用户名: 密码: 验证码:
新型抗结核药物的设计、合成及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自20世纪80年代中期,过去已被控制的传染性结核病出现再流行,多重耐药性结核(MDR-TB)增长趋势明显。现有的抗结核治疗方案还远远不够理想,耐药性菌株尚在不断出现,发现抗结核药物新靶点、研制开发新型抗结核病药物是一项迫在眉睫的任务。莽草酸途径是细菌所特有的必需芳香族化合物的生物合成途径,其酶系是潜在的高选择性抗菌药物的靶点。本毕业论文专题研究旨在发现新型抗耐药的结核药物。
     课题以结核杆菌莽草酸脱氢酶(SDH)作为靶酶,运用计算机虚拟筛选技术,发现了对SDH有抑制作用的先导化合物SDI01。利用基团替换、生物电子等排原理、拼合原理等药物化学基本方法,对先导化合物的结构进行了改造,通过改变分子结构中苯环上取代基的电性、空间位阻、亲脂性或亲水性,或用芳杂环取代苯环,以及将分子结构中乙胺链改为高哌嗪环等,设计合成了SDI01衍生物共32个,经体外抗菌活性实验,考察了衍生物的抑菌活性变化,进行了初步构效关系研究。从抑菌活性实验结果表明:绝大部分衍生物均显示出抑菌活性,其中7个衍生物的活性强于先导化合物2~4倍,8个与先导化合物相当;在苯环上引入位阻较小的甲基、甲氧基、溴等基团时,可使活性提高,当引入的取代基空间位阻较大(如叔丁基、异丙氧基等)或苯环并合含氧杂环,衍生物活性下降;芳杂环(呋喃、噻吩等)取代苯环使活性下降:将分子结构中乙胺链改为高哌嗪环活性明显提高;其中光学异构体(S,S)-构型的活性稍好。这些设计合成的SDH抑制剂,具有与现有抗结核杆菌药物结构类型不同的新颖结构和全新的作用靶点,预示与现有临床用药没有交叉耐药性,有较好的进一步研究与开发价值。
     利福霉素类药物是一类重要的抗结核药物,抗菌活性强,但由于结构的相似性,相互之间存在交叉耐药性,目前此类药物的研发的重点在于提高药效,减小交叉耐药的可能性。本课题还对利福霉素类药物进行了研究,针对利福霉素C3位进行了结构改造,利用拼合原理、生物电子等排原理等,设计了8个利福霉素衍生物。体外抑菌实验表明,8个化合物中5个化合物对结核分枝杆菌H_(37)Ra抑菌活性强于利福平,其中化合物DW-35、DW-36和DW-37活性最强,MIC为3~6ng/mL,是利福平的1/16~1/8,而在对临床分离耐利福平结合分枝杆菌的抑菌实验中,这3个化合物也呈现出强于利福平的抑菌作用。采用MTT法对人巨噬细胞THP—1进行毒性实验,化合物DW-35在浓度为3.125~100μg/mL范围内,没有明显的细胞毒性作用,IC_(50)=543.12μg/mL;化合物DW-37在浓度为3.125~12.5μg/mL范围的各组细胞吸光度值也无明显升高(P>0.05),没有明显的细胞毒性作用,IC_(50)=51.18μg/mL。以上合成的利福霉素衍生物对利福平敏感菌和耐药菌的抑菌活性优于利福平,具有良好的研究和开发前景。
Since the mid-1980s, the controlled infectious disease tuberculosis (TB) has beenundergoing resurging. The existing anti-TB treatment program is also far fromsatisfaction, since the resistance strains are still continually emerging, as well as theappearance of multi-drug resistant (MDR) strains of M. tuberculosis have highlighted.Therefore it's urgent to discover new targets for antituberculotics and develop novelantituberculotics. The shikimate pathway which leads to the biosynthesis of chorismicacid, is characteristic and essential to plants and microorganisms for the biosynthesisof aromatic compounds. The enzymes of this pathway are hence potential targets forthe development of specific antimicrobial agents. This study aimed at discoveringnovel tuberculostatics with no tolerance.
     Using virtual screening against small molecule bank, the lead compound SDI01were hited as M. tuberculosis shikimate dehydrogenase (SDH) inhibitor with MICvalue of 6μg/mL. In the principles of group replacement, bioisosterism andcombination, we designed and synthesized 32 derivatives of SDI01, and got somepreliminary structure-activity relationships after determining their anti-TB activities invitro. Compounds with small lipophilic group substituent at the C-4 position ofbenzene ring exhibited better activity. When the benzene ring was replaced byheteroaromatic ring, the compounds showed less antibacterial activity. Activity couldbe improved when ethylenediamine group was replaced by homopiperazine ring.Since these new highly potent SDH inhibitors act at new target and possess uniquechemical structures with existing antituberculotics, they are worthy to be furtherstudied and developed.
