系统性红斑狼疮候选基因的多态性及其与疾病的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系统性红斑狼疮(Systemic Lupus Erythematosus,SLE)是一种特异性的自身免疫疾病,被公认为自身免疫疾病的原型。通过对群体遗传学、双生子发病一致率和疾病家族聚集性等一系列研究均证实遗传因素在SLE发病中起着重要作用。
     目前对于Toll样受体(Toll-like Receptors,TLRs)的研究揭示该通路系统调节着天然免疫系统与获得性免疫系统之间的平衡,与免疫缺陷性疾病、异常免疫应答性疾病、关节炎等疾病的发病有关。
     我们应用了聚合酶链反应(polymerase chain reaction,PCR)、Sanger双脱氧测序法和Pyrosequencing焦磷酸测序法,研究了TLR9信号通路内相关基因TLR9、MYD88、TRAF6和IRF7基因的变异情况,并通过病例对照研究探讨了TRAF6基因单核苷酸多态性与SLE易感性的关系。
     我们还建立了凝胶电泳迁移率变动分析(electrophoretic mobility shift assay,EMSA)化学发光法检测外周血单个核细胞细胞核内干扰素调节因子7(interferon regulatory factor 7,IRF7)活性的方法。这为进一步研究TLR9通路最下游信号分子IRF7对于IFN-a基因的转录调控作用奠定了基础。
     2’,5’-寡聚核苷酸合成酶(2’,5’-oligoadenylate synthetase,2’5’AS)是比较重要的IFN诱导蛋白家族,参与了机体天然抗病毒免疫应答反应。目前,已发现2’5’AS内成员OAS1基因单核苷酸多态性与自身免疫疾病Ⅰ型糖尿病的易感性相关。
     我们采用了家系传递不平衡检验方法,探讨了OAS1基因多态性在SLE家系中的传递规律,以及多态性位点与SLE的相关性研究。
     结果发现:
     (1) 中国汉族人群中TLR9基因内部存在多态性为rs352140,rs352139和rs187084。MYD88基因内部存在多态性为rs4988457和rs7744。此外在实验中,我们还发现一个新SNP位于MYD88基因5’端调控区。IRF7基因调控功能区及编码区存在多态性为rs2277270和rs1061502。证实了TRAF6基因调控区多态性位点rs540386和rs5030437。
     (2) 病例对照研究结果显示:中国汉族人群中TRAF6基因单核苷酸多态性rs540386等位基因(T)频率在SLE患者组(2.4%)和正常对照组(8.7%)中差异存在统计学意义(p=0.002);TT基因型的频率在SLE患者组(4%)与在正常对照组(14.2%)中相比显著下降
Systemic lupus erythematosus (SLE) is a generally accepted prototype autoimmune disease. The importance of genetic influences on SLE has been consistently supported by studies of populations, twin concordance rates, and aggregation of disease in families.
    Recent studies have reported that Toll-like receptors are key regulators of both the initial innate and subsequent adaptive immune response. These studies have shown that TLR signaling affects several diseases, including immunodeficiencies, undesirable immune response and arithritis.
    In this study, polymerase chain reaction, Sanger sequencing and Pyrosequencing techniques are applied in investigation of genetic polymorphisms in genes (TLR9, MyD88, TRAF6, IRF7) that participate in TLR9 signaling pathway. Case-control study is carried out to study the contribution of TRAF6 single nucleotide polymorphisms to the risk of SLE in Chinese population.
    We establish a method for detection of IRF7 activity in human peripheral blood mononuclear cells using gel electrophoretic mobility shift assay and enhanced chem iluminescent technique, which gives a foundation for further study on how IRF7, downstream of TLR9 pathway, regulates interferon-a expression.
    2',5'-oligoadenylate synthetase family is a group of interferon-stimulated genes that play important roles in innate antiviral defence. Recently, the minor allele of an OAS1 SNP that alters splicing was found to be associated with increased enzymatic activity and with type 1 diabetes. In this study, we investigate OAS1 SNP with SLE association in 250 nuclear families using transmission disequilibrium test.
    We find:
    (1) Three SNPs, rs352130, rs352140 and rsl87084 are identified in TLR9 genomic region. Two SNPs, rs4988457and rs7744 are identified in MyD88 genomic region. Furthermore, a new SNP is found in MyD88 5' regulatory region. rsl061502 and rs2277270 are identified in IRF7 coding region and regulatory region. There are also two SNPs, rs540386 and rs5030437 locate in first intron of TRAF6.
    (2) The minor rs540386 T allele frequency was significantly lower in SLE cases than controls (p<0.05). There are 2.4% of SLE cases carrying the
引文
1. Kaisho T, Akira S. Regulation of dendritic cell function through toll-like receptors. Curr Morn Med, 2003, 3: 759-771.
    2. Lien E, Ingall RR. Toll-like receptors. Crit Care Med, 2002, 30: 1-11.
    3. Schwarz K, Storni T, Manolova V, et al. Role of Toll-like receptors in costimulating cytotoxic T cell responses. Eur J Immunol, 2003, 33: 1465-1470.
    4. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001, 2: 675-80.
    5. Kirschning CJ, Bauer S. Toll-like receptors: celluar signal transducers for exogenous molecular patterns causing immune responses. Int J Med Microbiol. 2001, 291: 251-60.
    6. Beutler B. Inferences, questions and possibilities in Toll-like receptor signaling. Nature, 2004, 430: 257-263.
    7. Is targeting Toll-like receptors and their signaling pathway a useful therapeutic approach to modulating cytokine-driven inflammation? Immunol Rev, 2004, 202: 250-265.
    8. Kawai T, Sato S, Ishii K J, et al. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol, 2004, 5: 1061-1068.
    9. Honda K, Yanai H, Mizutani T, et al. Role of a transductional-transcriptional processor complex involving MyD88 and IRF7 in Toll-like receptor signaling. PNAS, 2004, 101: 15416-15421. Seldin MF, Amos CI, Ward R, et al. The genetics revolution and assault on rheumatoid arthritis. Arthritis Rheum, 1999, 42: 1071-1079.
