四类天然产物及其衍生物的抗氧化和抗肿瘤活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为从天然产物中寻找有效的抗氧化剂用于预防和治疗与自由基相关疾病及寻找安全有效的抗肿瘤先导化合物,本论文研究了四类天然产物及其衍生物的抗氧化和抗肿瘤活性。
     我们采用不同的体外抗氧化模型,包括清除超氧阴离子和1,1-二苯基苦基苯肼(DPPH)自由基,抑制大鼠肝(脑)匀浆脂质过氧化,螯合金属亚铁离子,抑制过氧化氢(H_2O_2)诱导质粒超螺旋DNA断裂及大鼠肾上腺嗜铬瘤细胞(PC12)的损伤,来研究水飞蓟宾类衍生物(化合物1.1-1.22)、新木脂素类衍生物(化合物2.1-2.14)及生姜中二苯庚烷类化合物(化合物3.1-3.5)的体外抗氧化活性。
     此外,我们用MTT法检测了化合物3.1-3.5及黑紫橐吾中含氯艾里莫芬烷型倍半萜化合物(化合物4.1)的体外细胞毒活性,并以人慢性髓源性白血病细胞(K562)为研究对象,研究化合物4.1可能的抗肿瘤机制。用倒置显微镜观察化合物4.1对K562细胞形态学的影响;JC-1、吖啶橙(AO)和溴乙啶(EB)荧光染色法检测化合物4.1对K562细胞的凋亡作用;Western blot法检测细胞凋亡相关蛋白ERK1/2,JNK,Bcl-2和Bax及细胞周期相关蛋白CDK2和CDK4的表达变化;流式细胞术定量分析凋亡现象和细胞周期分布变化。
     体外抗氧化结果表明:①水飞蓟宾类衍生物具有不同的抗氧化活性,构效关系研究表明,化合物E环酚羟基邻位有烷氧基取代有利于提高化合物1.1-1.8的抗氧化活性;取代基电子云密度对化合物1.9-1.22的抗氧化活性有较大影响。②新木脂素类衍生物2.4和2.13具有显著的抗氧化活性。③化合物3.1-3.5具有显著的抗氧化活性,同时实验结果提示化合物3.1和3.3可能有潜在的促氧化作用。
     体外MTT检测结果表明化合物3.3对K562和K562/ADR细胞生长都有抑制作用。化合物4.1对不同来源的肿瘤细胞株有不同程度的抑制作用,并且化合物4.1对阿霉素耐药株有浓度依赖性逆转作用。机制研究表明ERK1/2和JNK通路可能介导了化合物4.1诱导的K562细胞凋亡及G1期阻滞。本论文首次研究了化合物4.1的抗肿瘤活性及其可能的作用机制,为该化合物进一步开发为抗肿瘤药物提供了重要信息。
To find effective antioxidants from natural products to prevent or therapy diseases related to free radicals and to search safe and efficient lead compounds for cancer therapy. The antioxidant and anti-tumor properties of four kinds of natural products and their derivatives were investigated in this research.
     Different in vitro antioxidant models, such as scavenging superoxide anion and 1,1-diphenyl-2- picrylhydrazyl (DPPH), inhibiting rat liver or brain homogenates lipid peroxidation, chelating ferrous ion (Fe~(2+)), as well as inhibiting the insult of the plasmid DNA and rat pheochromocytoma (PC12) cells induced by hydrogen peroxide (H_2O_2), were employed to evaluate the antioxidant activities of silybin derivatives (compounds 1.1-1.22), neolignan derivatives (compounds2.1-2.14), and diarylheptanoids isolated from Zingiber officinale (compounds 3.1-3.5).
     Moreover, we also evaluated the in vitro cytotoxicity of compounds 3.1-3.5 and 4.1 (isolated from Ligularia atroviolacea) against human tumor cells by MTT assay. The possible antitumor mechanism of compound 4.1 was investigated in human chronic myelogenous leukemia (K562) cell line. The morphological change of K562 cells treated by compound 4.1 was observed on inverted microscope. Cell morphology of compound 4.1-induced apoptosis was investigated by staining the cells with JC-1 and a combination of the fluorescent DNA-binding dyes acridine orange (AO) and ethidium bromide (EB). Western blot analysis was used to examine the expression changes of apoptosis-related proteins, including ERK1/2, JNK, Bcl-2 and Bax, as well as the cell-cycle-related proteins, such as CDK2 and CDK4. The flow cytometry analysis was used to investigate the apoptosis and the changes of cell-cycle distribution.
     The results of in vitro antioxidant assay are listed as follows. 1) Silybin derivatives possessed different antioxidant properties. The study of SARs indicated that the alkoxy moiety substituted on the ortho of phenolic hydroxyl group of E ring can increase the efficacy of compounds 1.1-1.8, and the electron density of the substitutents plays an important role on the antioxidative effects of compounds 1.9-1.22. 2) The data obtained from in vitro and cell models demonstrated that the neolignan derivatives 2.4 and 2.13 exhibited remarkable antioxidative and neuroprotective activities. 3) Compounds (3.1-3.5) showed significant antioxidant activities. However, the pro-oxidant activity of compounds 3.1 and 3.5 was also observed.
     The MTT test revealed that compound 3.3 exhibited certain cytotoxicities against human chronic myelogenous leukemia cells (K562) and its adriamycin-resistant cells (K562/ADR).
     The growth of different human cancer cell lines was inhibited by compound 4.1 in vitro assays and the drug resistance of K562/ADR was reversed after being treated with compound 4.1 in a dose-dependent manner. The study of its possible mechanisms exhibited that ERK1/2 and JNK pathway mediated the K562 cells apoptosis and G1 arrest induced by compound 4.1. This is the first time to report the antitumor activity and its possible mechanism of compound 4.1, and it might provide significant information for further exploring this compound as a novel antitumor agent.
引文
[1]Gilgun-Sherki,Y.,Rosenbaum,Z.,Melamed,E.,Offen,D.,Antioxidant therapy in acute central nervous system injury:current state,Pharmacol Rev,2002,54,271-284.
    [2]陈瑾歆,陈建业,自由基与衰老关系的研究进展,川北医学院学报,2004,19(1),207-209.
    [3]Cerutti,EA.,Prooxidant states and tumor promotion,Science,1985,227,375-381.
    [4]张润峰,李霞,心血管疾病发病机制的新认识:氧自由基损伤,山西医科大学学报,2003,34(5),474-476.
    [5]刘萍,何兰杰,氧化应激与糖尿病,医学综述,2005,11(5),453-455.
    [6]Pelter,A.,H(a|¨)nsel,R.,Structure of silybin.I.degradative experiments,Chem Ber,1975,108(3),790-802.
    [7]Varga,Z.,Czompa,A.,Kakuk,G.,Antus,S.,Inhibition of the superoxide anion release and hydrogen peroxide formation in PMNLs by flavonolignans,Phytother Res,2001,15,608-612.
    [8]Pascual,C.,Gonz(a|¨)lez,R.,Armesto,J.,Muriel,P.,Effect of silymarin and silybinin on oxygen radicals,Drug Devel Res,1993,29(1),73-77.
    [9]Despaces,A.,Choppin,J.,Vogel,G.,Trost,W.,The effects of silymarin on experimental phalloidine poisoning,Arzneim-Forsch,1975,25,89-96.
    [10]Pifferi,G.,Pace,R.,Conti,M.,Synthesis and antihepatotoxic activity of silybin 11-O-phosphate,Farmaco,1994,49,75-76.
    [11]Basaga,H.,Poli,G.,Tekkaya,C.,Aras,I.,Free radical scavenging and antioxidative properties of 'silibin' complexes on microsomal lipid peroxidation,Cell Biochem Func,1997,15,27-33.
    [12]Kosina,P.,Kren,V.,Gebhardt,R.,Grambal,F.,Ulrichová,J.,Walterová,D.,Antioxidant properties of silybin glycosides,Phytother Res,2002,16,S33-S39.
    [13]Letteron,P.,Labbe,G.,Degott,C.,Berson,A.,Fromenty,B.,Delaforge,M., Larrey, D., Pessayre, D., Mechanism for the protective effects of silymarin against carbon tetrachloride-induced lipid peroxidation and hepatotoxicity in mice. Evidence that silymarin acts both as an inhibitor of metabolic activation and as a chain-breaking antioxidant, Biochem Pharmacol, 1990, 39 (12),2027-2034.
    [14]Bindoli, A., Cavallini, L., Siliprandi, N., Inhibitory action of silymarin of lipid peroxide formation in rat liver mitochondria and microsomes, Biochem Pharmacol, 1977,26 (24), 2405-2409.