     Rifamycins are important agents in the treatment of infectious TB. By the reasonof the tolerance of existing rifamycins, it is important to develop new drugs withoutcross-resistance with currently used drugs. This study was also focused on exploringthe novel rifamycins by modifying the C3 side chain of the rifamycins. We designedand synthesized eight rifamycin derivatives. The preliminary in vitro results of thebiological evaluation demonstrated high antimycobacterial activity of thesecompounds. Derivatives such as DW-35, DW-36 and DW-37 had MICs 8 to 16 times lower than those of rifampicin against sensitive M. tuberculosis strains, and they alsoshowed higher biological activity against all three classes of mutants resistant torifampicin. MTT assay on human macrophages THP-1 cells, compound DW-35appeared no obvious cytotoxicity with the IC_(50) value 543.12μg / mL in theconcentration range of 3.125-100μg / mL, and compound DW-37 had no significantcytotoxicity in the range of 3.125-12.5μg / mL with the IC_(50) value 51.18μg / mL.Therefore, these derivatives have good prospects for further research anddevelopment.
引文
[1] WHO. Global tuberculosis control: surveillance, planning, financing. WHO report 2005. WHO/HTM/TB/2005. 349. Geneva: World Health Organization, 2005.
    [2] 郝阳.我国结核病防治概况与今后工作设想[J].中华结核和呼吸杂志,2004,27(7):433-434.
    [3] Young DB, Cole ST. Lep rosy, tuberculosis, and the new genetics[J]. J Bacteriol, 1993, 175 (1): 6.
    [4] Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the comp- lete genome sequence[J]. Nature, 1998, 393: 537.
    [5] (a)Mohamed Abdel Aziz, Abigail Wright, Adalbert Laszlo[J]. Lancet 2006; 368:2142-54;(b)肖成志,李群辉,李拯民,等.耐多药结核病的治疗[J].临床肺科杂志.2001,6(3):29.
    [6] 全国结核病流行病学抽样调查技术指导组.2000年全国结核病流行病学抽样调查报告[J].中国防痨杂志.2002,24(2):99.
    [7] Payne D J, Warren P V, Holmes D J, et al. Bacterial fatty acid biosynthesis: a genomics - driven taget for drug discovery [J]. Drug Discovery Today, 2001, 6: 537.
    [8] Editors. Advances in TB drug development [J]. Scri, 2002, No. 2717: 20.
    [9] Kremer L et al. Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis[J]. Journal of Biological Chemistry, 2000, 275(22): 16857-16864.
    [10] Belanger AE et al. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proceedings of the National Academy of Sciences, USA, 1996, 93:11919-11924.
    [11] Martindale: The extra pharmacopoeia. 28th Ed. Page 1569. The Pharmaceutical Press.
    [12] Editors. New compounds highlighted at ICAAC [J]. Scri, 2003, No. 2888: 22.
    [13] Kunin CM, Ellis WY. Antimicrobial activities of mefloquine and a series of related compounds. Antimicrobial Agents and Chemotherapy, 2000, 44(4): 848-852.
    [14] Inderlied CB et al. Poster 999, presented at the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, Ontario, Canada, 17-20 September, 2000. Derwent Worm Drug Alert abstract WD-2000-013271.
    [15] De D, Krogstad FM, Byers LD and Krogstad D. Structure-activity relationships for antiplasmodial activity among 7-substituted 4-aminoquinolines[J]. Journal of Medicinal Chemistry, 1998, 41 (25):4918-4926.
    [16] Suriyati M, Pazirah I, Sadikun A, et al. Susceptibility of mycobacterium tuber-culosis to isoniazid and its derivative, 1-isonicotinyl-2-nonanoyl hydrazine: investigation at cellular level [J]. Tuberculosis, 2004, 84:56
    [17] Cocco MT et al. Synthesis and antimycobacterial activity of some isonicotinoyl-hydrazones[J]. European Journal of Medicinal Chemistry, 1999, 34(12): 1071-76.
    [18] Costi R et al. Medicinal Chemistry Research, 1999, 9(6): 408-23.
    [19] 张沂,段蕴铀,张沂杨.喹诺酮类药物抗结核治疗的研究进展[J].中国抗生素杂志,2001,26:234.
    [20] A lvirez-Freites E J, Carter J L, Cynamon M H. In vitro and in vivo activities of gatifloxacin against Mycobacterium tuberculosis [J]. Antimicrob Agents Chemother, 2002, 46:1022
    [21] Miyazak i E, Miyazaki M, Chen J M, et al. Moxifloxacin (Bay 1228039), a new 8-methoxyquinolone, is active in a mouse model of tubercilosis [J]. Antimicrob Agents Chemother, 1999, 43: 85.
