诱导型一氧化氮合酶对肾血管性高血压及HO-1表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究诱导型一氧化氮合酶/一氧化氮系统对肾血管性高血压大鼠主动脉血红素加氧酶-1表达的调节作用,以探讨诱导型一氧化氮合酶/一氧化氮与血红素加氧酶-1在肾血管性高血压时二者之间的关系及对肾血管性高血压的影响。
     方法:将32只SD大鼠随机分为4组,假手术+生理盐水组(Sham+NaCl组)、假手术+氨基胍组(Sham+AG组)、肾动脉狭窄+生理盐水组(RH+NaCl组)以及肾动脉狭窄+氨基胍组(RH+AG组),每组8只,以两肾一夹(肾动脉不全结扎)的方式复制肾血管性高血压模型,然后以诱导型一氧化氮合酶特异性抑制剂氨基胍为工具试剂给实验组动物(包括假手术组和肾动脉狭窄组)腹腔注射150mg/kg,每日二次。观察血压的变化,并以酶法测定尿液中一氧化氮终产物NO_2~-/NO_3~-(UNOx)的生成、以逆转录聚合酶链反应(RT-PCR)法测定主动脉血红素加氧酶-1的mRNA表达以及用Western blot法测定主动脉血红素加氧酶-1的蛋白表达水平。
     结果:SD大鼠两肾一夹术后,RH+NaCl组动脉血压持续上升,术后第4周时达132.7±6.1mmHg,与术前相比,呈显著升高(P<0.01),同时各时间点相应的血压均显著高于Sham+NaCl组;术后第四周RH+AG组的血压为142.8±1.9mmHg远大于RH+NaCl组(p<0.01);在Sham+NaCl组和Sham+AG组术后四周血压分别为107.9±1.9mmHg和105.0±1.9mmHg,较术前相比无显著差异,同时二组各时间点相应的血压之间无显著差别。RH+NaCl组尿中UNOx水平肾动脉狭窄术后,显著升高,术后1周由术前的9.76±2.91μmol/24h增加到21.98±3.30μmol/24h。氨基胍能够明显抑制一氧化氮的生成,RH+AG组术后四周UNOx为16.17±5.85μmol/24h,明显低于RH+NaCl组28.54±8.21μmol/24h的水平(P<0.01),而对假手术组大鼠的UNOx没有影响。RT-PCR显示术后4周肾动脉狭窄组主动脉血红素加氧酶-1的mRNA表达明显较假手术组高,而RH+AG组血红素加氧酶-1mRNA的表达明显低于RH+NaCl组的水平,但高于假手术组的水平。Western蛋白印迹显示,RH+NaCl组的血红素加氧酶-1蛋白表达明显高于Sham+NaCl组的水平,而氨基胍能够明显抑制肾动脉狭窄引起的血红素加氧酶-1的蛋白表达。对假手术组没有观察到血红素加氧酶-1蛋白的变化。
    
     结论:1.肾血管性高血压时iNOS/NO系统激活,NO生成量增加,对血压具
    有重要的调节作用。2.诱导型一氧化氮合酶抑制剂氨基弧能够明显放大肾血管
    性高血压的升压效应。3.肾血管性高血压时,血红素加氧酶1的基因及蛋白水平
    表达增加,可能是血压调节的重要组成部分。4.肾血管性高血压时iNOS/NO系
    统可能对血红素加氧酶*的表达产生重要的调节作用,iNOS/NO系统产牛的NO
    可能是刺激肾血管性高血压时血红素加氧酶l基因及蛋白水平表达增加的重要
    因素。
Objective: The goal of this study is to clarify the relationship between inducible nitric oxide synthase/nitric oxide (iNOS/NO) pathway and heme oxygenase-1 expression in renovascular hypertension.
