变、支气管及分支、纵隔大血管的显示及伪影的差异有极显著性意义(P=0.000),对胸壁的显示情况差异有显著性意义(P=0.018)。FSE-T2、FSE-T2-FS及LAVA序列的图像整体质量较高,优于FSE-T1及T2~*序列(P<0.01),但FSE-T2-FS序列对大血管的显示能力不及FSE-T2及LAVA序列(P<0.05);T2~*序列对支气管的显示不及其他四个序列(P<0.01);LAVA序列的伪影程度最轻,均为无或轻度伪影;FSE-T1的伪影明显,与LAVA序列间差异有显著性意义(P<0.05)。19例伴阻塞性炎症或阻塞性肺不张者,FSE-T2、FSE-T2-FS及LAVA序列均能区分肿物与阻塞性病变的边界,而FSE-T1及T2~*序列仅能对2例患者作出区分。
     结论:应用3.0T超高场强MR进行胸部扫描应常规选择FSE-T2序列和LAVA增强序列。FSE-T1及FSE-T2-FS序列图像质量不及FSE-T2序列和LAVA增强序列,但有助于组织类型判断。T2~*序列由于图像质量不佳,在肺癌MR扫描中应用价值有限。
     第二部分:3.0T MR肺癌动态增强特征及在放化疗前后的变化
     目的:前瞻性研究肺癌在3.0T MR动态增强扫描的特点及其与组织病理学和MVD的相关性;分析肺癌放化疗治疗前后MR动态增强扫描参数及曲线形态的动态变化,为探索3.0T MR在肺癌放化疗早期疗效评价中的作用奠定基础。材料和方法:应用3.0T MR对37例经病理证实为肺癌的患者进行胸部动态增强扫描,采用LAVA序列间断扫描至注射造影剂后4min,计算增强扫描各期肿瘤相对强化度(SI%),绘制T-SI%曲线,将曲线形态分为A型(速升下降型)、B型(速升平台型)、C型(速升-缓升型)和D型(持续低平型),计算强化参数:早期强化峰值(SI_(EP)%)、早期峰值强化时间(T_(EP))、最大强化峰值(SI_(peak)%)、最大强化峰值时间(T_(peak))。比较不同大小(≤5cm和>5cm)、部位(中央型和周围型)、组织学类型(鳞癌和腺癌)、分化程度(高、中、低分化)、分期(早中期和晚期)间T-SI%曲线形态及强化参数;对10例行手术治疗者切除的组织进行CD31和CD34染色,分析肿瘤强化参数与MVD的相关性;对17例接受放化疗者,比较放化疗前后T-SI%曲线形态及强化参数的变化。
     结果:肿瘤最大径≤5cm和最大径>5cm者间强化参数的差异有显著性意义,肿瘤最大径≤5cm者SI_(EP)%、SI_(peak)%均高于肿瘤最大径>5cm者,其他各组间SI_(EP)%、SI_(peak)%均无统计学差异。SI_(EP)%、SI_(peak)%与MVD呈正相关。17例行放化疗治疗患者,近期疗效缓解者与未缓解者之间,增强扫描强化参数无统计学意义。放化疗前、中、后肿瘤强化参数SI_(EP)%、SI_(peak)%无统计学意义,但放疗后T_(peak)较放疗前明显延迟(P=0.005)。T-SI%曲线形态放疗前呈速升-下降型4/17和速升-平台型13/17,而放疗后呈速升-平台型3/10和速升-缓升型7/10。
     结论:SI_(EP)%、SI_(peak)%与肿瘤大小有关,肺癌最大径≤5cm者SI_(EP)%、SI_(peak)%明显高于最大径>5cm者。SI_(EP)%、SI_(peak)%与MVD呈正相关,提示其可以反映肿瘤MVD情况。本组小样本结果显示肺癌放化疗后动态增强T_(peak)较治疗前延迟,动态增强MR曲线形态疗后发生变化。
     第三部分:3.0T MR肺癌扩散成像特点及放化疗前后的变化
     目的:前瞻性研究3.0T MR在肺癌的扩散特点;观察其在放化疗前后的变化,以期对肺癌疗效评估发挥作用。
     材料和方法:对36例病理证实为肺癌的患者进行DWI成像,放化疗治疗后重复DWI成像。DWI图像质量分为好(病变清楚,无明显磁敏感伪影)、一般(病变周围见高信号,或出现轻度磁敏感伪影)、差(病变不清,变形严重,出现严重磁敏感伪影),DWI图像变形严重者为失败:比较不同病理类型肺癌的ADC值差异;观察治疗前后ADC值变化。
     结果:36例患者中22例(61.1%)DWI图像质量评价为优或一股,其中鳞癌10例,ADC值为1.41×10~(-3)mm~2/s±0.26×10~(-3)mm~2/s:腺癌9例,ADC值为1.42×10~(-3)mm~2/s±0.63×10~(-3)mm~2/s,两者ADC值差异无显著性意义(P=0.970)。14例(38.9%)评价为失败,未能进一步评价。7例放化疗前后DWI图像均为优或一般者,放疗前ADC值为1.13×10~(-3)mm~2/s±0.25×10~(-3)mm~2/s,放疗后ADC值为1.81×10~(-3)mm~2/s±0.25×10~(-3)mm~2/s,放疗前后ADC值的差异有显著性意义(P=0.000)。
     结论:放化疗后肺癌ADC值明显增高,提示DWI成像在监测肺癌放化疗后早期功能学变化方面有潜在应用价值,但目前DWI成像图像质量尚不能满足临床常规应用。
PartⅠImage Analysis of 3.0T MR Sequences in the Chest.
     PURPOSE: To compare the image quality of FSE-T1, FSE-T2, FSE-T2-FS, T2~* and LAVA-enhanced sequences with 3.0T MR in the chest. MATERIALS AND
     METHODS: Fifty-three patients with suspected lung cancer underwent chest MRI. Nineteen out of them combined with obstructive atelectasis or pneumonia at the examination time. The FSE-TI, FSE-T2 and FSE-T2-FS sequences were obtained in all patients. T2~* and LAVA-enhanced sequences were obtained in 48 patients, respectively. The quality of MR images was evaluated and scored according to overall image quality, the image quality of masses, of bronchi, of vessels, of chest wall and of the artifacts. The borders of masses and obstructive lesions were evaluated, too.