    [22] Kawakami K, Namba K, Tanaka M, et al. Antimycobacterial activities of novel levofloxacin analogues [J]. Antimicrob Agents Chem other, 2000, 44: 212.
    [23] Stover C K, W arrener P, van Devanter D R, et al. A small-molecule nitroimidazopyran drug candidate for treatment of tuberculosis [J]. Nature, 2000, 405: 962.
    [24] Ashtekar DR et al. In vitro and in vivo activities of the nitroimidazole CGI 17341 against Mycobacterium tuberculosis[J]. Antimicrobial Agents and Chemotherapy, 1993, 37(2): 183-186.
    [25] Saito H, Tom ioka H, Sato M, et al. In vitro antimycobacterial activity of newly synthesuzed benzoxazino rifamycins [J]. Antimicrob Agents Chemother, 1991, 35: 542.
    [26] 井上教生.实验的结核症に对するbenzoxazino rifamycin KRM 21648のin vivo治疗效果[J].结核,1998,73:53.
    [27] Dietze R, Teixeira L, Rocha L M C, et al. Safety and bactericidal activity of rifalazil in pat ients with pulmonary tuberculosis [J]. Antimicrob Agents Chemother, 2001, 45:1972.
    [28] Hidaka T. Current status and perspectives on the development of rifamycin derivative antibiotics[J]. Kekkaku, 1999, 74 (1):53-61.
    [29] Bruzzese T et al. Pharmacokinetics and tissue distribution of rifametane, a new 3-azinomethylrifamycin derivative, in several animal species [J]. Arzneimittel-Forschung, 2000, 50(1): 60-71.
    [30] Potkar C et al. Phase I pharmacokinetic study of a new 3-azinomethyl-rifamycin (rifametane) as compared to rifampicin [J]. Chemotherapy, 1999,45(3): 147-153.
    [31] Kelkar MS et al. Pharmacokinetic profile of a new 3-azinomethyl rifamycin (SPA-S-565) in volunteers as compared with conventional rifampicin[J].International Journal of Clinical Pharmacology Research, 1998,18(3): 137-143.
    [32] Barluenga, J.Aznar, F.Garcia, B.Cabal, P.Palacios, J.Menendez, M. New rifabutin analogs were recently reported to have better in vitro anti-tuberculosis activity than rifabutin and rifampin[J]. Bioorg. Med Chem.Lett. ,2006,16: 5717.
    [33] In Ho Kim,Keith D. Combrink,Zhenkun Ma, et al. Synthesis and antibacterial evaluation of a novel series of rifabutin-like spirorifamycins[J]. Bioorg. Med.Chem. Lett., 2007,17: 1181-1184.
    [34] Diekema DJ, Jones RN. Oxazolidinones, A Review[J]. Drugs, 2000, 59(1):7-16.
    [35] CynamonM H, Klemens S P, Sharpe C A. , et al. Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model [J].Antimicrob Agents Chemother, 1999,43: 1189
    [36] Reddy VM et al. Antituberculosis activities of clofazimine and its new analogs B4154 and B4157[J]. Antimicrobial Agents and Chemotherapy, 1996, 40(3):633-636.
    [37] Caspor M M , N eves S, Pottaels F, et al. Therapeutic efficacy of liposomal rifabutin in a Mycobacyerium aviium model of infection [J]. Antimicrob Agents Chemother, 2000,44: 2424.
    [38] Ma Y, Stem R J, Seherman M S et al. Drug targeting Mycobacterium tuberculosis cell wall synthesis genetics of dTDP-glucose to dTDP-thamnose[J]. Antimicmb agents Chemother, 2001,45: 1407.
    [39] O'Brien RJ. Tuberculosis. Scientific Blueprint for Tuberculosis Drug Development. Tuberculosis (Edinb), 2001, 81 (Sl):l-52.
    [40] Barry Ⅲ CE and Duncan K. Tuberculosis - strategies towards anti-infectives for a chronic disease. Drug Discovery Today: Therapeutic Strategies, 2004, 1(4):491-496.
    [41] Warner DF, and Mizrahi V. Mycobacterial genetics in target validation. Drug Discovery Today: Technologies, 2004,1(2): 93-98.
    [42] Gingeras TR, Ghandour G, Wang E, et al.Simutameous genotyping and species identification using hybridization pattern recognirionanalysis of generic mycobacterium DNA arrays[J]. Genome Res, 1998, 8: 435-448.
    [43] Marton MJ, Bennett HA, et al. Drug target validation and identification of secondary drug target effects using DNA microarray[J]. Nat Med, 1998, 4:1293-1301.
    [44] Ma Y, Pan F, Mcneil M. Formation of dTDP-rhamnose is essential for growth of mycobacteria [J]. J Bacteriol, 2002, 184: 3392.