    Methods: Thirty-two Spraugue Dawley (SD) rats were randomly divided into four groups: Sham+NaCl group (n=8), Sham+ aminoguanidin (Sham+AG) group (n=8), renovascular hypertension+NaCl (RH+ NaCl) group (n=8) and renovascular hypertension+aminoguanidin (RH+AG) group (n=8). The renovascular hypertension was induced by renal artiery stenosis. Aminoguanidin (AG), the specific inhibitor of inducible nitric oxide synthase, was used in control groups (including Sham and RH group). AG was administrated intraperitoneally at a dose of 150mg/kg two times a day. The arterial pressure was monitored and the NO2- /NO3- (UNOx ) , heme oxygenase-1 mRNA and protein were assayed by Greiss reaction, reverse transcription polymerase chain reaction (RT-PCR) and Western blot, respectively.
    Results: The arterial pressure of rats in RH+ NaCl group increased significantly. Four weeks after operation, it increased to 132.±3.1mmHg from 104.1 ±3.7mmHg before operation. The hypertensive effect of renal artery stenosis was greatly amplified by co-administration of AG In the group of RH+AG, the arterial pressure was 142.8+ 1.9mmHg 4 weeks after operation, which was significantly higher than that in RH+ NaCl group, but Sham+AG and Sham+NaCl groups had no hemodynamic response to AG. In RH+ NaCl group, UNOx, an index of the NO production of the whole body, increased significantly, for example, 1 week after operation (P<0.01), it increased to 21.98?.30|imol/24h from 9.76?.91 |imol/24h before operation. The aminoguanidin obviously inhibited the production of NO. In the
    group of RH+AG, the UNOx was 16.17±5.85 μmol/24h in 4 weeks after operation, which was significantly lower than 28.54±8.21 μmol/24h, the UNOx produced by control group (RH+ NaCl group). However, the AG had not effect on the Sham group.
     In RH+NaCl and RH+AG groups, the expression of heme oxygenase-1 mRNA in aorta was upregulated significantly, compared with Sham groups'. RT-PCR showed HO-1 mRNA expression in RH+AG group was lower than that in RH+NaCl group,
    
    
    
    but higher than that in Sham groups. Western blot demonstrated HO-1 protein increased obviously in RH+NaCl group compared with RH+AG group. AG markedly suppressed HO-1 protein expression that caused by renal artery stenosis, but AG did not change the HO-1 protein expression in Sham group.
    Conclusions: 1. iNOS/NO pathway is activated by renovascular hypertension. 2.The hypertensive effect of renal artery stenosis is greatly amplified by co-administration of AG 3. Renovascular hypertension upregulate the expression of HO-1 mRNA and protein. It may play an important role in regulation of arterial pressure. 4.HO-1 is activated and regulated in renovascular hypertension by iNOS/NO pathway.
引文
[1] 李世绰.中国心血管流行特征分析(2).中国循环杂志,1993,8(10):527.
    [2] 孙宁玲,徐成斌主编.《今日高血压》.北京:中国医药科技出版社,2000年5月第1版:47.
    [3] Bohr DE What makes the pressure go up? Ahypothesis. Hypertension, 1981, 3(6Pt2):Ⅱ-160-165.
    [4] Furchgott RF, Carvalho MH, Khan MT, Matsunaga K. Evidence for endothelium-dependent vasodilation of resistance vessels by acetylcholine. Blood Vessels, 1987, 24(3): 145-149.
    [5] Furchgott RF, Zawadzdi JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 1980, 288(5789): 373-376.
    [6] Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature, 1987, 327(6122): 524-526.
    [7] Moncada S, Rees DD, Schults R, Palmer RMJ. Developement and mechanism of a specific supresensitivity to nitrovasodilators after inhibition of vascular nitric oxide synthasis in vivo. Pro Natl Acad Sci USA, 1991, 88(6): 2166-2170.
    [8] Rees D, Ben-Ishay D, Moncada S. Nitric oxide and the regulation of blood pressure in the hypertensive-prone and hypertension resistent Sabra rat. Hypertension, 1996, 28(3): 367-371.
    [9] Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev, 1991,43(2): 109-142.