     RESULTS: The overall MR image quality, the image quality of masses, of bronchi, of vessels, of chest wall and of the artifacts were significantly different in five sequences (P<0.05). The overall MR image quality of FSE-T2, FSE-T2-FS and LAVA-enhanced sequences was significantly better than that of FSE-T1 and 12~* sequences (P<0.01) , and the image quality of FSE-T2-FS sequences was no better than that of FSE-T2 and LAVA-enhance sequences on vessel displays (P<0.05). T2~* sequence was inferior to other four sequences on airway displays (P<0.01). There were more artifacts in FSE-T1 sequence than in LAVA-enhanced sequence (P<0.05), in which no or little artifacts were encountered. The tumor and adjacent obstructive lesions could be differentiated on FSE-T2. FSE-T2-FS, and LAVA-enhanced sequences in all 19 patients with obstructive atelectasis or pneumonia but only in 2 cases on FSE-T1 and T2~* sequences. CONCLUSION: FSE-T2 and LAVA-enhanced sequences with 3.0T MR could render images with good quality in patients with lung cancer. The image quality of FSE-T2-FS and FSE-T1 is inferior to FSE-T2 and LAVA-enhanced sequence, but they can be used as supplement in the tissue identification. The use of T2~* sequence is limited in the chest MRI examinations because of dissatisfied image quality.
     PartⅡ3.0T Dynamic Contrast-enhanced Magnetic Resonance Imagingof Lung Cancer: Characterization and Monitoring after Chemoradiation.
     PURPOSE: To prospectively investigate enhancing characteristics of lung cancer, correlate them with pathology and tumor microvessel density, monitor the enhancing parameters and the T-SI% curve types of lung cancer after chemoradiation, and assess early response after chemoradiation with dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging. MATERIALS AND METHODS: Thirty-seven patients with pathologically proven lung cancer underwent DCE-MR with LAVA sequence. DCE-MR images were acquired intermittently for a total of 4 minitues on 3.0T MR scanner. The relative enhancing percentage (Sl%) of each time point was measured. The shapes of T-SI% curves were defined as A (rapidly ascending followed with descending branch), B (rapidly ascending branch followed with plateau) and C (rapidly ascending followed with slowly ascending branch) and D ( persistently low and flat). The early peak enhancement (SI_(EP)>%). early peak time (T_(EP)), maximum enhancement (SI_(peak)%), and peak time (T_(peak)) were recorded and compared according to different dimension, location, histological types, clinical stages and differentiation grades of lung cancer. The SI_(EP)% and SI_(peak)% were correlated with microvessel density in ten patients who underwent the resection of tumor. Seventeen patients who underwent chemoradiation were examined repeatedly pre-, mid- and post-chemoradiation, the shapes of T-SI% curves, SI_(EP)% and SI_(peak)% of pre-, mid-and post-treatment were compared. RESULTS: The SI_(EP)% and SI_(peak)% of tumors with smaller dimension (≤5cm) were