    10. Isaacs A, Lindenmann J. Virus inference. I. The interferon. Proc R Soc Lond, 1957, 147: 258-267.
    11. Ortaldo JR, Mantovani A, Hobbs D, et al. Effects of several species of human leukocyte interferon on cytotoxic activity of NK cells and monocytes, Int J Cancer, 1983, 31: 285-289.
    12. Zhang X, Sun S, Hwang I, et al. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL15. Immunity, 1998, 8: 591-599.
    13. Marrrack P, Kappler J, Mitchell T. Type Ⅰ interferons keep activated T cells alive.??J Exp Med, 1999, 189: 521-530.
    14. Le Bon A, Schiavoni G, D'Agostino G, et al. Type Ⅰ interferons petently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity, 2001, 14: 461-470.
    15.汤建平,顾越英,沈南等.系统性红斑狼疮患者外周血干扰素基因的定量表达.中华内科杂志,2005,44:106-110.
    16. Ytterberg SR, Schnitzer TJ. Serum interferon levels in patients with systemic lupus erythematosus. Arithritis Rheum. 1982, 25: 401-406.
    17. Bengtsson A, Sturfelt G, Truedsson L, et al. Activation of type Ⅰ interferon systemic lupus erythematosus correlates with disease activity but not antiretroviral antibodies. Lupus, 2000, 9: 664-671.
    18. von Wussow P, Jakschies D, Hochkeppel H, et al. MX homologous protein in mononuclear cells from patients with systemic lupus erythematosus. Arithris Rheum, 1989, 32:914-918.
    19. Bennett L, Palucka AK, Arce E, et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med, 2003, 197: 711-723.
    20. Baechler EC, Batliwalla FM, Karypis G, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. PNAS, 2003, 100: 2610-2615.
    21. Paterson AD. Genetic epidemiology of type 1 diabetes. Curr Diab Rep, 2006, 6: 139-146.
    22. Balan V, Nelson DR, Sulkowski MS. A phase Ⅰ/Ⅱ study evaluating escalating doses of recombination human albumin-interferon-alpha fusion protein in chronic hepatitis C patients who have failed previous interferon-alpha-based therapy. Antivir Ther, 2006, 11: 35-45.
    23. Ye S, Guo Q, Tang JP, et al. Could 2'5'-oligoadenylate synthetase isoforms be biomarkers to differentiate between disease flare and infection in lupus patients? A pilot study. Clin Rheumatol, 2006.
    24. Blanco P, AK Palucka, M Gill, et al. Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science, 2001, 294: 1540-1543.
    25. Cederblad B, Blomberg S, Vallin H, et al. Patients with systemic lupus erythematosus have reduced numbers of circulating natural interferon-alpha-producing cells. J Autoimmun, 1998, 11: 465-470.
    26. Farkas L, Beiske K, Lund-Johansen F, et al. Plasmacytoid dendritic cells??(natural interferon-alpha/beta-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am J Pathol, 2001, 159: 237-243.
    27. Blomberg S, Eloranta ML, Cederblad B, et al. Presence of cutaneous interferon-alpha producing cells in patients with systemic lupus erythematosus. Lupus, 2001, 10: 484-490.
    28. Diebold SS, Kaisho T, Hemmi H, et al. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science, 2004, 303: 1529-1531.
    29. Lund J, Sato A, Akira S, et al. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med, 2003, 198: 513-520.
    30. Banchereau J, Pascual V, Palucka AK. Autoimmunity through cytokine-induced dendritic cell activation. Immunity, 2004, 20: 539-550.
    31. Ronnblom L, Alm GV. Systemic lupus erythematosus and the type Ⅰ interferon system. Arthritis Res Ther, 2003, 5: 68-75.
    32. Vallin H, Peters A, Alm GV, et al. Anti-double-stranded DNA antobodies and immunostimulatory plasmid DNA in combination mimic the endogenous IFN-alpha inducer in systemic lupus erythematosus. J Immunol, 1999, 163: 6306-6313.
    33. Bave U, Alm GV, Ronnblom L. The combination of apoptotic U937 cells and lupus IgG is a potent IFN-alpha inducer. J Imraunol, 2000, 165: 3519-3526.
    34. Regnault A, Lankar D, Lacabanne V, et al. Fcγ receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class Ⅰ-restricted antigen presentation after immune complex internalization. J Exp Med, 1999, 189: 371-380.
    35. Kalergis AM, Ravetch JW. Inducing tumor immunity through the selective engagement of activating Fcγ receptors on dendritic cells. J Exp Med, 2002, 195: 1653-1659.
    36. Means TK, Latz E, Hayashi F, et al. Human lupus autoantibody-DNA complexs activate DCs through cooperation of CD32 and TLR9. J Clin Invest, 2005, 115: 407-417.
    37. Christensen SR, Kashgarian M, Alexopoulou L, et al. Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. J Exp Med, 2005, 202: 321-331.
    38. Vyse TJ, Kotzin BL. Genetic susceptibility to systemic lupus erythematosus. Annu Rev Immunol, 1998,16: 261-292.
    