    [10] Ignarro LJ. Nitric oxide: A novel signal transduction mechanism for transcellular communication. Hypertension, 1990, 16(5): 477.
    [11] Yeh JL, Whitney EG, Lamb S, Brophy CM. Nitric oxide is an autocrine feedback inhibitor of vascular smooth muscle contraction. Surgery, 1996, 119(1): 104-109.
    [12] Charpie JR, Webb RC. Vascular myocyte-derived nitric oxide is an autocrine that limits vasoconstriction. Biochem Biophys Res Commun, 1993, 194(2): 763-768.
    [13] Ayajiki K, Kindermann M, Hecker M, Heming I, Busse R. Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells. Circ Res, 1996, 78(5): 750-758.
    [14] Durante W, Schini VB, Scott-Burden T, Junqucro DC, Kroll MH, Vanhoutte PM, Schafer AI.
    
    Platelet inhibition by an L-arginine-derived substance released by IL-1 beta-treated vascular smooth muscle cells. Am J Physiol, 1991, 261(6 Pt 2): 2024-2030.
    [15] Henderson AH, Lewis MJ, Shah AM, Smith JA. Endothelium,endocardium, and cardiac contraction. Cardiovasc Res, 1992, 26(4): 305-308.
    [16] Laurant P, Demolombe B, Berthelot. Dietary L-arginine attenuates blood pressure in mineralocorticoid-salt hypertensive rats. Clin Exp Hypertens, 1995, 17(7): 1009-1024.
    [17] Dell'Omo G, Catapano G, Ebel M, Gazzano A, Ducci M, Del Chicca M, Clerico A, Pedrinelli R. Pressor, renal and endocrine effects of systemic infusion of L-arginine in hypertensive patients. Ann Ital Med Int, 1995, 10(2): 107-112.
    [18] Malinski T, Kapturczak M, Dayharsh J, Bohr D. Nitric oxide synthase activity in genetic hypertension. Biochem Biophys Res Commun, 1993, 194(2): 654-658.
    [19] Mattson DL, Higgins DJ. Influence of dietary sodium intake on renal medullary nitric oxide synthase. Hypertension 1996, 27(3 Pt 2): 688-692.
    [20] Papapetropoulos A, Marczin N, Snead MD, Cheng C, Milici A, Catravas JD. Smooth muscle cell responsiveness to nitrovasodilators in hypertensive and normotensive rats. Hypertension, 1994, 23(4): 476-484.
    [21] Pascual DW, Pascual VH, Bost KL, McGhee JR, Oparil S. Nitric oxide mediates immune dysfunction in the spontaneously hypertensive rat. Hypertension, 1993, 21 (2): 185-194.
    [22] Kelm M, Feelisch M, Krebber T, Deussen A, Motz W, Strauer BE. Role of nitric oxide in the regulation of coronary vascular tone in hearts from hypertensive rats. Maintenance of nitric oxide-forming capacity and increased basal production of nitric oxide. Hypertension, 1995, 25(2): 186-193.
    [23] Dubey RK, Boegehold MA, Gillespie DG, Rosselli M. Increased nitric oxide activity in early renovascular hypertension. Am J Physiol, 1996, 270(1 Pt 2): R118-124.
    [24] Arnal JF, Battle T, Michel JB. The vasodilatory effect of endogenous nitric oxide is a major counter-regulatory mechanism in the spontaneously hypertensive rat. J Hypertens, 1993, 11 (9): 945-950.
    [25] Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature, 1988, 333(6174): 664-666.
    [26] Xu W, Gorman P, Sheer D, Bates G, Kishimoto J, Lizhi L, Emson P. Regional localization of
    
    the gene coding for human brain nitric oxide synthase (NOS1) to 12q24.2→24.31 by fluorescent in situ hybridization. Cytogenet Cell Genet, 1993, 64(1): 62-63.
    [27] Mattson DL, Bellehumeur TG. Neural nitric oxide synthase in the renal medulla and blood pressure regulation. Hypertension, 1996, 28(2): 297-303.