    [15]Valenzuela, A., Lagos, C, Schmidt, K., Videla, L.A., Silymarin protection against hepatic lipid peroxidation induced by acute ethanol intoxication in the rat, Biochem Pharmacol, 1985, 34 (12), 2209-2212.
    [16]Fogelman, A.M., Shechter, I., Seager, J., Hokom, M., Child, J.S., Edwards, P.,Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages, Proc Natl Acad Sci USA,1980, 77(4), 2214-2218.
    [17]Palinski, W., Rosenfeld, M.E., Yla-Herttuala, S., Gurtner, G.C., Socher, S.S.,Butler, S.W., Parthasarathy, S., Carew, T.E., Steinberg, D., Witztum, J.L., Low density lipoprotein undergoes oxidative modification in vivo, Proc Natl Acad Sci USA, 1989, 86,1372-1376.
    [18]Skottova, N., Krecman, V., Simanek, V., Activities of silymarin and its flavonolignans upon low density lipoprotein oxidizability in vitro, Phytother Res, 1999,13, 535-537.
    [19]Dehmlow, C, Murawski, N., Groot, H., Scavenging of reactive oxygen species and inhibition of arachidonic acid metabolism by silybum in human cells, Life Sci, 1996,58(18), 1591-1600.
    [20]Leng-Peschlow, E., Alcohol-related liver diseases-use of legalon for therapy, Z Klin Med, 1994,2(1), 22-27.
    [21] Campos, R., Garrido, A., Guerra, R., Valenzuela, A., Silybin dihemisuccinate protects against glutathione depletion and lipid peroxidation induced by acetaminophen on rat liver, Planta Med, 1989, 55,417-419.
    [22]Sonnenbichler,Johann.,Sonnenbichler,Isolde.,Scalera,Fortunato.,Biochemistry and pharmacology of silibinin,Book of Abstracts,212th ACS National Meeting,Orlando,FL,August 25-29,1996.
    [23]Jia,J.D.,Bauer,M.,Cho,J.J.,Ruehl,M.,Milani,S.,Boigk,G.,Riecken,E.,Schuppan,D.,Antifibrotic effect of silymarin in rat secondary biliary fibrosis is mediated by downregulation of procollagen 1(Ⅰ) and TIMP-1,J Hepatol,2001,35(3),392-398.
    [24]陈正跃,吴子钊,许建文,张光军,程钢,水飞蓟宾-磷脂酰胆碱复合物与水飞蓟宾对四氯化碳所致小鼠急性肝损伤保护作用的对比,中国生化药物杂志,2004,25(4),221-223.
    [25]张俊平,冯增辉,水飞蓟宾对小鼠肝脏炎症损伤和肿瘤坏死因子的产生及活性的影响,药学学报,1996,31(8),577-580.
    [26]Zi,X.L.,Grasso,A.W.,Kung,H-J.,Agarwal,R.,A flavonoid antioxidant,silymarin,inhibits activation of erbB1 signaling and induces cyclin-dependent kinase inhibitors,G1 arrest,and anticarcinogenic effects in human prostate carcinoma DU145 cells,Cancer Res,1998,58(9),1920-1929.
    [27]Zi,X.L.,Feyes,D.K.,Agarwal,R.,Anticarcinogenic effect of a flavonoid antioxidant,silymarin,in human breast cancer cells MDA-MB 468:induction of G1 arrest through an increase in Cip1/p21 concomitant with a decrease in kinase activity of cyclin-dependent kinases and associated cyclins,Clin Cancer Res,1998,4(4),1055-1064.
    [28]Davis-Searles,P.R.,Nakanishi,Y.,Kim,N-C.,Graf,T.N.,Oberlies,N.H.,Wani,M.C.,Wall,M.E.,Agarwal,R.,Kroll,D.J.,Milk thistle and prostate cancer:differential effects of pure fiavonolignans from Silybum marianum on antiproliferative end points in human prostate carcinoma cells,Cancer Res,2005,65(10),4448-4457.
    [29]De La Puerta,R.,Martinez,E.,Bravo,L.,Ahumada,M.C.,Effect of silymarin on different acute inflammation models and on leukocyte migration,J Pharm Pharmacol,1996,48(9),968-970.
    [30]Kang,J.S.,Jeon,Y.J.,Park,S-K.,Yang,K-H.,Kim,H.M.,Protection against lipopolysaccharide-induced sepsis and inhibition of interleukin-1β and prostaglandin E2 synthesis by silymarin,Biochem Pharmacol,2004,67,175-181.
    [31]Fiebrich,F.,Koch,H.,Silymarin,an inhibitor of lipoxygenase,Experientia,1979,35(12),1548-1560.
    [32]Krecman,V.,Skottova,N.,Walterova,D.,Ulrichova,J.,Simanek,V.,Silymarin inhibits the development of diet-induced hypercholesterolemia in rats,Planta Med,1998,64(2),138-142.
    [33]Radjabian,T.,Fallah,H.H.,Karami,M.,Zarpak,B.,Rasooli,I.,Effect of silymarin,the seed extract of cultivated and endemic Silybum marianum(L.)Gaertn,on serum lipid levels and atherosclerosis development in hypercholesterolemic rabbits,J Med Plants,2005,4(Suppl.1),33-41.
    [34]郁晓明,顾水明,葛兆莺,梁瑞廉,水飞蓟宾对球囊血管损伤后内膜增生及血管重构的影响,上海医学,2002,25(12),752-754.
    [35]林爱友,芮耀诚,水飞蓟宾对猪脑基底动脉5-脂氧酶活性的抑制作用,中国药理学报,1989,10(5),414-418.
    [36]王会敏,廉红兴,徐纪军,李海山,陈新志,水飞蓟宾对阿霉素心肌毒性的保护作用,药物不良反应杂志,2003,6,371-374.
    [37]Soto,C.P.,Perez,B.L.,Favari,L.P.,Reyes,J.L.,Prevention of alloxan-induced diabetes mellitus in the rat by silymarin,Comp Biochem Physiol C Pharmacol Toxicol Endocrinol,1998,119(2),125-129.
    [38]Robak,J.,Gryglewski,R.J.,Flavonoids are scavengers of superoxide anions,Biochem Pharmacol,1988,37,837-841.
    [39]Tapia,A.,Rodriguez,J.,Theoduloz,C.,Lopez,S.,Feresin,G.E.,Schmeda-Hirschmann,G.,Free radical scavengers and antioxidants from Baccharis grisebachii,J Ethnopharmacol,2004,95,155-161.
    [40]Lee,S.E.,Ju,E.M.,Kim,J.H.,Antioxidant activity of extracts from Euryale ferox seed,Exp Mol Med,2002,34(2),100-106.
    [41]Dinis,T.C.P.,Madeira,V.M.C.,Almeida,L.M.,Action of phenolic derivatives (acetaminophen,salicylate,and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers,Arch Biochem Biophys,1994,315,61-169.
    [42]Xiao,Q.X.,Yang,J.W.,Tang,X.C.,Huperzine A protects rat pheochromocytoma cells against hydrogen peroxide-induced injury,Neurosci Lett,1999,275,73-76.
    [43]Mosmann,T.,Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays,J immunol Methods,1983,65(1-2),55-63.
    [44]Fraschini,F.,Demartini,G.,Esposti,D.,Pharmacology of silymarin,Clin Drug Investig,2002,22,51-65.
    [45]Fujisawa,S.,Atsumi,T.,Kadoma,Y.,Sakagami,H,Antioxidant and prooxidant action of eugenol-related compounds and their cytotoxicity,Toxicol,2002,177,39-45.
    [46]Chen,J.J.,Duh,C.Y.,Huang,H.Y.,Chen,I.S.,Cytotoxic constituents of Piper sintenense,Helv Chim Acta,2003,86(6),2058-2064.
    [47]Xuan,H.Z.,Hu,F.L.,Gu,M.E.,Advances in the research of caffeic acid phenyl ester in propolis,Food Res Develop,2006,27,14-15.
    [48]江苏新医学院编,中药大辞典(上册),上海:上海科学技术出版社,1987,655-658.
    [49]丁东宁,谭廷华,阎宝琦,生姜挥发油研究综述,西北药学杂志,1989,4(1),40.
    [50]Ahmed,R.S.,Seth,V.,Pasha,S.T.,Banerjee,B.D.,Influence of dietary ginger (Zingiber officinales Rosc) on oxidative stress induced by malathion in rats,Food Chem Toxicol,2000,38(5),443-450.
    [51]Fuhrman,B.,Rosenbat,M.,Hayek,T.,Coleman,R.,Aviram,M.,Gingerextract consumption reduces plasma cholesterol,inhibits LDL oxidationand attenuates development of atherosclerosis in atherosclerotic,apolipoprotein E deficient mice,J Nutr,2000,130(5),1124-1131.
    [52]何丽娅,黄崇新,生姜对缺血性脑损伤时过氧化氢酶、Ca~(2+)-ATPase活性及乳酸含量的影响,医学理论与实践,1999,12(1),7-9.
    [53]王桥,曾昭晖,陈怡,生姜石油醚提取物对四种氧自由基体系抗氧化作用的研究,中国药学杂志,1997,32(6),343-344.