significantly higher than those with larger dimension (>5cm). The SI_(EP)% and SI_(peak)% were positively correlated with microvessel density. In 17 patients who underwent chemoradiation. no significant differences were observed in the enhancing parameters between response group and nonresponse group. The SI_(EP)% and SI_(peak)% of pre-, mid- and post-chemoradiation were not significantly different, but T_(peak) increased after the treatment (P=0.005). The T-SI% curves were type A (4/17) and type B (13/17) before chemoradiation. however they were type B (3/10) and type C (7/10) after chemoradiation. CONCLUSION:The SIep% and SI_(peak)% of lung cancer with smaller dimension are higher than those with larger dimension. The SIep% and SI_(peak)% are positively correlated with the tumor MVD. The small sample research demonstrates the T_(peak) delayed and T-SI% curve type changed after chemoradiation.
     PartⅢ3.0T MR Diffusion-weighted Imaging in Assessment of TumorResponse after Chemoradiation in Patients with Lung Cancer.
     PURPOSE: To investigate characteristics of diffusion weighted imaging (DWI) of lung cancer, monitor the apparent diffusion coefficient (ADC) after chemoradiation and assess the value of DWI in early response of lung cancer after chemoradiation.
     MATERIALS AND METHODS: Thirty-six patients with pathologically proven lung cancer underwent DWI. Fifteen patients who underwent chemoradiation were scaned prior to and post chemoradiation. The quality of diffusion weighed images were evaluated on 3-level grades as good, moderate and failed. ADCs of the lung cancers which were graded as good and moderate were measured from ADC mapping. ADCs were compared among the different types of lung cancers and pre- and post-chemoradiation. RESULTS: The quality of diffusion weighed images was graded as moderate or good in 22 patients, and as failure in 14 patients. ADCs were 1.41×10~(-3) mm~2/s±0.26×10~(-3)mm~2/s (mean±standard deviation) for squamous cell carcinoma, and 1.42×10~(-3)mm~2/s±0.63×l0~(-3)mm~2/s for adenocarcinoma. There were no significant differences between squamous cell carcinoma and adenocarcinoma (P=0.970). The quality of diffusion weighted images of 7 patients were graded as good or moderate pre- and post-chemoradiation. ADCs were 1.13×10~(-3) mm~2/s±0.25×10~(-3)mm~2/s for pre-therapy, 1.81×10~(-3)mm~2/s±0.25×10~(-3)mm~2/s for post-therapy. The differences of ADC values before and after chemoradiation were statistically significant (P=0.000). CONCLUSION: The ADCs of lung cancer are markedly increased after chemoradiation. The DWI has potential value for monitoring early response of lung cancer after chemoradiation, but the image quality of DWI is not satisfied for routine clinical application rencently.
引文
[1] Schaefer JF, Vollmar J, Schick F, et al. Solitary pulmonary nodules: dynamiccontrast-enhanced MR imaging-perfusion differences in malignant and benign lesions.Radiology, 2004,232: 544-553.
    