    [45] Ma Y, Stern R J, Scherman M S, et al. Drug targeting Mycobacterium tuberculosis cell wall synthesis: genetics of dTDP-rhamnose synthetic enzymes and development of a microtiter plate-based screen for inhibitors of conversion of dTDP-glu-cose to dTDP-rhamnose [J]. Antim icrob Agents Chem other, 2001,45:1407.
    [46] Kantardjieff KA, Kim CY, Naranjo C, et al. Mycobacterium tuberculosis RmlC epimerase (Rv3465): a promising drug-target structure in the rhamnose pathway[J]. Acta CrystallogrD Biol Crystallogr, 2004, 6: 895.
    [47] Movahedzadeh F, Smith DA, Norman RA, et al. The M ycobacterium tuberculosis ino\ gene is essential for growth and virulence [J]. Mol Microbiol, 2004,51: 1003.
    [48] Koshkin A, Nunn CM, Djordjevic S, et al. The mechanism of Mycobacterium tuberculosis alkylhydroperoxidase AhpD as defined by mutagenesis, crystallography, and kinetics [J]. J Biol Chem, 2003, 278: 29502.
    [49] Nunn CM, Djordjevic S, Hillas PJ, et al. The crystal structure of Mycobacterium tuberculosis alkylhydroperoxidase AhpD, a potential target for antitubercular drug design [J]. JBiol Chem, 2002,277: 20033.
    [50] PaytonM, Auty R, Delgoda R, et al. Cloning and characterization of arylamine N-acetyltransferase genes from Mycobacterium smegmatis and Mycobacterium tuberculosis: increased expression results in isoniazid resistance [J]. J Bacteriol,1999,181:1343.
    [51] Gup ta A, Kumar PH, Dineshkumar TK, et al. Crystal structure of Rv2118c: an AdoMet - dependentmethyltransferase from Mycobacterium tuberculosis H37Rv [J]. J Mol Biol, 2001, 312: 381.
    [52] Truglio JJ, Theis K, FengY, et al. Crystal structure of Mycobacterium tuber- culosis MenB, a key enzyme in vitaminK2 biosynthesis [J]. J Biol Chem, 2003,278: 42352.
    [53] McLean KJ, Marshall KR, Richmond A, et al. Azole antifungals are potent inhibitors of cytochrome P450 mono - oxygenases and bacterial growth in mycobacteria and streptomycetes [J]. Microbiology, 2002, 148: 2937.
    [54] PhetsuksiriB, JacksonM, Scherman H, et al. Unique mechanism of action of the thiourea drug isoxyl on Mycobacterium tuberculosis [J]. J Biol Chem, 2003, 278:53123.
    [55] Wang S, Eisenberg D. Crystal structures of a pantothenate synthetase from M.tuberculosis and its complexes with substrates and a reaction intermediate [J].Protein Sci, 2003,12: 1097.
    [1] Roberts F, Roberts CW, Johnson JJ, et al. Evidence for the shikimate pathway in apicomplexan parasites[J]. Nature, 1998, 393:801-805.
    [2] Ragai K Ibrahim. Phenylpropanoid Metabolism. Encyclopedia of life sciences, Plenum Press, 2001.
    [3] Bentley R. The shikimate pathway-A metabolic tree with many branches. Crit Rev Biochem Mol Biol, 1990, 25: 307-384.
    [4] Herrmann KM, Weaver LM, The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 473-503.
    [5] Izhar M, DeSilva L, Joysey HS, et al. Moderate immunodeficiency does not increase susceptibility to Salmonella typhimurium aroA live vaccines in mice. Infect[J]. Immun, 1990, 58: 2258-2261.
    [6] R. Bentley. The shikimate pathway-a metabolic tree with many branches. Crit. Rev. Biochem. Mol. Biol. 25 (1990) 307-384.
    [7] Wagner T, Shumilin IA, Bauerle R, et al. Structure of 3-deoxy-d-arabino-heptul-osonate -7-phosphate synthase from Escherichia coli: comparison of the Mn(2+)~*2- phosphoglycolate and the Pb(2+)~*2-phosphoenol- pyruvate complexes and implications for catalysis[J]. JMol Biol, 2000, 301: 389-399.
    [8] Carpenter EP, Hawkins AR, Frost JW, et al. Structure of dehydroquinate synthase reveals an active site capable of multistep catalysis[J]. Nature, 1998, 394: 299-302.
    [9] Gourley DG, Shrive AK, Polikarpov I, et al. The two types of 3-dehydroquinase have distinct structures but catalyze the same overall reaction[J]. Nat Struct Biol, 1999, 6: 521-525.
    [10] Romanowski MJ, Burley SK. Crystal structure of the Escherichia coli shikimate kinase I (AroK) that confers sensitivity to mecillinam[J]. Proteins, 2002, 47: 558-562.