    [54]刘金玲,王卫东,郭景云,鲜生姜提取液抗氧化作用的探讨,河南中医,1996,16(3),156.
    [55]Nakatani,N.,Phenolic antioxidants from herbs and spices,Biofactors,2000,13,141-146.
    [56]何文珊,生姜中一种新化合物的抗氧化活性,中国病理学杂志,2001,17(5),461-463.
    [57]Unnikrishnan,M.C.,Kuttan,R.,Cytotoxicity of extracts of spices to cultured cells,Nutr Cancer,1988,80,110-116.
    [58]Mahady,G.B.,Pendland,S.L.,Yun,G.S.,Lu,Z.Z.,Stoia,A.,Ginger(Zingiber officinale Roscoe) and the gingerols inhibit the growth of Cag A+ strains of Helicobacter pylori,Anticancer Res,2003,3699-3702.
    [59]Kim,E.C.,Min,J.K.,Kim,T.Y.,Lee,S.J.,Yang,H.O.,Han,S.,Kim,Y.M.,Kwon,Y.G.,[6]-Gingerol,a pungent ingredient of ginger inhibits angiogenesis in vitro and in vivo,Biochem Biophys Res Commun,2005,335,300-308.
    [60]Huang,C.,Ma,W.Y.,Dong,Z.,Requirement for phosphatidylinositol 3-kinase in epidermal growth factor-induced AP-1 transactivation and transformation in JB6 P+ cells,Mol Cell Biol,1996,16,6427-6435.
    [61]Wang,G.,Li,X.,Huang,F.,Zhao,J.,Ding,H.,Cunningham,C.,Coad,J.E.,Flynn,D.C.,Reed,E.,Li,Q.Q.,Antitumor effect of β-elemene in non-small-cell lung cancer cells is mediated via induction of cell cycle arrest and apoptotic cell death,Cell Mol Life Sci,2005,62,881-893.
    [62]Katiyar,S.K.,Agarwal,R.,Mukhtar,H.,Inhibition of tumor promotion in SENCAR mouse skin by ethanol of Zingiber officinale rhizome,Cancer Res,1996,56(5),1023-1030.
    [63]Park,K.K.,Chun,K.S.,Lee,J.M.,Lee,S.S.,Surth,Y.J.,Inhibitory effects of [6]-gingerol,a major pungent principle of ginger,on phorbol ester-induced inflammation epidermal ornithine decaboxylase activity and skin tumor promotion in ICR mice,Cancer Lett,1998,129(2),139.
    [64]Yoshikawa,M.,Kunimi,K.,Kunimi,K.,Stomachic principles in ginger Ⅲ an anti-ulcer principle 6-gingesulfonic acid,and three monoacyldigalactosyl-glycerols,gingerglycolipids A,B,and C,from Zingiber rhizome originating in Taiwan,Chem Pharm Bull,1994,42(6):1226-230.
    [65]Penna,S.C.,Medeiros,M.V.,Aimbire,F.S.,Faria-Neto,H.C.C.,Sertié,J.A.A.,Lopes-Martins,R.A.B.,Anti-inflammatory effect of the hydralcoholic extract of Zingiber officinale rhizomes on rat paw and skin edema,Phytomedicine,2003,10(5),381-385.
    [66]李素民,杨秀岭,赵智,樊德厚,干姜和生姜药理研究进展,中草药,1999,30(6),471-474.
    [67]陈昆南,杨书麟,生姜醇提物抗凝血作用的进一步探讨,中药药理与临床,1997,13(5),30-32.
    [68]许青媛,于利森,张小利,陈瑞明,陈春梅,干姜及其主要成分的抗凝作用,中国中药杂志,1991,16(2),112-113.
    [69]Bhandari,U.,Sharma,J.N.,Zafar,R.,The protective action of ethanolic ginger (Zingiber officinale) extract in cholesterol fed rabbits,J Ethnopharmacol,1998,61(2),167-171.
    [70]Sharma,S.S.,Kochupillai,V.,Gupta,S.K.,Seth,S.D.,Gupta,Y.K.,Antiemetic efficacy of ginger(Zingiber officinale) against cisplatin-induced emesis in dogs,J Ethnopharmacol,1997,57(2),93-96.
    [71]金淑仪,杨凯,沈洪妹,姜正林,生姜与抗胆碱药的抗大鼠模拟运动病作用的比较观察,中华航海医学杂志,1999,6,20-22.
    [72]Willetts,K.E.,Ekangaki,A.,Eden,J.A.,Effect of a ginger extract on pregnancy induced nausea:a randomized controlled trial,Aust N Z J Obstet Gynaecol,2003,43(2),139-144.
    [73]Connell,D.W.,McLachlan,R.,Natural pungent compounds Ⅳ.Examination of gingerols,shogaols,paradols and related compounds by thin-layer and gas chromatography,J Chromatog,1972,67,29-35.
    [74]黄初升,白素平,天然线性二芳基庚烷类化合物,天然产物研究与开发,1997,9(2),98-105.
    [75]Kikuzaki,H.,Nakatari,N.,Antioxidant effects of some ginger constituents,J Food Sci,1993,58(6),1407-1410.
    [76]Kikuzaki,H.,Kobayashi,M.,Diarylheptanoids from rhizomes of Zingiber officinale,Phytochemistry,1991,30(11),3647-3651.
    [77]Kikuzaki,H.,Nakatani,N.,Cyclic diarylheptanoids from rhizomes of Zingiber officinale,Phytochemistry,1996,43(1),273-277.
    [78]Ma,J.P.,Jin,X.L.,Yang,L.,Liu,Z.L.,Diarylheptanoids from the rhizomes of Zingiber officinale,Phytochemistry,2004,65(8),1137-1143.
    [79]Yamazaki,R.,Hatano,H.,Aiyama,R.,Matsuzaki,T.,Hashimoto,S.,Yokokura,T.,Diarylheptanoids suppress expression of leukocyte adhesion molecules on human vascular endothelial cells,Eur J Pharmacol,2000,404,375-385.
    [80]Song,E.K.,Cho,H.,Kim,J.S.,Kim,N.Y.,An,N.H.,Kim,J.A.,Lee,S.H.,Kim,Y.C.Diarylheptanoids with free radical scavenging and hepatoprotective activity in vitro from Curcuma longa,Planta Med,2001,67(9),876-877.
    [81]Ishida,J.,Kozuka,M.,Tokuda,H.,Nishino,H.,Nagumo,S.,Lee,K.H.,Nagai,M.,Chemopreventive potential of cyclic diarylheptanoids,Bioorg Med Chem,2002,10,3361-3365.
    [82]Knekt,P.,Jarvinen,R.,Seppanen,R.,Rissanen,A.,Aromaa,A.,Heinonen,O.P.,Albanes,D.,Heinonen,M.,Pukkala,E.,Teppo,L.,Dietary antioxidants and the risk of lung-cancer,Am J Epidemiol,1991,134,471-479.
    [83]Robaszkiewicz,A.,Balcerczyk,A.,Bartosz,G.,Antioxidative and prooxidative effects of quercetin on A549 cells,Cell Biol Int,2007,31,1245-1250.
    [84]蓝锴,康格非,自由基与肿瘤,中国检验医学与临床,2002,3(1),38-39.
    [85]Wartenerg,M.,Fischer,K.,Hescheler,J.,Sauer,H.,Redox regulation of P-glycoprotein-mediated multidrug resistance in multicellular prostate tumor spheroids,Int J Cancer,2000,85,267-274.
    [86]Hileman,E.O.,Liu,J.,Albitar,M.,Keating,M.J.,Huang,P.,Intrinsic oxidative stress in cancer cells:a biochemical basis for therapeutic selectivity, Cancer Chemother Pharmacol,2004,53,209-219.
    [87]Agostinelli,E.,Seiler,N.,Non-irradiation-derived reactive oxygen species (ROS) and cancer:therapeutic implications,Amino Acids,2006,31,341-355.
    [88]刘尚武,邓德山,刘建全,橐吾属的起源、演化与地理分布,植物分类学报,1994,32(6),514-524.
    [89]Liu,S.W.,Flora of China,Science Press,Beijing,1989,77,41.
    [90]杨华,王春明,贾忠建,千里光中四个新倍半萜的结构,化学学报,2001,59(10),1686-1690.
    [91]Zhao,Y.,Wang,P.,Parsons,S.,Rankin,D.W.H.,Guéritte,F.,Sevénet,T.,Yu,H.,He,Y.N.,Hao,X.J.,Saluenolide A,a novel eremophilanolide from Senecio saluenensis,Chin Chem Lett,2002,13(4),333-334.
    [92]Zhang,Q.J.,Dou,H.,Zheng,Q.X.,Zhou,C.X.,Xu,Z.J.,Peng,H.,Zhao,Y.,Two cytotoxic eremphilanolides from Senecio tsoongianus,Chin Chem Lett,2005,16(3),362-364.
    [93]高坤,王文蜀,贾忠建,假橐吾中四对新的倍半萜结构研究,化学学报,2003,61(7),1065-1070.
    [94]Fei,D.Q.,Li,S.G.,Liu,C.M.,Wu,G.,Gao,K.,Eremophilane-type sesquiterpene derivatives from the roots of Ligularia lapathifolia,J Nat Prod,2007,70,241-245.
    [95]Shiono,Y.,Murayama,T.,New eremophilane-type sesquiterpenoids,eremoxylarins A and B from xylariaceous endophytic fungus YUA-026,Z Naturforsch,2005,60b,885-890.
    [96]Che,Y.S.,Gloer,J.B.,Wicklow,D.T.,Phomadecalins A-D and phomapentenone A:new bioactive metabolites from phoma sp.NRRL 25697,a fungal colonist of Hypoxylon stromata,J Nat Prod,2002,65,399-402.