    [2] Fujimoto K, Abe T, Miiller NL, et al. Small peripheral pulmonary carcinomasevaluated with dynamic MR imaging: correlation with tumor vascularity andprognosis. Radiology, 2003, 227: 786-793.
    
    [3] Matoba M, Tonami H, Kondou T, et al. Lung carcinoma: diffusion-weighted MRimaging-preliminary evaluation with apparent diffusion coefficient. Radiology, 2007,243: 570-577.
    
    [4] Awaya H, Matsumoto I, Honjo K, et al. Preliminary study of discriminationamong the components of small pulmonary nodules by MR Imaging: correlationbetween MR Images and histologic appearance. Radiat Med, 2000, 18: 29-38.
    
    [5] Ohno Y, Hatabu H, Takenaka D, et al. Solitary pulmonary nodules: potential roleof dynamic MR imaging in management: intial experience. Radiology, 2002, 224:503-511.
    
    [6] Bruegel M, Gaa J, Woertler K, et al. MRI of the lung: value of different turbospin-echo, single-shot turbo spin-echo, and 3D gradient-echo pulse sequences for thedetection of pulmonary metastases. Journal of magnetic Resonance Imaging, 2007, 25:73-81.
    
    [7]欧阳汉,赵心明,罗斗强,等.肝脏及上腹部MRI扫描序列的应用价值.中国医学影像技术,2001,17:751-753.
    
    [8] Semelka RC, Balci NC, Wilber KP, et al. Breath-hold 3D gradient-echo MR imaging of the lung parenchyma: evaluation of reproducibility of image quality in normals and preliminary observations in patients with disease. Journal of magnetic Resonance Imaging, 2000, 11: 195-200.
    
    [9] Biederer J, Graessner J, Heller M. Magnetic resonance imaging of the lung with a??volumetric interpolated 3D-gradient echo sequence. Fortschr Roentgenstr, 2001, 173:883-887.
    
    [10] Edelman RR, Salanitri G, Brand R, et al. Magnetic resonance imaging of thepancrease at 3.0 tesla qualitative and quantitative comparison with 1.5 tesla. InvestRadiol,2006,41: 175-180.
    
    [11] Buadu LD, Murakami J, Murayama S, et al. Breast lesions: correlation ofcontrast medium enhancement patterns on MR images with histopathologic findingsand tumor angiogenesis. Radiology, 1996, 200: 639-649.
    
    [12] Kuhl CK, Mielcareck P, Klaschik S, et al. Dynamic breast MR imaging: aresignal intensity time course data useful for differential diagnosis of enhancing lesions?Radiology, 1999,211: 101-110.
    
    [13] Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate theresponse to treatment in solid tumors. European Organization for Research andTreatment of Cancer, National Cancer Institute of the United States, National CancerInstitute of Canada. J Natl Cancer Inst, 2000, 92: 205-216.
    
    [14] Weidner N, Semple JP, Welch WR, et al. Tumor angiogenesis and metastasis:correlation in invasive breast carcinoma. N Engl J Med, 1991, 324:1-8.
    
    [15]张敏鸣,邹煜,商德胜等.孤立性肺结节动态增强MRI的定晕研究.中华放射学杂志,2002,36:592-597.
    
    [16] Gückel C, Schnabel K., Deimling M, et al. Solitary pulmonary nodules: MR evaluation of enhancement patterns with contrast-enhanced dynamic snapshot gradient-echo imaging. Radiology. 1996, 200:681-686.
    
    [17] Schaefer JF, Schneider V, Vollmar J, et al. Solitary pulmonary nodules: association between signal characteristics in dynamic contrast enhanced MRI and tumor angiogenesis. Lung Cancer, 2006, 53: 39-49.
    