    [11] Krell T, Coggins JR, Lapthorn AJ. The three-dimensional structure of shikimate kinase[J]. JMol Biol, 1998, 278: 983-997.
    [12] Sch(o|¨)nbrunn E, Eschenburg S, Shuttleworth WA, et al. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc Natl Acad Sci USA, 2001, 98: 1376-1380.
    [13] Dias MV, Ely F, Palma MS, et al. Chorismate synthase: an attractive target for drug development against orphan diseases[J]. Curr Drug Targets, 2007, 8: 437-444.
    [14] Magalhaes ML, Pereira CP, Basso LA, et al. Cloning and expression of functional shikimate dehydrogenase (EC 1.1.1.25) from Mycobacterium tuberculosis H_(37)Rv. Protein Expr[J]. Purif, 2002,26: 59-64.
    [15] Lim S, Schroder I, Monbouquette HG. A thermostable shikimate 5-dehydro-genase from the archaeon Archaeoglobus fulgidus[J]. FEMS Microbiology Letters, 2004, 238: 101-106.
    [16] Cong Han, Lirui Wang, Kunqian Yu, et al. Biochemical characterization and inhibitor discovery of shikimate dehydrogenase from Helicobacter pylori[J]. FEBS Journal, 2006,273: 4682-4692.
    [17] Fonseca IO, Silva RG, Fernandes CL, et al. Kinetic and chemical mechanisms of shikimate dehydrogenase from Mycobacterium tuberculosis[J]. Arch Biochem Biophys,2007,457:123-133.
    [18] Maclean J, Campbell SA, Pollock K, et al. Crystallization and preliminary X-ray analysis of shikimate dehydrogenase from Escherichia coli[J]. Acta Crystallogr.Sect.D, 2000, 56: 512-515.
    [19] Ye S, Von Delft F, Brooun A, et al. The Crystal Structure of Shikimate Dehydrogenase (AroE) Reveals a Unique NADPH Binding Mode[J]. J Bacteriol,2003,185:4144-4151.
    [20] Benach J, Lee I, Edstrom W, et al. The 2.3-A crystal structure of the shikimate 5-dehydrogenase orthologue YdiB from Escherichia coli suggests a novel catalytic environment for an NAD-dependent dehydrogenase[J]. J Biol Chem,2003,278: 19176-19182.
    [21] Coggins JR, Boocock MR, Chaudhuri S, et al. The arom multifunctional enzyme from Neurospora crassa[J]. Methods Enzymol, 1987,142: 325-341.
    [22] Coggins JR, Boocock MR, Campbell MS, et al. Functional domains involved in aromatic amino acid biosynthesis[J]. Biochem Soc Trans, 1985,13: 299-303.
    [23] Cole, S. T., Brosch, R., Parkhill, J., Gamier, T., Churcher, C.,Harris, D., Gordon,S. V., Eiglmeier, K., Gas, S., Barry Ⅲ, C.E., Tekaia, F., Badcock, K., Basham, D.,Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell,T.,Gentles, S., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Krogh, A., McLean,J., Moule, S., Murphy, L., Oliver, S., Osborne, J., Quail, M. A., Rajandream, M.A., Rogers, J., Rutter, S., Seeger, K., Skelton, S., Squares, S., Sqares, R.,Sulston,J. E., Taylor, K., Whitehead, S. and Barrell, B. G.(1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence[J]. Nature 393,537-544.
    [24] Koppe Herbert, Kummer Werner, Stahle Helmut. Neue Bis-Alkanol-aminder-ivate, deren Saureaditionssalze, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel[P]. Deutschland: DE2260444, 1974-06-12:
    [25] Wendell Wierenga, Allen W. Harrison, Bruce R. Evans, et al. Antibacterial Benzisoxazolones. An Unusual Rearrangement Product from o -Nitrostyrene Oxide en Route to the Photolabile Carbonyl Protecting Group (o-Nitrophenyl)ethylene Glycol[J]. J. Org. Chem., 1984, 49: 438-442.
    [26] John L. Neumeyer, Nandkishore Baindur, Jun Yuan, et al. Development of a High Affinity and Stereoselective Photoaffinity Label for the D-1 Dopamine Receptor: Synthesis and Resolution of 7-[L251]Iodo-h8-y droxy-3-meth y 1- 1-(4'-azidoph enyl)-2,3,4,5-tetr ahydro-1 H-3-benz - azepine[J]. J. Med. Chem. 1990, 33: 521-526.
    [27] Andrew Streitwieser, Jr., Erich R. Vorpagel, Chia-Chung Chen. Carbon Acidity. 66. Equilibrium Ion Pair Acidities of Substituted Diphenylmethanes in Cyclohexylamine[J]. J. Am. Chem. SOC. 1985, 107: 6970-6975.