    [28] Mattson DL, Lu S, Nakanishi K, Papanek PE, Cowley AW Jr. Effect of chronic renal medullary nitric oxide inhibition on blood pressure. Am J Physiol, 1994, 266(5 Pt 2): H1918-1926.
    [29] Raij L, Baylis C. Glomerular actions of nitric oxide. Kidney Int, 1995, 48(1): 20-32.
    [30] Garcia NH, Pomposiello SI, Garvin JL. Nitric oxide inhibits ADH-stimulated osmotic water permeability in conical collecting ducts. Am J Physiol, 1996, 270(1 Pt 2): F206-210.
    [31] Tolins JP, Shultz PJ. Endogenous nitric oxide synthesis determines sensitivity to the pressor effect of salt. Kidney Int, 1994, 46(1): 230-236.
    [32] 谭敦勇,Caramelo C,.Hellington B. 高盐对SD大鼠肾组织一氧化氮合酶(NOS)表达的影响.中国病理生理杂志,1999,15(8):745.
    [33] Tan DY; Caramelo C. Role of renal medullary inducible nitric oxide synthase in the regulation of arterial pressure. Sheng Li Xue Bao, 2000, 52(2): 103-108.
    [34] 谭敦勇,Caramelo C.诱导型一氧化氮合酶(iNOS)与动脉血压的调节.中国病理生理杂志,1999,15(8):749.
    [35] 谭敦勇,陈小琳,董军,Caramelo C.诱导型一氧化氮合酶与Dahl-盐第三大鼠动脉血压的调节.中国病理生理杂志,2000,16(3):207-210.
    [36] Tan DY, Cheng SB, Chen XL, Zhang SM, Yang HZ, Peng X, Tang CS, Zhang C, Meng XZ Involvement of pressure-related mechanism in activation of inducible nitric oxide synthase. Sheng Li Xue Bao, 2001, 53(2): 117-122.
    [37] Xu W, Charles IG, Liu L, Moncada S, Emson P. Molecular cloning and structural organization of the human inducible nitric oxide synthase gene (NOS2). Biochem Biophys Res Commun, 1996, 219(3): 784-788.
    [38] Maines MD. The heme oxygenase system and its functions in the brain. Cell Mol Biol (Noisy-le-grand), 2000, 46(3): 573-585.
    [39] Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol, 1997, 37:517-554.
    
    
    [40] Wang R, Wu L. The chemical modification of K_(Ca) channels by carbon monoxide in vascular smooth muscle cells. J Biol Chem, 1997, 272(13): 8222-8226.
    [41] Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, Davis RJ, Flavell RA, Choi AM. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med, 2000, 6(4): 422-428.
    [42] Silva CC, Almeida VA, Haibara AS, Johnson RA, Colombari E. Role of carbon monoxide in L-glutamate-induced cardiovascular responses in nucleus tractus solitarius of conscious rats. Brain Res, 1999, 824(2): 147-152.
    [43] Snyder SH, Baraano DE. Heme Oxygenase: A Font of Multiple Messengers. Neuro Psycho Phamacology, 2001, 25(3): 294-298.
    [44] McCoubrey WK, Huang TJ, Maines MD. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem, 1997, 247(2): 725-732.
    [45] Cruse I, Maines MD. Evidence suggesting that the two forms of heme oxygenase are products of different genes. J Biol Chem, 1988, 263(7): 3348-3353.
    [46] Immenschuh S, Ramadori G. Gene regulation of heme oxygenase-1 as a therapeutic target. Biochem Pharmacol, 2000, 60(8): 1121-1128.
    [47] Maines MD. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J, 1988, 2(10): 2557-2568.
    [48] Keyse SM, Tyrrell RM. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci USA, 1989, 86(1): 99-103.
    [49] Zou AP, Billing H, Su N, Cowley AW. Expression and action of heme oxygenase in the renal medulla of rats. Hypertension, 2000, 35(1 Pt 2): 342-347.