    [18]刑伟,胡春洪,张晓膺,等.非小细胞肺癌肿瘤血管生成与动态增强MRI表现的相关性.实用放射学杂志,2003,19:1084-1087.
    
    [19] MilesKA, Griffiths MR, Keith CJ. Blood flow-metabolic relationships are dependent on tumour size in non-small cell lung cancer: a study using quantitative contrast-enhanced computer tomography and positron emission tomography. Eur J??Nucl Med Mol Imaging, 2006, 33: 22-28.
    
    [20] Weidner N. Intratumor micro vessel density as a prognostic factor in cancer. Am JPathol, 1995, 147:9-19.
    
    [21] Mineo TC, Ambrogi V, Baldi A, et al. Prognostic impact of VEGF, CD31, CD34,and CD105 expression and tumour vessel invasion after radical surgery for IB-1IAnon-small cell lung cancer. J Clin Pathol, 2004, 57: 591-597.
    
    [22]邹煜,张敏鸣,王丽君,等.肺癌MRI动态增强模式与肿瘤血管生成的相关性研究.中华放射学杂志,2003,37:1150-1155.
    
    [23] Ohno Y, Adachi S, Kono M. Predicting the prognosis of non-small cell lung cancer patient treated with conservative therapy using contrast-enhanced MR imaging. Eur Radiol. 2000, 10: 1770-1781.
    
    [24] Semiz Oysu A, Ayanoglu E, Kodalli N, et al. Dynamic contrast-enhanced MRI in the differentiation of posttreatment fibrosis from recurrent carcinoma of the head and neck.Clin Imaging, 2005, 29: 307-312.
    
    [25]钟镜联, 梁碧玲,丁忠祥,等.应用MRI动态增强技术鉴别鼻咽癌放疗后针骨斜坡纤维化与肿瘤复发.癌症,2006,25:105-109.
    
    [26] Kiessling F, Farhan N, Lichy MP, et al. Dynamic contrast-enhanced magnetic resonance imaging rapidly indicates vessel regression in human squamous cell carcinomas grown in nude mice caused by VEGF receptor 2 blockade with DC 101. Neoplasia, 2004. 6:213-223.
    
    [27]李洁,张晓鹏,曹岜,等.乳腺癌新辅助化疗后血流动力学变化的动态增强MRT研究.中国医学影像技术,2007,23:397-400.
    
    [28] Ng QS, Goh V, Milner J, et al. Acute tumor vascular effects followingfractionated radiotherapy in human lung cancer: In vivo whole tumor assessmentusing volumetric perfusion computed tomography. Int J Radiat Oncol Biol Phys, 2007,67:417-424.
    
    [29] Mayr NA, Yuh WT, Magnotta VA, et al. Tumor perfusion studies using fastmagnetic resonance imaging technique in advanced cervical cancer: a newnoninvasive predictive assay. Int J Radiat Oncol Biol Phys, 1996, 36: 623-633.
    
    [30] Hawighorst H, Weikel W, Knapstein PG. et al. Angiogenic activity of cervical??carcinoma: assessment by functional magnetic resonance imaging-based parametersand a histomorphological approach in correlation with disease outcome. Clin CancerRes, 1998,4:2305-2312.
    
    [31] Devries AF, Griebel J, Kremser C, et al. Tumor microcirculation evaluated bydynamic magnetic resonance imaging predicts therapy outcome for primary rectalcarcinoma. Cancer Res, 2001,61: 2513-2516.
    
    [32] Ohno Y, Nogami M, Higashino T, et al. Prognostic value of dynamic MRImaging for non-small-cell lung cancer patients after chemoradiotherapy. Journal ofmagnetic Resonance Imaging, 2005, 21: 775-783.
    
    [33]张贇,梁碧玲,高立等.磁共振弥散加权成像诊断颈部淋巴结的临床价值.中华肿瘤杂志,2007,29:70-73.
    
    [34]楼路馨,彰俊杰,时高峰等.MR扩散加权成像对乳腺良恶性病变的应用研究.临床放射学杂志,2007,26:350-353.
    