    39. Deapen D, Escalante A, Weinrib L, et al. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum, 1992,35: 311-318.
    
    40. Gut IG Automation in genotyping of single nucleotide polymorphisms. Hum Mutat, 2001,17: 475-492.
    
    41. Lorenz E, Mira J, Frees K, et al. Relevance of mutations in the TLR4 receptor in patients with Gran negative septic shock. Arch Int Med, 2002,162,1028-1032.
    
    42. Ogus AC, Yoldas B, Ozdemir, et al. The Arg753Gln polymorphism of the human Toll-like receptor 2 gene in tuberculosis disease. Eur Respir J, 2004, 23, 219-223.
    
    43. Kang TJ, Chae GT. Detection of Toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol Med Microbiol, 2001, 31, 53-58.
    
    44. Kiechl S, Lorenz E, Reindl M, et al. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med, 2002, 347,185-192.
    
    45. Bjorkbacka H, Kunjathoor VV, Moore KJ, et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med, 2004, 10: 416-421. 13 Andreakos E, Foxwell B, Feldmann M.
    
    46. Bonnevie-Nielsen V, Field LL, Lu S, et al. Variation of antiviral 2',5'-oligoadenylate syhthetase (2'5'AS) enzyme activity is controlled by a single-nucleotide polymorphism at splice-acceptor site in the OAS1 gene. Am J Hum Genet, 2005, 76: 623-633.
    