    [50] Johnson RA, Lavesa M, DeSeyn K, Scholer MJ, Nasjletti A. Heme oxygenase substrates acutely lower blood pressure in hypertensive rats. Am J Physiol, 1996, 271(3 Pt 2): H1132-1138.
    [51] Ou HS, Yang J, Dong LW, Pang YZ, Su JY, Tang CS, Liu NK. Role of endogenous carbon monoxide in hypertension pathogenesis of rats. Sheng Li Xue Bao, 1998, 50(6): 643-648.
    [52] Seki T, Naruse M, Naruse K, Yoshimoto T, Tanabe A, Tsuchiya K, Hirose S, Imaki T, Nihei H, Demura H. Roles of heme oxygenase/carbon monoxide system in genetically hypertensive
    
    rats. Biochem Biophys Res Commun, 1997,241(2): 574-578.
    [53] Wagner CT, Durante W, Christodoulides N, Hellums JD, Schafer AI. Hemodynamic force induce the expression of heme oxygenase in culured vascular smooth muscle cells. J Clin Invest, 1997, 100(3): 589-596.
    [54] Ishizaka N, Aizawa T, Moil I, Taguchi J, Yazaki Y, Nagai R, Ohno M. Heine oxygenase-1 is upregulated in the rat heart in response to chronic administration of angiotensin Ⅱ. Am J Physiol Heart Circ Physiol, 2000, 279(2): H672-678.
    [55] Aizawa T, Ishizaka N, Taguchi J, Nagai R, Mori I, Tang SS, Ingelfinger JR, Ohno M. Heme oxygenase-1 is upregulated in the kidney of angiotensin Ⅱ-induced hypertensive rats : possible role in renoprotection. Hypertension, 2000, 35(3): 800-806.
    [56] Ishizaka N, Laursen JB, Fukui T, Wilcox JN, De Keulenaer G, Griendling KK, Alexander RW. Angiotensin Ⅱ-induced hypertension increases heme oxygenase-1 expression in rat aorta. Circulation, 1997, 96(6): 1923-1929.
    [57] Wiesel P, Patel AP, Carvajal IM, Wang ZY, Pellacani A, Maemura K, DiFonzo N, Rennke HG, Layne MD, Yet SF, Lee ME, Perrella MA. Exacerbation of chronic renovascular hypertension and acute renal failure in heme oxygenase-1-deficient mice. Circ Res, 2001, 88(10): 1088-1094.
    [58] Sabaawy HE, Zhang F, Nguyen X, ElHosseiny A, Nasjletti A, Schwartzman M, Dennery P, Kappas A, Abraham NG. Human heme oxygenase-1 gene transfer lowers blood pressure and promotes growth in spontaneously hypertensive rats. Hypertension, 2001,38(2): 210-215.
    [59] Ishizaka N, Griendling KK. Heme oxygenase-1 is regulated by angiotensin Ⅱ in rat vascular smooth muscle cells. Hypertension, 1997, 29(3): 790-795.
    [60] Ingi T, Cheng J, Ronnett GV. Carbon monoxide: An endogenous modulator of the nitric oxide cGMP signaling system. Neuron, 1996; 16(4): 835-842.
    [61] Turcanu V, Dhouib M, Poindron P. Nitric oxide synthase inhibition by haem oxygenase decreases macrophage nitric-oxide-dependent cytotoxicity: a negative feedback mechanism for the regulation of nitric oxide production. Res Immunol, 1998, 149(7-8): 741-744.
    [62] Kitamura Y, Matsuoka Y, Nomura Y, Taniguchi T Induction of inducible nitric oxide synthase and heme oxygenase-1 in rat glial cells. Life Sci, 1998, 62(17-18): 1717-1721.
    [63] Durante W, Kroll MH, Christodoulides N, Peyton KJ, Schafer AI. Nitric oxide induces heine
    
    oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells. Circ Res, 1997, 80(4): 557-564.
    [64] 欧和生,王晓红,柴三葆,庞永政,苏静怡,唐朝枢.内源性一氧化碳与一氧化氮在高血压发病中的相互作用研究.中国应用生理学杂志,2000,16(2):172-176.