    [35] Meyer JR, Gutierrez A, Mock B, et al. High-b-value diffusion-weighted MR imaging of suspected brain infarction. Am J Neuroradiol, 2000, 1:1821-1829.
    
    [36]吴华伟,路青,程杰军,等.肺部疾病背景抑制磁共振扩散成像的参数优化.中国医学计算机成像杂志,2007,13:26-31.
    
    [37]郭雪梅,王霄英,李飞宇,等.3.0T MR扩散加权成像对前列腺癌的诊断价值.中国医学影像技术,2007,23:1205-1207.
    
    [38]王海燕,赵斌,谭炳毅.磁共振扩散张量成像在星形细胞癌分级中的价值.临床放射学杂志,2007,26:664-667.
    
    [39]顾雅佳,冯晓源,邱龙华,等.DWI对局部进展期乳腺癌新辅助化疗疗效评价的初步研究.放射学实践,2007,22:1249-1255.
    
    [40] Hein PA, Kremser C, Judmaier W, et al. Diffusion-weighted magnetic resonance imaging for monitoring diffusion changes in rectal carcinoma during combined, preoperative chemoradiation: preliminary results of a prospective study. Eur J Radiol, 2003,45:214-222.
    
    [1] Moelke A, Wielopolski PA, Pattynama PM. Relationship between magnetic fieldstrength and magnetic-resonance-related acoustic noise levels. MAGMA, 2003,16: 52-55.
    
    [2] Kusumoto M, Kono M, Adachi S, et al. Gadopentetate- dimeglumine-enhancedmagnetic resonance imaging for lung nodules: differentiation of lung cancer andtuberculoma. Invest Radiol, 1994, 29: S255-256.
    
    [3] Kono M, Adachi S, Kusumoto M, et al. Clinical utility of Gd-DTPA-enhancedmagnetic resonance imaging in lung cancer. J Thorac Imaging, 1993. 8: 18-26.
    
    [4]安宁豫,高元桂,梁燕等,肺癌与结核球的MRI增强研究.中华放射学杂志, 1997,31:442-445.
    
    [5]李成洲,肖湘生,刘士远等.MRI增强薄层环状强化模式对结核瘤的诊断价 值.放射学实践,2005,20:471-473.
    
    [6] Chung MH, Lee HG, Kwon SS, et al. MR imaging of solitary pulmonary lesion: comphasis on tuberculomas and comparison with tumors. J Magn Resonance Imaging, 2000, 11:629-637.
    
    [7]张敏鸣,邹煜,商德胜等.孤立性肺结节动态增强MRI的定量研究.中华放射 学杂志,2002,36:592-597.
    
    [8] Ohno Y, Hatabu H, Takenaka D, et al. Solitary pulmonary nodules: potential roleof dynamic MR imaging in management-initial experience. Radiology, 2002, 224:503-511.
    
    [9] Schaefer JF, Vollmar J, Schick F, et al. Solitary pulmonary nodules: dynamiccontrast-enhanced MR imaging-perfusion differences in malignant and benignlesions. Radiology, 2004, 232: 544-553.
    
    [10]Noguchi M, Morikawa A, Kawasaki M, et al. Small adenocarcinoma of the lung:histologic characteristics and prognosis. Cancer, 1995, 75: 2844-2852.
    
    [11]Ohno Y, Hatabu H, Takenaka D, et al. Dynamic MR imaging: value ofdifferentiating subtypes of peripheral small adenocarcinoma of the lung.European Journal of Radiology, 2004 , 52: 144-150.
    
    [12]Hasegawa I, Eguchi K, Kohda E, et al. Pulmonary hilar lymph nodes in lung cancer: assessment with 3D dynamic contrast-enhanced MR imaging. European Journal of Radiology, 2003,45: 129-134.
    
    [13]邹煜,张敏鸣,王丽君等.MRI动态增强模式和肿瘤血管密度与肺癌淋巴结 转移的关系.中华放射学杂志,2006,40:176-180.
    