    [97]Wang,W.S.,Gao,K.,Jia,Z.J.,New eremophilenolides from Ligulariopsis shichuana,J Nat Prod,2002,65,714-717.
    [98]Zhao,Y.,Jia,Z.J.,Yang,L.,Novel sesquiterpenes from Ligularia veitchiana,Planta Med,1994,60,91-92.
    [99]Sugama,K.,Hayashi,H.,Mitsuhashi,H.,Eremophilenolides from Petasites japonicus,Phytochemistry,1985,24,1531-1535.
    [100]施树云,赵昱,张宇平,黄可龙,刘素琴,黑紫橐吾化学成分的分离与鉴定,香等学校化学学报,2008,29,941-943.
    [101]Mosmann,T.,Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays,J Immunol Methods,1983,65(1-2),55-63.
    [102]Zuliani,T.,Duval,R.,Jayat,C.,Schnébert,S.,André,P.,Dumas,M.,Ratinaud,M.,Sensitive and reliable JC-1 and TOTO-3 double staining to assess mitochondrial transmembrane potential and plasma membrane integrity:interest for cell death investigations,Cytometry,2003,54A,100-108.
    [103]Darzynkiewicz,Z.,Bedner,E.,Smolewski,P.,Flow cytometry in analysis of cell cycle and apoptosis,Semin Hematol,2001,38,179-193.
    [104]Gorczyca,W.,Melamed,M.R.,Darzynkiewicz,Z.,Analysis of apoptosis by flow cytometry,Methods Mol Biol,1998,91,217-238.
    [105]Nicoletti,I.,Migliorati,G.,Pagliacci,M.C.,Grignani,F.,Riccardi,C.,A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry,J Immunol Methods,1991,139,271-279.
    [106]Kolch,W.,Meaningful relationships:the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions,Biochem J,2000,351,289-305.
    [107]Wang,S.,Shi,X.L.,Mechanisms of Cr(Ⅵ)-induced p53 activation:the role ofphosphorylation,mdm2 and ERK,Carcinogen,2001,22,757-762.
    [108]Lewis,T.S.,Shapiro,P.S.,Ahn,N.G.,Signal transduction through MAP kinase cascades,Adv Cancer Res,1998,74,49-139.
    [109]Fleming,Y.,Armstrong,C.G.,Morrice,N.,Paterson,A.,Goedert,M.,Cohen,P.,Synergistic activation of stress-activated protein kinase 1/c-Jun N-terminal kinase(SAPK1/JNK) isoforms by mitogen-activated protein kinase kinase 4(MKK4) and MKK7,Biochem J,2000,352,145-154.
    [110]Buschmann,T.,Potapova,O.,Bar-Shira,A.,Ivanov,V.N.,Fuchs,Y.,Henderson,S.,Fried,V.A.,Minamoto,T.,Alarcon-Vargas,S.,Pincus,M.R., Gaarde, W.A., Holbrook, N.J., Shiloh, Y., Ronai, Z., Jun NH_2-terminal kinase phosphorylation of p53 on thr81 is important for p53 stabilization and transcriptional activities in response to stress, Mol Cell Biol, 2001, 21,2743-2754.
    [111] Noguchi, K., Kitanaka, C, Yamana, H., Kokubu, A., Mochizuki, T.,Kuchino, Y, Regulation of c-myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase, J Biol Chem, 1999, 274, 32580-32587.
    [112] Johnson, G.L., Lapadat, R., Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases, Science, 2002, 298,1911-1912.
    [113] [25] Toumier, C, Hess, P., Yang, D.D., Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway, Science,2000,288, 870-874.
    [114] Inoshita, S., Takeda, K., Hatai, T., Terada, Y, Sano, M., Hata, J., Umezawa,A., Ichijo, H., Phosphorylation and inactivation of myeloid cell leukemia 1 by JNK in response to oxidative stress, J Biol Chem, 2002, 277,43730-43734.
    [115] Hockenbery, D., Nunez, G, Milliman, C, Schreiber, R.D., Korsmever, S.J.,Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death, Nature, 1990, 348,334-336.
    [116] [28] Oltvai, A.N., Milliman, C.L., Korsmeyer, S.J., Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death, Cell, 1993, 74,609-619.
    [117] Jurgensmeier, J.M., Xie, Z., Deveraux, Q., Ellerby, L., Bredesen, D., Reed,J.C., Bax directly induces release of cytochrome c from isolated mitochondria,Proc Natl Acad Sci USA, 1998, 95, 4997-5002.
    [118] Narita, M., Shimizu, S., Ito, T., Chittenden, T., Lutz, R.J., Matsuda, H.,Tsujimoto, Y., Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria,Proc Natl Acad Sci USA, 1998, 95, 14681-14686.
    [119] Lavoie, J.N., Allemain, G, Brunet, A., Muller, R., Pouyssequr, J., Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway, J Biol Chem, 1996, 271,20608-20616.
    [120] Downward, J., Targeting RAS signaling pathways in cancer therapy, Nat Rev Cancer, 2003, 3,11-22.
    [121] Squires, M.S., Nixon, P.M., Cook, S.J., Cell-cycle arrest by PD184352 requires inhibition of extracellular signal-regulated kinases (ERK)1/2 but not ERK5/BMK1, Biochem J, 2002,366,673-680.
    [122] Favata, M.F., Horiuchi, K.Y., Manos, E.J., Daulerio, A.J., Stradley, D.A.,Feeser, W.S., Van Dyk, D.E., Pitts, W.J., Earl, R.A., Hobbs, F, Copeland, R.A.,Magolda, R.L., Scherle, P.A., Trzaskos, J.M., Identification of a novel inhibitor of mitogen-activated protein kinase kinase, J Biol Chem, 1998, 273,18623-18632.
    [123] Hoshino, R., Tanimura, S., Watanabe, K., Kataoka, T., Kohno, M.,Blockade of the extracellular signal-regulated kinase pathway induces marked G1 cell cycle arrest and apoptosis in tumor cells in which the pathway is constitutively activated: up-regulation of p27 (Kip1), J Biol Chem, 2001, 276,2686-2692.
    [124] Kortylewski, M., Heinrich, P.C., Kauffmann, M.E., Bohm, M.,Mackiewicz, A., Behrmann, I., Mitogen-activated protein kinases control p27/Kip1 expression and growth of human melanoma cells, Biolchem J, 2001,357,297-303.
    [125] Keenan, S.M., Bellone, C, Baldassare, J.J., Cyclin-dependent kinase 2 nucleocytoplasmic translocation is regulated by extracellular regulated kinase,J Bio Chem, 2001, 25,22404-22409.
    [126] Sherr, C.J., Roberts, J.M., CDK inhibitors: positive and negative regulators of G1-phase progression, Genes Dev, 1999, 13,1501-1512.
    [127] Botz, J., Zerfass-Thome, K., Spitkovsky, D., Delius, H., Vogt, B., Eilers,M., Hatzigeorgiou, A., Jansen-Durr, P., Cell cycle regulation of the murine cyclin E gene depends on an E2F binding site in the promoter, Mol Cell Biol,1996, 16, 3401-3409.
    [128] Inoue, M., Sato, E.F., Nishikawa, M., Park, A.M., Kira, Y., Imada, I., Utsumi,K.,Mitochondrial generation of reactive oxygen species and its role in aerobic life,Curr Med Chem,2003,10,2495-2505.
    [129]陈瑾歆,唐聪明,氧自由基的研究进展,海南医学院学报,2004,10(3),206-208.
    [130]Cayuela,M.M.,Oxygen free radicals and human disese,Biochimie,1995,77,147-161.
    [131]Bandyopadhyay,U.,Das,D.,Banerjee,R.,Reactive oxygen species:oxidative damage and pathogenesis,Curr Sci,1999,77(5),658-666.
    [132]陈瑗,周玟,自由基与衰老,北京,人民卫生出版社,2004,27.
    [133]Agostinelli,E.,Seiler,N.,Non-irradiation-derived reactive oxygen species (ROS) and cancer:therapeutic implications,Amino Acids,2006,31,341-355.