    [65] 尹时华,金延安,化长林.建立肾性高血压大鼠实验模型的一种新方法.咸宁医学院学报,1999,13(1):15~17.
    [66] Vogel HG,Vogel WH.药理学实验指南,科学出版社,2001年:102.
    [67] 支建明,赵录英,赵荣瑞.肾性高血压大鼠不同血管组织中血管紧张素的变化.山西医科大学学报,2001,32(增刊):72~74.
    [68] Guan S, Fox J, Mitchell KD, Navar LG. Angiotensin and angiotensin converting enzyme tissue levels in two-kidney, one clip hypertensive rats. Hypertension, 1992, 20(6): 763~767.
    [69] Cervenka L, Wang CT, Mitchell KD, Navar LG. Proximal tubular angiotensin Ⅱ levels and renal functional responses to AT1 receptor blockade in nonclipped kidneys of Goldblatt hypertensive rats. Hypertension, 1999, 33(1): 102~107.
    [70] Navar LG, Von Thun AM, Zou L, el-Dahr SS, Mitchell KD. Enhancement of intrarenal angiotensin Ⅱ levels in 2 kidney 1 clip and angiotensin Ⅱ induced hypertension. Blood Press, 1995, 2(Suppl): 88~92.
    [71] Mitchell KD, Navar LG. Influence of intrarenally generated angiotensin Ⅱ on renal hemodynamics and tubular reabsorption. Ren Physiol Biochem, 1991, 14(4-5): 155~163.
    [72] Ploth DW, Fitzgibbon W. Pathophysiology of altered renal function in renal vascular hypertension. Am J Kidney Dis, 1994, 24(4): 652~659.
    [73] Hecker M, Cattaruzza M, Wagner AH. Regulation of inducible nitric oxide synthase gene expression in vascular smooth muscle cells. Gen Pharmacol, 1999, 32(1): 9-16.
    [74] Tan DY, Meng S, Cason GW, Manning RD. Mechanisms of salt-sensitive hypertension: role of inducible nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol, 2000, 279(6): R2297-303.
    [75] 谭敦勇,张超,张穗梅,陈小琳,程少冰,董军,杨皓庄,唐朝枢.肾血管性高血压对诱导型一氧化氮合酶表达及活性的影响.中国危重病急救医学,2001,13(6):333-336.
    [76] 程少冰,谭敦勇,陈小琳,杨皓庄,张穗梅,颜亮.诱导型一氧化氮合酶与动脉血压的调节.中国病理生理杂志,2000,16(5):397-400.
    
    
    [77] Grandaliano G, Ranieri E, Monno R, Gesualdo L, Schena E Ramipril inhibits in vitro human mesangial cell proliferation and platelet-derived growth factor expression. Exp Nephroi, 1999, 7(3): 229-235.
    [78] Peeters AC, Netea MG, Kullberg BJ, Thien T, van der Meer JW. The effect of renin-angiotensin system inhibitors on pro- and anti-inflammatory cytokine production. Immunology, 1998, 94(3): 376-379.
    [79] Kranzhofer R, Browatzki M, Schmidt J. AngiotensinⅡ activates the proinflammatory transcription factor nuclear factor-kappaB in human monocytes. Biochem Biophys Res Commun, 1999, 257(3):826-828.
    [80] Xie QW, Whisnant R, Nathan C. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. J Exp Med, 1993, 177(6): 1779-1784.
    [81] Agarwal A, Nick HS. Renal response to tissue injury: lessons from heme oxygenase-1 GeneAblation and expression. J Am Soc Nephrol, 2000, 11 (5): 965-973.
    [82] Csonka C, Varga E, Kovacs P, Ferdinandy P, Blasig IE, Szilvassy Z, Tosaki A. Heme oxygenase and cardiac function in ischemic/repeffused rat hearts. Free Radic Biol Med, 1999, 27(1-2): 119-126.