    47. Field LL, Bonnevie-Nielsen V, Pociot F, et al. OAS1 splice site polymorphism controlling antiviral enzyme activity influences ausceptiblity to type 1 diabetes. Diabetes, 2005, 54: 1588-1591.
    
    48. Hooks JJ, Moutsopoulos HM, Geis SA, et al. Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med, 1979, 301: 5-8.
    
    49. Kikuchi K, Lian ZX, Kimura Y, et al. Genetic polymorphisms of toll-like receptor 9 influence the immune response to CpG and contribute to hyper-IgM in primary biliary cirrhosis. J Autoimmum, 2005, 24: 347-352.
    
    50. Torok HP, Glas J, Tonenchi L, et al. Crohn's disease is associated with a toll-like receptor 9 polymorphism. Gastroenterology, 2004,127: 365-366.
    
    51. Reich DE, Lander ES. On the allelic spectrum of human disease. Trends Genet,2001, 17: 502-510.
    52. Stepnik M, Arkusz J. Moleculat events associated with dendritic cells activation by contact sensitizers. Int J Occup Med Environ Health, 2003, 16: 191-199.
    53. Stabach PR, Thiyagarajan MM, Wood field GW, et al. AP2alpha alters the transcriptional activity and stability of p53. Oncogene, 2006, 25: 2148-2159.
    54. Ishida T, Tojo T, Aoki T, et al. Tumor necrosis factor receptor-associated factor (TRAF) family: adaptor proteins that mediate cytokine signaling. Exp Cell Res, 2000, 254: 14-24.
    55. Marie I, Durbin J E, Levy D E, et al. Differential viral induction of distinct interferon-a genes by positive feedback through interferon regulatory factor-7. EMBO J, 1998, 17: 6660-6669.
    56. Sato M, Hata N, Asagiri M, et al. Positive feedback regulation of type Ⅰ IFN genes by the IFN-inducible transcription factor IRF-7. FEBS Lett, 1998, 441: 106-110.
    57. Nguyen H, Hiscott J, Pitha P M. The growing family of IRF transcription factors. Cyt Growth Fact Rev, 1997, 8: 293-312.
    58. Han GM, Chen SL, Shen N, et al. Analysis of gene expression profiles in human systemic lupus erythematosus using oligonucleotide microarray. Genes Immun, 2003, 4: 177-186.
    59.汤建平,顾越英,沈南等.寡腺核苷酸合成酶家族基因的定量表达与系统性红斑狼疮的临床特征.中华风湿病学杂志,2004,8:707-711.
    60. Tan EM, Cohen AS, Fries JF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arithritis Rheum, 1982, 25: 1271-1277.
    61. Tessier MC, Qu HQ, Frechette R, et al. Type 1 diabetes and the OAS gene cluster: association with splicing polymorphism or haplotype? J Med Genet, 2006, 43: 129-132.
    62. Baechler EC, Batliwalla FM, Karypis G, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. PNAS, 2003, 100: 2610-2615.
    63.袁小青.IFN-a在SLE病理机制中的启动和维持作用.国际免疫学杂志,2005:361-365.
    64.沈关心,周汝麟.现代免疫学实验技术[M].武汉:湖北科学技术出版社,1998:138-139.
    65. Latchman D.S.等.转录因子实用技术[M]. 第二版。北京:清华大学出版社, 2004: 2-4.
    
    66. Carlson CS, Eberle MA, Kruglyak L, et al. Mapping complex disease loci in whole-genome association studies. Nature, 2004,429: 446-452.
    
    67. Anders HJ. A toll for lupus. Lupus, 2005,14: 417-422.
    
    68. Rifkin IR, Leadbetter EA, Busconi L, et al. Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immunol Rev, 2005, 204: 27-42.
    
    69. Theofilopoulos AN, Baccala R, Beutler B. Type I interferons (alpha/ beta) in immunity and autoimmunity. Annu Rev Immunol, 2005, 23: 307-336.
    
    70. Crow MK, Kirou KA. Interferon-alpha in systemic lupus erythematosus. Curr Opin Rheumatol, 2004,16: 541-547.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700