    [134]Dizdaroglu,M.,Jaruga,P.,Birincioglu,M.,Rodriguez,H.,Free radical-induced damage to DNA:mechanisms and measurement,Free Radic Biol Med,2002,32,1102-1115.
    [135]Floyd,R.A.,Role of oxygen free radicals in carcinogenesis and brain ischemia,FASEB J,1990,4,2587-2597.
    [136]Dizdarogu,M.,Oxidative damage to DNA in mammalian chromatin,Mutat Res,1992,275,331-342.
    [137]Breen,A.P.,Murphy,J.A.,Reactions of oxyl radicals with DNA,Free Radic Biol Med,1995,18,1033-1077.
    [138]Steenken,S.,Purine bases,nucleoside,and nucleotides:aqueous solution redox chemistry and transformation reactions of their radical cations and e and OH adducts,Chem Rev,1989,89,503-520.
    [139]Vieira A.J.S.C.,Candeias,L.P.,Steenken,S.,Hydroxyl radical-induced damage to the purine-bases of DNA-in vitro studies,J Chim Phys,1993,90,881-897.
    [140]Brtmer,S.D.,Norman,D.P.G.,Verdine,G.L.,Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA,Nature,2000,403,859-866.
    [141]Inoue,M.,Sato,E.F.,Nishikawa,M.,Park,A.M.,K_ira,Y.,Imada,I., Utsumi,K.,Mitochondrial generation of reactive oxygen species and its role in aerobic life,Curr Med Chem,2003,10,2495-2505.
    [142]Marnett,L.J.,Lipid peroxidation-DNA damage by malondiadehyde,Mut Res Fund Mol Mech Mutagen,1999,424,83-95.
    [143]Fink,S.P.,Reddy,G.R.,Mamett,L.J.,Mutagenicity in Escherichia coli of the major DNA adduct.derived from the endogenous mutagen malondialdehyde,Proc Natl Acad Sci USA,1997,94,8652-8657.
    [144]蓝锴,康格非,自由基与肿瘤,中国检验医学与临床,2002,3(1),38-39.
    [145]Basu,A.K.,Wood,M.L.,Niedemhofer,L.J.,Ramos,L.A.,Essigrnann,J.M.,Mutagenic and genotoxic effects of 3-vinyl chloride-induced DNA lesions- 1,n(6)-ethenoadenine,3,n(4)-ethenocytosine,and 4-amino-5-(imidazol-2-yl) imidazole,Biochemistry,1993,32,12793-12801.
    [146]Moriy,A.M.,Zhang,W.,Johnson,F.,Grollman,A.P.,Mutagenic potency of exocyclic DNA-adducts-marked differences between Escherichia coli and simian kidney cells,Proc Natl Acad Sci USA,1994,25,11899-11903.
    [147]Pandya,G.A.,Moriya,M.,1,N-6-Ethenodeoxyadenosine,a DNA addcut highly mutagenic in mammalian cells,Biochemistry,1996,35,11487-11492.
    [148]Nath,R.G.,Chung,F.L.,Detection of exocyclic 1,N-2-propanodeoxy -guanosine adducts as common DNA lesions in rodents and humans,Proc Natl Acad Sci USA,1994,91,7491-7495.
    [149]Stadtman,E.R.,Protein oxidation and aging,Science,1992,257,1220-1224.
    [150]Stadtman,E.R.,Role of oxidant species in aging,Curr Med Chem,2004,11,1105-1112.
    [151]Stadtman,E.R.,Protein oxidation in aging and age-related diseases,Ann New York Acad Sci,2001,928,22-38.
    [152][25]Levine,R.L.,Stadtman,E.R.,Oxidative modification of proteins during aging,Exp Gerontol,2001,36,1495-1502.
    [153]朱茂祥,杨陟华,龚诒芬,陆颖,曹珍山,细胞内活性氧及其DNA损伤产物在启动细胞癌变中的作用,癌症,2001,20,1024-1028.
    [154]Thannickal,V.J.,Fanburg,B.L.,Reactive oxygen speicies in cell signaling,Am J Physio Lung Cell Mol Physiol,2000,279,L1005-L1028.
    [155]Lowenstein,C.J.,Dinerman,J.L.,Snyder,S.H.,Nitric-oxide,a physiological messenger,Ann Intern Med,1994,120,227-237.
    [156]Storz,P.,Reactive oxygen species in tumor progression,Front Biosci,2005,10,1881-1896.
    [157]Poli,G.,Leonarduzzi,G.,Biasi,F.,Chiarpotto,E.,Oxidative stress and cell signalling,Curr Med Chem,2004,11,1163-1182.
    [158]Kyriakis,J.M.,Avruch,J.,Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation,Physiol Rev,2001,81,807-869.
    [159]Iles,K.E.,Forman,H.J.,Macrophage signaling and respiratory burst,Imuno Res,2002,26,95-105.
    [160]Torres,M.,Forman,H.J.,Activation of several MAP kinases upon stimulation of rat alveolar macrophages:role of the NADPH oxidase,Arch Biochem Biophys,1999,366,231-239.
    [161]Chen,W.,Martindale,J.L.,Holbrook,N.J.,Liu,Y.,Tumor promoter arsenite activates extracellular signal regulated kinase through a signaling pathway mediated by epidermal growth factor receptor and Shc,Mol Cell Biol,1998,18,5178-5188.
    [162]Huang,R.P.,Wu,J.X.,Fan,Y.,Adamson,E.D.,UV activates growth factor receptors via reactive oxygen intermediates,J Cell Biol,1996,133,211-220.
    [163]Sachsenmaier,C.,Radler-Pohl,A.,Zinck,R.,Nordheim,A.,Herrlich,P.,Rahmadorf,H.J.,Involvement of growth factor receptors in the mammalian UVC response,Cell,1994,78,963-972.
    [164]Schieven,G.L.,Mittler,R.S.,Nadler,S.G.,Kirihara,J.M.,Bolen,J.B.,Kanner,S.B.,Ledbetter,J.A.,ZAP-70 tyrosine kinase,CD45,and T cell receptor involvement in UV- and H^_O_2-induced T cell signa transduction, J Biol Chem, 1994, 269,20718-20726.
    [165] Zanke, B.W., Boudreau, K., Rubie, E., Winnett, E., Tibbies, L.A., Zon, L.,Kyriakis, J., Liu, E.F., Woodgett, J.R., The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat, Curr Biol, 1996, 6,606-613.
    [166] Knebel, A., Rahmsdorf, H.J., Ullrich, A., Herrlich, P., Dephosphorylation of receptor tyrosine kinases as target of reguation by radiation, oxidants or alkylating agents, EMBOJ, 1996, 15, 5314-5325.
    [167] Guyton, K.Z., Gorospe, M., Kensler, T.W., Holbrook, N.J., Mitogen activated protein kinase (MAPK) activation by butylated hydroxytouene hydroperoxide: implications for cellular survival and tumor promotion, Cancer Res, 1996, 56, 3480-3485.
    [168] Guyton, K.Z., Liu, Y., Gorospe, M., Xu, Q., Holbrook, N.J., Activation of mitogen-activated protein kinase by H_2O_2. Role in cell survival following oxidant injury, J Biol Chem, 1996,271,4138-4142.
    [169] Petrache, I., Choi, M.E., Otterbein, L.E., Chin, B.Y., Mantell, L.L.,Horowitz, S., Choi, A.M., Mitogen-activated protein kinase pathway mediates hyperoxia-induced apoptosis in cultured macrophage cells, Am J Physio, 1999,277, L589-L595.
    [170] Wang, X., Martindale, J.L., Liu, Y., Holbrook, N.J., The celluar response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival, Biochem J, 1998, 333 (Pt 2), 291-300.
    [171] Jimenez, L.A., Zanea, C, Fung, H., Jansen, Y.M., Vacek, P., Charland, C.,Goldberg, J., Mossman, B.T., Role of extracelular signal-reguated protein kinases in apoptosis by asbestos and H_2O_2, Am J Physiol, 1997, 273,L1029-L1035.
    [172] Wang, X., Martindale, J.L., Holbrook, N.J., Requirement for ERK activation in cisplatin-induced apoptosis, J Biol Chem, 2000, 275,39435-39443.
    [173] Saitoh, M., Nishitoh, H., Fujii, M., Takeda, K., Sawada, Y., Kawabata, M.,Miyazono, K., Ichijo, H., Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK)1, EMBO J, 1998, 17,2596-2606.
    