    [83] Maulik N, Sharma HS, Das DK. Induction of the haem oxygenase gene expression during the reperfusion of ischemic rat myocardium. J Mol Cell Cardiol, 1996, 28(6): 1261-1270.
    [84] Muller RM, Taguchi H, Shibahara S. Nucleotide sequence and organization of the rat heme oxygenase gene. J Biol Chem, 1987,262(14): 6795-6802.
    [85] Alam J, Shibahara S, Smith A. Transcriptional activation of the heme oxygenase gene by heme and cadmium in mouse hepatoma cells. J Biol Chem, 1989, 264(11): 6371-6375.
    [86] Camhi SL, Alam J, Otterbein L, Sylvester SL, Choi AM. Induction of heme oxygenase-1 gene expression by lipopolysaccharide is mediated by AP-1 activation. Am J Respir Cell Mol Biol, 1995, 13(4): 387-398.
    [87] Lavrovsky Y, Schwartzman ML, Levere RD, Kappas A, Abraham NG. Identification of binding sites for transcription factors NF-kappa B and AP-2 in the promoter region of the human heme oxygenase 1 gene. Proc Natl Acad Sci USA, 1994, 91(13): 5987-5991.
    [88] Alam J, Camhi S, Choi AM. Identification of a second region upstream of the mouse heme
    
    oxygenase-1 gene that functions as a basal level and inducer-dependent transcription enhancer. J Biol Chem, 1995, 270(20): 11977-11984.
    [89] Elbirt KK, Whitmarsh AJ, Davis RJ, Bonkovsky HL. Mechanism of sodium arsenite-mediated induction of heme oxygenase-1 in hepatoma cells. Role of mitogen-activated protein kinases. J Biol Chem, 1998, 273(15): 8922-8931.
    [90] Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature, 1993, 364(6438): 626-632.
    [91] Polte T, Abate A, Dennery PA, Schrer H. Heme oxygenase-1 is a cGMP-inducible endothelial protein and mediates the cytoprotective action of nitric oxide. Arterioscler Thromb Vasc Biol, 2000, 20(5): 1209-1215.
    [92] Durante W, Kroll MH, Christodoulides N, Peyton KJ, Schafer AI. Nitric oxide induces heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells. Circ Res, 1997, 80(4): 557-564.
    [93] Melefors O, Goossen B, Johansson HE, Stripecke R, Gray NK, Hentze MW. Translational control of 5-aminolevulinate synthase mRNA by iron-responsive elements in erythroid cells. J Biol Chem, 1993, 268(8): 5974-5978.
    [94] Baranano DE, Rao M; Ferris CD, Snyder SH. Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci USA, 2002, 99(25): 16093-16098.
    [95] Borger DR, Essig DA. Induction of HSP 32 gene in hypoxic cardiomyocytes is attenuated by treatment with N-acetyl-L-cysteine. Am I Physiol, 1998, 274(3 Pt 2): H965-973.
    [96] 张敏,安威,杜海军,陈莉,张宝慧.转染人血红素加氧酶-1 基因对大鼠血管平滑肌细胞抗氧化损伤的作用.生理学报,2002,64(1):12-16.
    [97] Baranano DE, Wolosker H, Bae BI, Barrow RK, Snyder SH, Ferris CD. A mammalian iron ATPase induced by iron. J Biol Chem, 2000, 275(20): 15166-15173.
    [98] Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG. Angiotensin Ⅱ-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest, 1996, 97(8): 1916-1923.
    [99] Haugen EN, Croatt AJ, Nath KA. Angiotensin Ⅱ induces renal oxidant stress in vivo and
    
    heme oxygenase-1 in vivo and in vitro. Kidney Int, 2000, 58(1): 144-152.
    [100] Zhang F, Kaide JI, Rodriguez-Mulero F, Abraham NG, Nasjletti A. Vasoregulatory function of the heme-heme oxygenase-carbon monoxide system. Am J Hypertens, 2001, 14(6 Pt 2): 62S-67S.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700