    [14]Ohno Y, Adachi S, Motoyama A, et al. Multiphase ECG-triggered 3D contrast-enhanced MR angiography: utility for evaluation of hilar and mediastinal invasion of bronchogenic carcinoma. J Magn Resonance Imaging.2001, 13:215-224.
    
    [15]Sigal R, Vogl T, Casselman J et al. Lymph node metastases from head and neck squamous cell carcinoma : MR imaging with ultra small superparamagnetic iron oxide particles (Sinerem MR)-results of a phase-Ill multicenter clinical trial. Eur Radiol, 2002, 12 : 1104-1113.
    
    [16]Stets C, Brandt S, Wallis F, et al. Axillary lymph node metastases: a statistical analysis of various parameters in MRI with USPIO. J Magn Reson Imaging,2002, 16: 60-68.
    
    [17]Nguyen BC, Stanford W, Thompson BH, et al. Multicenter clinical trial ofultrasmall superparamagnetic iron oxide in the evaluation of mediastinal lymphnodes in patients with primary lung carcinoma. J Magn Reson Imaging. 1999, 10:468-473.
    
    [18]Pannu HK, Wang KR Borman TL,et al. MR imaging of mediastinal lymph nodes:evaluation using a superparamagnetic contrast agent. J Magn Reson Imaging.2000, 12:899-904.
    
    [19] Weidner N. Intratumor microvessel density as a prognostic factor in cancer. Am JPathol. 1995, 147:9-19.
    
    [20] Weidner N. Tumor vascularity and proligeration: clear evidence of a closerelationship. J Pathol, 1999, 189: 297-299.
    
    [21]邢伟,胡春洪,张晓膺等.非小细胞肺癌MR动态增强表现与肿瘤血管生成的 相关性.临床放射学杂志,2003,22:1017-1021.??Xing W, Hu CH, Zhang XY, et al. Correlation between dynamic enhanced MRI features and tumorous angiogenesis in non-small cell lung cancer. Journal of Clinical Radiology, 2003, 22: 1017-1021.
    
    [22]邹煜,张敏呜,王丽君等.肺癌MRI动态增强模式与肿瘤血管生成的相关性 研究.中华放射学杂志,2003,37:1150-1155.
    
    [23]Fujimoto K, Abe T, Müller NL, et al. Small peripheral pulmonary carcinomasevaluated with dynamic MR imaging: correlation with tumor vascularity andprognosis. Radiology, 2003, 227: 786-793.
    
    [24]Ohno Y, Nogami M, Higashino T, et al. Prognostic value of dynamic MRImaging for non-small-cell lung cancer patients after chemoradiotherapy. Journalof Magnetic Resonance Imaging, 2005. 21: 775-783.
    
    [25]杨春山,肖湘生,李惠民等.孤立性肺结节质子MR波谱的初步研究.中华放射 学杂志,2005,39:17-21.
    
    [26]Guo Y, Cai YQ, Cai ZL. et al. Differentiation of clinically benign and malignantbreast lesions using diffusion-weighted imaging. Journal of Magnetic ResonanceImaging. 2002, 16: 172-178.
    
    [27]Kinoshita T, Yashiro N. Ihara N. et al. Diffusion-weighted half-Fouriersingle-shot turbo spin echo imaging in breast tumors: differentiation of invasiveductal carcinoma from fibroadenoma. Journal of Comput Assist Tomogr, 2002,26:1042-1046.
    
    [28]Matoba M, Tonami H, Kondou T, et al. Lung carcinoma: diffusion-weighted MRimaging-preliminary evaluation with apparent diffusion coefficient. Radiology,2007.243:570-577.
    
    [29]汤光宇,徐彧,吴访宏等.MRI对诊断肺癌亚临床性颅内转移瘤的应用价值. 临床放射学杂志,2002,21:507-510.
    
    [30]Takahara T. Imai Y, Yamashita T. et al. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing. STIR and high resolution 3D display. Radiat Med. 2004. 22: 275-282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700