    [174] Zou, X., Tsutsui, T., Ray, D., Blomquist, J.F., Ichijo, H., Ucker, D.S.,Kiyokawa, H., The cell cycle-regulatory CDC25A phosphatase inhibits apoptosis signal-regulating kinase 1, Mol Cell Biol, 2001, 21,4818-4828.
    
    [175] Chen, Y.R., Shrivastava, A., Tan, T.H., Down-regulation of the c-Jun N-terminal kinase (JNK) phosphatase M3/6 and activation of JNK by hydrogen peroxide and pyrrolidine dithiocarbamate, Oncogene, 2001, 20,367-374.
    
    [176] Chen, K., Vita, J.A., Berk, B.C., Keaney, J.F., c-Jun-N-terminal kinase activation by hydrogen peroxide in endothelial cells involves SRC-dependent epidermal growth factor receptor transactivation, J Biol Chem, 2001, 276,16045-16050.
    
    [177] Turner, N.A., Xia, F., Azhr, G, Zhang, X., Liu, L., Wei, J.Y., Oxidative stress induces DNA fragmentation and caspase activation via the c-Jun NH2-terminal kinase pathway in H9c2 cardiac muscle cells, J Mol Cell Cardiol,1998,30,1789-1901.
    
    [178] Garay, M., Gaarde, W., Monia, B.P., Nero, P., Cioffi, C., Inhibition of hypoxia/reoxygenation-induced apoptosis by an antisense oligonucleotide targeted to JNK1 in human kidney cells, Biochem Pharmacol, 2000, 59,1033-1043.
    
    [179] Hreniuk, D., Garay, M., Gaarde, W., Monia, B.P., McKay, R.A., Cioffi, C.,Inhibition of c-Jun N-terminal kinase 1, but not c-Jun N-terminal kinase 2,suppresses apoptosis induced by ischemia/reoxygenation in rat cardiac myocytes, Mol Pharmacol, 2001, 59, 867-874.
    
    [180] Yin, Z., Ivanov, V.N., Habelhah, H., Tew, K., Ronai, Z., Glutathion S-transferase p elicits protection against H_2O_2-induced cell death via coordinated regulation of stress kinases, Cancer Res, 2000, 60,4053-4057.
    
    [181] Tobiume, K., Matsuzawa, A., Takahashi, T., Nishitoh, H., Morita, K., Takeda, K., Minowa, O., Miyazono, K., Noda, T., Ichijo, H., ASK1 is required for sustained activations of JNK/p38 MAP kinase and apoptosis, EMBO Rep,2001,2,222-228.
    [182] Minamino, T., Yujiri, T., Papst, P.J., Chan, E.D., Johnson, G.L., Terada, N.,MEKK1 suppresses oxidative stress-induced apoptosis of embryonic stem cel-derived cardiac myocytes, Proc Natl Acad Sci USA, 1999, 96,15127-15132.
    [183] Buschmann, T., Yin, Z., Bhoumik, A., Ronai, Z., Amino-termina-derived JNK fragment alters expression and activity of c-Jun, ATF2, and p53 and increases H_2O_2-induced cell death, J Biol Chem, 2000,275,16590-16596.
    [184] Potpova, O., Haghighi, A., Bost, F., Liu, C., Birrer, M.J., Gjerset, R.,Mercola, D., The Jun kinase/stress-activated protein kinase pathway functions to regulate DNA repair and inhibition of the pathway sensitizes tumor cells to cisplatin,J Biol Chem, 1997, 272,14041-14044.
    [185] Zhuang, S., Demirs, J.T., Kochevar, I.E., p38 mitogen-activated protein kinase mediates bid cleavage, mitochondria dysfunction, and caspase-3 activation during apoptosis induced by singlet oxygen but not by hydrogen peroxide, JBiol Chem, 2000,275,25939-25948.
    [186] Orange, J.S., Levy, O., Geha, R.S., Human disease resulting from gene mutations that interfere with appropriate nuclear factor kappa B activation,Immunol Rev, 2005,203,21-37.
    [187] Hughes, G., Murphy, M.P., Ledgerwood, E.C., Mitochondrial reactive oxygen species reguate the temporal activation of nuclear factor kappa B to modulate tumour necrosis factor-induced apoptosis: evidence from mitochondria-targeted anitoxidants, Biochem J, 2005, 389, 83-89.
    [188] Kim, D.K., Cho, E.S., Lee, B.R., Um, H.D., NF-kappa B mediates the adaptation of human U937 cells to hydrogen peroxide, Free Radic Biol Med,2001,30,563-571.
    [189] Mattson, M.P., Goodman, Y., Luo, H., Fu, W., Furukawa, K., Activation of NF-kappa B protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration, J Neurosci Res, 1997,49, 681-697.
    [190] Volgraf, U., Wegner, M., Richter-Landsberg, C, Activation of AP-1 and nuclear factor-kappa B transcription factors is involved in hydrogen peroxide-induced apoptotic cell death of oligodendrocytes, J Neurochem, 1999,73,2501-2509.
    [191] Aoki, M., Nata, T., Morishita, R., Matsushita, H., Yamamoto, K.,Yamazaki, K., Nakabayashi, M., Ogihara, T., Kaneda, Y, Endothelial apoptosis induced by oxidative stress through activation of NF-kappa B:antiapoptotic effect of antioxidant agents on endotheia cells, Hypertension,2001, 38,48-55.
    [192] Ryan, K.M., Ernst, M.K., Rice, N.R., Vousden, K.H., Role of NF-kappa B in p53-mediated programmed cell death, Nature, 2000, 404, 892-897.
    [193] Pinkus, R., Weiner, L.M., Daniel, V., Role of oxidants and antioxidants in the induction of AP-1, NF-kappa B, and glutathione S-transferase gene expression, J Biol Chem, 1996,271,13422-13429.
    [194] Hsu, T.C., Young, M.R., Crnarik, J., Colbum, N.H., Activator protein 1(AP-1)- and nuclear factor kappa B (NF-kappa B)-dependent transcriptiona events in carcinogenesis, Free Radic Biol Med, 2000,28,1338-1348.
    [195] Hollstein, M., Sidransky, D., Vogelstein, B., Harris, C.C., p53 mutations in human cancer, Science, 1991, 253,49-53.
    [196] Renzing, J., Hansen, S., Lane, D.P., Oxidative stress is involved in the UV activation of p53, J Cell Sci, 1996, 109,1105-1112.
    [197] Bulavin, D.V., Saito, S., Hollander, M.C., Sakaguchi, K., Anderson, C.W.,Appella, E., Fornace, A.J.Jr., Phosphorylation of human p53 by p38 kinase coordinates N-termina phosphorylation and apoptosis in response to UV radiation, EMBO J, 1999,18, 775-794.
    [198] Meplan, C, Richard, M.J., Hainaut, P., Redox signaing and transition metals in the control of the p53 pathway, Biochem Pharmacol, 2000, 59, 25-33.
    [199] Johnson, T.M., Yu, Z.X., Ferrans, V.J., Lowensein, R.A., Finkel, T.Reactive oxygen species are downstream mediators of p53-dependent apoptosis, Proc Natl Acad Sci USA, 1996,93,11848-11852.
    [200} Polyak, K., Xia, Y., Zweier, J.L., Kinzler, K.W., Vogestein, B., A model for p53-induced apoptosis, Nature, 1997, 389, 300-305.
    [201] Ranganathan, S., Joseph, J., Mehta, J.L., Aspirin inhibits human coronary artery endothelial cell proliferation by upregulation of p53, Biochem Biophys Res Commun, 2003, 301,143-146.
    [202] Zhong, H., De Marzo, A.M., Laughner, E., Lim, M., Hilton, D.A., Zagzag,D., Buechler, P., Isaacs, W.B., Semenza, G.L., Simons, J.W., Overexpression of hypoxia-inducible factor 1 alpha in common human cancers and their metastases, Cancer Res, 1999, 59, 5830-5835.
    [203] Gao, N., Jiang, B.H., Leonard, S.S., Corum, L., Zhang, Z., Roberts, J.R.,Antonini, J., Zheng, J.Z., Flynn, D.C., Castranova, V., Shi, X.L., p38 signaling-mediated hypoxia-inducible factor 1 alpha and vascular endothelial growth factor induction by Cr (VI) in DU145 human prostate carcinoma cells,J Biol Chem, 2002, 277,45041-45048.
    [204] Sonoda, Y, Watanabe, S., Matsumoto, Y, Aizu-Yokota, E., Kasahara, T.,FAK is the upstream signa protein of the phosphatidyinositol 3-kinase-Akt survival pathway in hydrogen peroxide-induced apoptosis of a human glioblastoma cell line,J Biol Chem, 1999, 274,10566-10570.
    [205] Wang, X., McCullough, K.D., Franke, T.F., Holbrook, N.J., Epiderma growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival, J Biol Chem, 2000,275,14624-14631.
    [206] Majumder, P.K., Mishra, N.C., Sun, X., Bharti, A., Kharbanda,S., Saxena,S., Kufe, D., Targeting of protein kinase C 5 to mitochondria in the oxidative stress response, Cell Growth Differ, 2001, 12, 465-470.
    [207] Rane, S.G, Reddy, E.P., Janus kinases: components of multiple signaling pathways, Oncogene, 2000,19, 5662-5679.
    [208] Clopton, D.A., Saltman, P., Low-level oxidative stress causes cell-cycle specific arrest in cultured cells, Biochem Biophys Res Commun, 1995, 210,189-196.
    