    [28] Marco Harig, Beate Neumann, Hans-Georg Stammler, Dietmar Kuck.2,3,6,7,10,11-Hexamethoxytribenzotriquinacene: Synthesis, Solid-State Structure, and Functionalization of a Rigid Analogue of Cyclotriveratrylene[J]. Eur. J. Org. Chem. 2004, 11: 2381-2397.
    [29] John R. Siegman, John J. Houser. Photodehalogenation of the Monochloro- and Monofluoroanisoles[J]. J. Org. Chem. 1982, 47: 2773-2779.
    [30] Choji Kashima, Atsushi Tomotake, Yoshimori Omote. Photolysis of the Ozonide Derived from 1,4-Benzodioxins. Synthesis of Labile o -Benzoquinones[J]. J. Org. Chem. 1987, 52: 5616-5621.
    [31] Robert Zelinskiz, James Louvar. Acetylenic Reactions of 2-(Phenylethynyl) tetrahydropyran[J]. J. Org. Chem. 1958, 23: 908-910.
    [32] Patrick Betschmann, Stefan Sahli, Fran(?)ois Diederich, et al. Structure-Based Design of Nonpeptidic Thrombin Inhibitors: Exploring the D-Pocket and the Oxyanion Hole[J]. Helvetica Chimica Acta, 2002, 85:1210-1245.
    [33] Robert Hodgson, Tahir Majid, Adam Nelson. Desymmetrisation of meso difuryl alcohols, diols and their derivatives: complementary directed and undirected asymmetric dihydroxylation reactions[J]. J. Chem. Soc., Perkin Trans. 1, 2002, 14:1631-1643.
    [34] 白国义,陈立功,邢鹏,李阳,闫喜龙.乙胺丁醇的合成[J].精细化工,2004,21(12):943-945.
    [1] 贺芝红.利福霉素类药物国内外研究情况综述[J].中国药业,1999,8(9):57.
    [2] Arioli V, Berti M, Camili G, et al. Antibacterial activity of DL473, a new semisynthetic rifamycin derivative[J]. J. Antibactics, 1981, 34: 1026.
    [3] 何国钧,肖和平.抗结核药物的研究进展.结核病与肺部肿瘤,2000,3:141-147
    [4] Heifets LB, Lindholm-levy PF, Iseman MD.Rifambutin: minimal inhibitory and bactericidal concentrations for mycobaterrium tuberculosis[J]. Am Rev Respir Dis, 1988, 137: 719-721.
    [5] American thoracic society.Treatment of tuberculosis and tuberculosis infection in adults and children[J]. Am JRespir Crit Care Med, 1994, 149: 1359.
    [6] Dickinson JM, Mitchison DA. In vitro activity of new rifamycins against rifampicin-resistant M. Tuberculosis and mais-complex Mycobacteria[J]. Tubercle, 1987, 68: 183-193.
    [7] Bruzzese T et al. Pharmacokinetics and tissue distribution of rifametane, a new 3-azinomethylrifamycin derivative, in several animal species[J]. Arzneimittel-Forschung, 2000, 50(1): 60-71.
    [8] Strippoli V et al. The antibacterial activity of a new 3-azinomethylrifamycin[J]. Il Farmaco, Edizione Scientifica, 1988, 43(7-8): 619-625.
    [9] Potkar C et al. Phase I pharmacokinetic study of a new 3-azinomethyl-rifamycin(rifametane) as compared to rifampicin [J]. Chemotherapy, 1999, 45 (3): 147-153.
    [10] Kelkar MS et al. Pharmacokinetic profile of a new 3-azinomethyl rifamycin (SPA-S-565) in volunteers as compared with conventional rifampicin[J]. International Journal of Clinical Pharmacology Research, 1998, 18(3): 137-143.
    [11] Kelkar MS et al. Pharmacokinetic profile of a new 3-azinomethyl rifamycin (SPA-S-565) in volunteers as compared with conventional rifampicin[J]. International Journal of Clinical Pharmacology Research, 1998, 18(3): 137-143.
    [12] Yamane T et al. Synthesis and biological activity of 3-hydroxy-5-amino- benzo-xazino-rifamycin derivatives[J]. Chemical and Pharmaceutical Bulletin, Tokyo, 1993, 41(1): 148-155.
    [13] Hidaka T. Current status and perspectives on the development of rifamycin derivative antibiotics[J]. Kekkaku, 1999, 74 (1): 53-61.
    [14] Saito H, Tom ioka H, Sato M, et al. In vitro antimycobacterial activity of newly synthesuzed benzoxazino rifamycins [J]. Antimicrob Agents Chemother, 1991, 35: 542.
    [15] 井上教生.实验的结核症に对するbenzoxazino rifamycin KRM 21648のin vivo治疗效果[J].结核,1998,73:53.