    [209] Dulic, V., Kaufinann, W.K., Wilson, S.J., Tlsty, T.D., Lees, E., Harper,J.W., Elledge, S.J., Reed, S.I., p53-Dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced Gl arrest, Cell,1994,76,1013-1023.
    
    [210] Russo, T., Zambrano, N., Esposito, F., Ammendola, R., Cimino,F.,Fiscella, M., Jackman, J., O'Connor, P.M., Anderson, C.W., Appella, E., A p53-independent pathway for activation of WAF1/CEP1 expression following oxidative stress, J Biol Chem, 1995,270,29386-29391.
    
    [211] Shackelford, R.E., Innes, C.I., Sieber, S.O., Leadon, S.A., Paules, R.S.,The ataxia telangiectasia gene products is required for oxidative stress-induced Gl and G2 checkpoint function in human fibroblasts, J Biol Chem, 2001, 276,21951-21959.
    
    [212] Pierce, GB., Parchment, R.E., Lewellyn, A.L., Hydrogen peroxide as a mediator of programmed cell death in the blastocyst, Differentiation, 1991,465,181-186.
    
    [213] Cossarizza, A., Franeschi, C, Monti, D., Salvioli, S., Bellesia, E.,Rivabene, R., Biondo, L., Rainaldi, G, Tinari, A., Malorni, W., Protective effect of N-acetylcysteine in tumor necrosis factor-alpha-induced apoptosis in U937 cells: the role of mitochondria, Exp Cell Res, 1995, 220, 232-240.
    
    [214] Um, H.D., Orenstein, J.M., Wahl, S.M., Fas mediates apoptosis in human monocytes by a reactive oxygen intermediate dependent pathway, J Immunol,1996, 156, 3469-3477.
    
    [215] Bauer, M.K.A., Vogt, M., Los, M., Siegel, J., Wesseborg, S.,Schulze-Osthoff, K., Role of reactive oxygen intermediates in activation-induced CD95 (Apo/Fas) ligand expression, J Biol Chem, 1998, 273,8040-8055.
    
    [216] Green, D.R., Reed, J.C., Mitochondria and apoptosis, Science, 1998, 281, 1309-1312.
    
    [217] Zamzami, N., Matchetti, P., Castedo, M., Decaudin, D., Macho, A., Hirsch,T., Susin, S.A., Petit, P.X., Mignotte, B., Kroemer, G, Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death, J Exp Med, 1995,182, 367-377.
    
    [218] Hajri, A., Metzger, E., Valat, F., Coffy, S., Flatter, E., Evrard, S.,Marescaux, J., Aprahamian, M., Role of nitric oxide in pancreatic tumour growth: in vivo and in vitro studies, Br J Cancer, 1998, 78, 841-849.
    
    [219] Arrigo, A.P., Small stress protein: chaperones that act as reguators of intracellular redox state and programmed cell death, Biol Chem, 1998, 379,16-26.
    
    [220] Jia, L., Allen, P.D., Macey, M.G, Grahn, F., Newland, A.C., Kelsey, S.M.,Mitochondrial electron transport chain activity, but not ATP synthesis, is required for drug-induced apoptosis in human leukaemic cells: a possible novel mechanism of regulating drug resistance, Br J Haematol, 1997, 98,686-698.
    
    [221] Wartenberg, M., Ling, F.C., Schallenberg, M., Baumer, A.T., Petrat, K.,Hescheler, J., Sauer, H., Downregulation of intrinsic p-glycoprotein expression in multicellular prostate tumor spheroids by reactive oxygen species, J Biol Chem, 2001,276,17420-17428.
    
    [222] Wartenberg, M., Fischer, K., Hescheler, J., Sauer, H., Redox regulation of p-glycoprotein-mediated multidrug resistance in multicellular prostate tumor spheroids, Int J Cancer, 2000, 85,267-274.
    
    [223] Wartenberg, M., Ling, F.C., Muschen, M., Klein, F., Acker, H., Gassmann,M., Petrat, K., Putz, W., Hescheler, J., Sauer, H., Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor-1 and reactive oxygen species, FASEB J, 2003, 17,503-505.
    
    [224] Chandel, N.S., McClintock, D.S., Feliciano, C.E., Wood, T.M., Melendez,J.A., Rodriguez, A.M., Schumacker, P.T., Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-la during hypoxia: a mechanism of O_2 sensing, J Biol Chem, 2000, 275, 25130-25138.
    [225] Haddad, J.J., Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors, Cell Signal, 2002,14, 879-897.
    [226] Brown, N.S., Bicknell, R., Hypoxia and oxidative stress in breast cancer: Oxidative stress-its effects on the growth, metastatic potential and response to therapy of breast cancer, Breast Cancer Res, 2001, 3, 323-327.
    [227] Comerford, K.M., Wallace, T.J., Karhausen, J., Louis, N.A., Montalto,M.C., Colgan, S.P., Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene, Cancer Res, 2002, 62, 3387-3394.
    [228] Kong, Q., Beel, J.A., Lillehei, K.O., A threshold concept for cancer therapy, Med Hypotheses, 2000, 55,29-35.
    [229] Devi, G.S., Prasad, M.H., Saraswathi, I., Raghu, D., Rao, D.N., Reddy, P.P.,Free radicals antioxidant enzymes and lipid peroxidation in different types of leukemias, Clin Chim Acta, 2000,293, 53-62.
    [230] Toyokuni, S., Oxidative stress and cancer: the role of redox regulation,Biotherapy, 1998,11,147-154.
    [231] Toyokuni, S., Okamoto, K., Yodoi, J., Hiai, H., Persistent oxidative stress in cancer, FEBS Lett, 1995, 358,1-3.
    [232] Szatrowski, T.P., Nathan, C.F., Production of large amounts of hydrogen peroxide by human tumor cells, Cancer Res, 1991, 51, 794-798.
    [233] Kondo, S., Toyokuni, S., Iwasa, Y, Tanaka, T., Onodera, H., Hiai, H.,Imamura, M., Persistent oxidative stress in human colorectal carcinoma, but not in adenoma, Free Radic Biol Med, 1999, 27,401-410.
    [234] Huang, P., Feng, L., Oldham, E.A., Keating, M.J., Plunkett, W.,Superoxide dismutase as a target for the selective killing of cancer cells,Nature, 2000, 407, 390-395.
    [235] Golab, J., Nowis, D., Skrzycki, M., Czeczot, H., Baranczyk-Kuzma, A.,Wilczynski, G.M., Makowski, M., Mroz, P., Kozar, K., Kaminski, R., Jalili, A.,Kopec, M., Grzela, T., Jakobisiak, M., Antitumor effects of photodynamic therapy are potentiated by 2-methoxyestradiol, a superoxide dismutase inhibitor, J Biol Chem, 2003,278,407-414.
    [236] Hileman, E.O., Liu, J., Albitar, M., Keating, M.J., Huang, P., Intrinsic oxidative stress in cancer cells: a biochemical basis for therapeutic selectivity,Cancer Chemother Pharmacol, 2004, 53, 209-219.
    [237] Chung-man, H.J., Zheng, S., Comhair, S.A., Farver, C, Erzurum, S.C.,Differential expression of manganese superoxide dismutase and catalase in lung cancer, Cancer Res, 2001,61, 8578-8585.
    [238] Cobbs, C.S., Levi, D.S., Aldape, K., Israel, M.A., Manganese superoxide dismutase expression in human central nervous system tumors, Cancer Res,1996,56,3192-3195.
    [239] Piyathilake, C.J., Bell, W.C., Oelschlager, D.K., Heimburger, D.C.,Grizzle, W.E., The pattern of expression of Mn and Cu-Zn superoxide dismutase varies among squamous cell cancers of the lung, larynx, and oral cavity, Head Neck, 2002,24, 859-867.
    [240] Kokoglu, E., Aktuglu, G, Belce, A., Leucocyte superoxide dismutase levels in acute and chronic leukemias, Leuk Res, 1989,13,457-458.
    [241] Sun, Y., Free radicals, antioxidant enzymes, and carcinogenesis, Free Radic Biol Med, 1990, 8, 583-599.
    [242] Dasmahapatra, G, Rahmani, M., Dent, P., Grant, S., The tyrphostin adaphostin interacts synergistically with proteasome inhibitors to induce apoptosis in human leukemia cells through a reative oxygen species (ROS)-dependent mechanism, Blood, 2006,107,232-240.
    [243] Chandra, J., Hackbarth, J., Le, S., Loegering, D., Bone, N., Bruzek, L.M.,Narayanan, V.L., Adjei, A.A., Kay, N.E., Involvement of reacitve oxygen species in adaphostin-induced cytotoxicity in human leukemia cells, Blood,2003,102,4512-4519.
    [244] Chen, Q., Espey, M.G, Krishna, M.C., Mitchell, J.B., Corpe, C.P.,Buettner, GR., Shacter, E., Levine, M., Pharmacologic ascorbic acid concentrations selectively kill cancer cells: action as a pro-drug to deliver hydrogen peroxide to tissues, PNAS, 2005,102,13604-13609.
    [245] Sun, S.Y., Li, W., Y, P., Lippman, S.M., Hong, W.K., Lotan, R., Mediation of N-(4-hydoxyphenyl)retinamide-induced apoptosis in human cancer cells by different mechanisms, Cancer Res, 1999, 59, 2943-2948.
    [246] www.graylab.ac.uk/lab/reviews/crcsciyrbk2001.pdf, Free radicals and new prodrugs for cancer therapy.
    [247] Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M., Mazur, M., Free radicals, metals and antioxidants in oxidative stress-induced cancer, Chem-Biol Interact, 2006, 160,1-40.
    [248] Landis, G.N., Tower, J., Superoxide dismutase evolution and life span regulation, Mech Ageing Dev, 2005, 126, 365-379.
    [249] Behrend, L., Henderson, G, Zwacka, R.M., Reactive oxygen species in oncogenic transformation, Biochem Soc Trans, 2003, 31,1441-1444.
    [250] Jiang, Y.F., Complex roles of tissue inhibitors of metalloproteinases in cancer, Oncogene, 2002,21, 2245-2252.
    [251] Mates, J.M., Perez-Gomez, C, De Castro, I.N., Antioxidant enzymes and human diseases, Clin Biochem, 1999, 32, 595-603.
    [252] [125] Knekt, P., Jarvinen, R., Seppanen, R., Rissanen, A., Aromaa, A.,Heinonen, O.P., Albanes, D., Heinonen, M., Pukkala, E., Teppo, L., Dietary antioxidants and the risk of lung-cancer, Am J Epidemiol, 1991,134,471-479.
    [253] Smith, M.A., Harris, P.L.R., Sayre, L.M., Beckman, J.S., Perry, G.,Widespread peroxynitrite-mediated damage in Alzheimer's disease, J Neurosci,1997,17,2653-2657.
    [254] Kang, S.A., Jang, Y.J., Park, H. In vivo dual effects of vitamin C on paraquat-induced lung damage: dependence on released metals from the damaged tissue, Free Radic Res, 1998,28, 93-107.
    [255] Pryor, W.A., Vitamin E and heart disease: basic science to clinical intervention trials, Free Radic Biol Med, 2000, 28,141-164.
    [256] White, E., Shannon, J.S., Patterson, R.E., Relationship between vitamin and calcium supplement use and colon cancer, Cancer Epidemiol Biomark Prev,1997,6,769-774.
    [257]Greenberg,E.R.,Baron,J.A.,Tosteson,T.D.,Freeman,D.H.,Beck,G.J.,Bond,J.H.,Clinical-trial of antioxidant vitamins to prevent colorectal adenoma,N Engl J Med,1994,331,141-147.
    [258]Miller,E.R.,Pastor-Barriuso,R.,Dalai,D.,Riemersma,R.A.,Appel,L.J.,Guallar,E.,Meta-analysis:high-dosage vitamin E supplementation may increase all-cause mortality,Ann Intem Med,2005,142,37-46.
    [259]Masella,R.,Benedetto,R.D.,Vari,R.,Filesi,C.,Giovannini,C.,Novel mechanisms of natural antioxidant compounds in biological systems:involvement of glutathione and glutathione-related enzymes,J Nutr Biochem,2005,16,577-586.
    [260]Jones,D.P.,Carlson,J.L.,Mody,V.C.,Cai,J.Y.,Lynn,M.J.,Steinberg,P.,Redox state of glutathione in human plasma,Free Radic Biol Med,2000,28,625-635.
    [261]Burton,G.W.,Ingold,K.U.,Beta-carotene-an unusual type of lipid antioxidant,Science,1984,224,569-573.
    [262]Karas,M.,Amir,H.,Fishman,D.,Danilenko,M.,Segal,S.,Nahum,A.,Koifrnann,A.,Giat,Y.,Levy,J.,Sharoni,Y.,Lycopene interferes with cell cycle progression and insulin-like growth factor I signaling in mammary cancer cells,Nutr Cancer Int J,2000,36,101-111.
    [263]刘树兴,赵芳,从天然植物中开发抗氧化剂研究进展,食品研究与开发,2007,28,179-182.
    [264]陈会良,顾有方,王月雷,中草药化学成分与抗氧化活性的研究进展,中国中医科技,2006,13,63-64.
    [265]Ames,B.N.,Cathcart,R.,Schwiers,E.,Hochstein,P.,Uric acid provides an antioxidant defence in humans against oxidant and radical-caused aging and cancer:a hypothesis,Proc Natl Acad Sci USA,1981,78,6858-6862.
    [266]Packer,L.,Witt,E.H.,Trischler H.J.,Alpha-lipoic acid as a biological antioxidant,Free Radic Biol Med,1995,19,227-250.
    [267] Lopez-Lazaro, M., Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy, Cancer Lett, 2007, 252,1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700