    [16] Barluenga, J. Aznar, F. Garcia, B. Cabal, P.Palacios, J.Menendez, M. New rifabutin analogs were recently reported to have better in vitro anti-tuberculosis activity than rifabutin and rifampin[J]. Bioorg. Med. Chem.Lett., 2006, 16:5717.
    [17] In Ho Kim, Keith D. Combrink,Zhenkun Ma, et al. Synthesis and antibacterial evaluation of a novel series of rifabutin-like spirorifamycins[J]. Bioorg. Med. Chem. Lett., 2007, 17: 1181-1184.
    [18] Irina Artsimovitch, Marina N. Vassylyeva, Dmitri Svetlov,et al. Allosteric Modulation of the RNA Polymerase Catalytic Reaction Is an Essential Component of Transcription Control by Rifamycins[J]. Cell, 2005, 122:351-363.
    [19] 甄宇红,黄珊珊.血管活性肽P6A类似物的合成[J].大连医科大学学报,2003,25(4):250-252.
    [20] Dina Manetti, Lorenzo Di Cesare Mannelli, Silvia Dei, et al. Design, Synthesis, and Preliminary Pharmacological Evaluation of a Set of Small Molecules That Directly Activate Gi Proteins[J]. J. Med. Chem. 2005, 48(20): 6491-6503.
    [21] Anamarija Zega, Gregor Mlinsek, Tomaz Solmajer, et al. Thrombin inhibitors built on an azaphenylalanine scaffold [J]. Bioorg. Med. Chem. Lett. 2004, 14: 1563-1567.
    [22] Colin D. Eldred, Brian Evans, Sean Hindley, et al. Orally Active Non-Peptide Fibrinogen Receptor (GpⅡb/Ⅲa) Antagonists: Identification of 4-[4-[4-(Aminoi-minomethyl) phenyll-1- piperazinyl]- 1- piperidineacetic Acid as a Long-Acting, Broad-spectrum Antithrombotic Agent[J]. J. Med. Chem. 1994, 37: 3882-3885.
    [1] (a) Kocienski P L. Protecting Groups. Thieme Foundations of Organic Series. Enders D, Noyori R., Trost B M, ed. Georg Thieme Verlag Stuttgart: New York, 1994; (b) Hanson J R. Protecting Groups in Organic Synthesis. Sheffield Academic Press: New York, 1999.
    [2] (a) McClure, K. F.; Axt, M. Z. Bioorg. Med. Chem. Lett. 1998, 8, 143-146; (b) Sajiki, H.; Kuno, H.; Hirota, K. Tetrahedron Lett. 1998, 39, 7127-7130; (c) Evans, D. A.; Ripin, D. H. B.; Halstead, D. P.; Campos, K. R. J. Am. Chem. Soc. 1999, 121, 6816-6826.
    [3] (a) Sajiki, H.; Hattori, K.; Hirota, K. J. Org. Chem. 1998, 63, 7990-7992; (b) Hashimoto, S.-I.; Miyazaki, Y.; Shinoda, T.; Ikegami, S. Tetrahedron Lett. 1989, 30, 7195-7198.
    [4] (a) Tsuji, T.; Kataoka, T.; Yoshioka, M.; Sendo, Y.; Nishitani, Y.; Hirai, S.; Maeda, T.; Nagata, W. Tetrahedron Lett. 1979, 20, 2793-2796; (b) Schmidt, U.; Kroner, M.; Grisser, H. Synthesis 1991, 294-300.
    [5] Torii, S.; Tanaka, H.; Taniguchi, M.; Kameyama, Y. J. Org. Chem. 1991, 56, 3633-3637.
    [6] Bodanszky M., Bodanszky A. The Practice of Peptide Synthesis, 2~(nd) ed., Springer Verlag, Heidelberg, 1994.
    [7] Huffman, W. F.; Hall, R. F.; Grant, J. A.; Holden, K. G. J. Meal Chem. 1978, 21, 413-415.
    [8] Pugni(?)re, M.; Castro, B.; Domergue, N.; Previero, A. Tetrahedron: Asymmetry 1992, 3, 1015-1018.
    [9] (a) Ravindranath, N.; Ramesh, C.; Reddy, M.; Das, B. Adv. Synth. Catal. 2003, 345, 1207.(b) Schmidt, U.; Lieberknecht, A.; Boekens, H.; Griesser, H. J. Org.Chem.,1983,48,2680.(c) Gibson, F.S.; Bergmeier, S. C.; Rapoport, H. J. Org.Chem. 1994, 59, 3216.(d) Myers, A. G; Tom, N. J.; Fraley, M. E.; Cohen, S. B.; Madar, D. J. J. Am. Chem. Soc. 1997, 119, 6072.(e) Williams, R. M.; Cao, J.;Tsujishima, H. Angew. Chem. Int. Ed. 2000, 39, 2540.(f) Hwu, J. R.; Jain, M. L.; Shwu-Chen, T.; Hakimelahi, G.H. Tetrahedron Lett. 1996, 37, 2035.
    [10] (a) Das, B.; Mahender, G.; Kumar, V.; Chowdhury, N. Tetrahedron Lett. 2004, 45, 6709.(b) MacCoss, M.;Cameron, D. J. Carbohydr. Res. 1978, 60, 206.(c) Kohli, V.; Blocker, H.; Koster, H. Tetrahedron Lett. 1980,21, 2683;(d) Wahlstorm, J. L.; Konald, R. C. J. Org.Chem. 1998, 63, 6021.(e) Jones, G. B.; Hynd, G.;Wright, J. M.; Sharma, A. J. Org. Chem. 2000, 65, 263.(f) Yadav, J. S.; Reddy, B. V. S. Synlett 2000, 1275.
    [11] Ramesh, C.; Ravindranath, N.; Das, B. J. Org. Chem. 2003, 68, 7101.
    [12] Ramesh, C.; Mahender, G.; Ravindranath, N.; Das, B. Tetrahedron Lett. 2003, 44, 1465.
    [13] Das, B.; Reddy, K. R.; Thirupathi, P. Tetrahedron Lett. 2006,47, 5855.
    [14] Das, B.; Ramu, R.; Reddy, M. R.; Mahender, G. Synthesis 2005, 2, 250.
    [15] Niu, Y. H.;Wang, N.; Cao, X. P.; Ye, X. S. Synlett 2007, 13, 2116.
    [16] Ramu, R.; Nath, N.; Reddy, M.; Das, B. Synth. Commun. 2004, 34, 3135.
    [17] (a)Breton, G. W. J. Org. Chem. 1997, 62, 8952.(b) Zhu, P. C.; Lin, J.; Pittman, C. U.J. Org. Chem. 1995, 60, 5729-5731. (c) Bianco, A.; Brufani, M.; Melchioni, C.; Romagnoli, P. Tetrahedron Lett. 1997, 38, 651-652. (d) Rana, S. S.; Barlow, J.J.; Matta, K. L. Tetrahedron Lett. 1981, 22, 5007. (e) Yamada, S.; Sugaki, T.; Matsuzaki, K. J. Org. Chem. 1996, 61, 5932. (f) Nagao, Y.; Fujita, E.; Kohno, T.; Yagi, M. Chem. Pharm. Bull. 1981, 29, 3202.
    [18] Zolfigol, M. A.; Madrakian, E.; Ghaemi, E. Molecules 2001, 6, 614.
    [19] Zolfigol, M. A.; Madrakian, E.; Ghaemi, E.; Kiani, M. Synth. Comm. 2000, 11, 2057.
    [20] Damavandi, J. A.; Zolfigol, M. A.; Karimi, B. Synth. Commun. 2001, 31, 3183.
    [21] (a) Das, B.; Venkateswarlu, K.; Mahender, G.; Mahender, L. Tetrahedron Lett. 2005, 46, 3041.(b) Schmid, H.; Karrer, P. Helv. Chim. Acta 1946, 29, 573.
    [22] (a) Baylis, A. B.; Hillman, M. E. D. German Patent 1972, 2155113; Chem. Abstr. 1972, 77, 34174q.(b) Das, B.; Banerjee, J.; Ravindranath, N. Tetrahedron 2004,60, 8357.(c) Hoffmann, H. M. R.; Rabe, J. Angew. Chem., Int. Ed. Engl. 1985, 24,94. (d) McFadden, H. G.; Harris, R. L. N.; Jenkins, C. I. D. Aust. J. Chem. 1989, 42, 301. (e) Goldberg, O.; Dreiding, A. S. Helv. Chim. Acta 1976, 59, 1904. (f)Das, B.; Banerjee, J.; Ravindranath, N.; Venkataiah, B. Tetrahedron Lett. 2004, 45, 2425.
    [23] Ramesh, C.; Banerjee, J.; Pal, R.; Das, B. Adv. Synth. Catal. 2003, 345, 557.
    [24] (a) Das, B.; Banerjee, J. Chem. Lett. 2004, 33, 960. (b) Gerspacher, M.; Rapaport, H. J. Org. Chem. 1991, 56, 3700. (c) Lablanc, Y.; Fitzsimmons, B. J.; Adams, J.; Perez, E.; Rokach, J. J. Org. Chem. 1986, 51, 789. (d) Kim, K. S.; Song, Y. H.; Lee, B. H.; Hahn, C, S. J. Org. Chem. 1986, 51,404. (e) Xiao,X.; Bai, D. Synlett 2001, 535.
    [25] Das, B.; Majhi, A.; Banerjee, J. Tetrahedron Lett. 2006, 47, 7619.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700