新型的以组蛋白H1~0为骨架的靶向于EGF受体的基因导入系统的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文构建了一种以组蛋白H10为骨架,靶向于表皮生长因子(EGF)受体的新型基因导入系统。其创新性在于,把基因导入系统中的各种功能成分组建成为融合基因,在大肠杆菌中表达,是化学合成基因导入系统的延续,属相关领域的首次尝试与报道。
    在以往的研究中,我们构建了多聚赖氨酸(polylysine)为骨架、靶向于EGF受体的基因导入系统。GE7-polylysine和HA20-polylysine是系统的两个组成成分。GE7是一种化学合成的16肽,靶向于EGF受体。HA20来源于流感病毒血凝素蛋白,是内吞小体释放寡肽。功能肽GE7、HA20分别通过化学交联与polylysine连接。在体内、体外导入实验中,这种polylysine为骨架的基因导入系统能够靶向性地将DNA导入EGF受体高表达的肿瘤细胞。但化学交联很难确定与polylysine连接的寡肽数目并且花费昂贵,限制了进一步的应用。基因工程方法能解决这些问题,但在大肠杆菌体内不可能表达polylysine,因此我们设计了组蛋白H10为骨架的基因导入系统。我们总共构建了九种融合蛋白,它们分别为GE7-histone-HA20, GE7-histone97-193-HA20, HA20-histone-GE7, Histone-GE7, Histone-HA20, Histone97-193-GE7, Histone97-193-HA20, Histone,Histone97-193。Histone和Histone97-193两种蛋白作为阴性对照。
    组蛋白H10和组蛋白H1097-193通过PCR从人胎盘cDNA文库中获得。与组蛋白H10或组蛋白H1097-193连接的GE7和HA20是从本人构建的表达序列GE7-protamine和HA20-protamine中PCR获得。通过一系列重叠的引物,数轮PCR"搭桥"反应最终获得九个融合蛋白的表达序列。所有的表达序列均克隆在pT7450原核表达载体中。
    
    融合蛋白的表达宿主菌是HMS174(DE3),表达产物通过SP Sepharose和Sephadex G-50纯化。
    所有的融合蛋白与质粒DNA混合后,都能阻滞DNA在1%琼脂糖凝胶中的迁移,电泳结果表明融合蛋白具有结合DNA的能力。DNA与蛋白结合的最佳质量比为1:3。我们采用了经免疫组化鉴定表达EGF受体的SKOV3裸鼠皮下移植瘤、BEL-7402细胞株、BEL-7402裸鼠皮下移植瘤作为靶细胞、组织以检测融合蛋白的生物学活性。U2OS细胞表面未检测出EGF受体的表达,作为导入实验的阴性对照。体外导入实验表明,只有2种蛋白组合(GE7-histone-HA20/Histone-GE7, Histone-GE7/Histone- HA20)能将(-gal基因导入表达EGF受体的细胞,其他组合或单独的蛋白均不能将DNA靶向性地导入EGF受体高表达的细胞。体内导入实验表明,未连接GE7或HA20的组蛋白不能将DNA靶向性地导入细胞,单独Histone-HA20也是同样的结果;单独的Histone-GE7,GE7-histone-HA20,HA20-histone-GE7组的肿瘤中仅检测出少量(-gal基因的表达;将Histone-GE7和Histone-HA20等量混合后,(-gal基因的表达有所增加;GE7-histone-HA20和Histone-GE7等量混合后,SKOV3和BEL-7402肿瘤中可检测到大量(-gal基因的表达。体外导入筛选实验表明,Histone97-193为骨架的基因导入系统活性不如Histone全长。GE7-histone-HA20/Histone-GE7蛋白组合是经体内外导入实验筛选获得的最佳基因导入系统。
    我们同时研究了GE7-histone-HA20/Histone-GE7蛋白组合介导的(-gal基因在肿瘤组织中的表达随时间推移的变化:在皮下瘤周注射后12小时,就有(-gal基因的表达,24小时表达达到高峰,48小时开始下降,96小时、7天、10天表达继续下降,2周后肿瘤组织内仍有少量(-gal基因表达。肿瘤组织中导入的(-gal基因的表达水平还随复合体剂量的增加而上升。含DNA 1(g的复合体是皮下瘤周注射的最佳剂量。
    这一设计思路将基因导入系统中各种功能成分连接后通过基因工程方法表达,属首次尝试与报道,因此仅仅是一个起点。由于给药后,复合体颗粒要历经细胞内外的重重障碍,才能到达靶细胞核,在整个过程中,有众多干扰因素阻碍着复合体的导入进程,增加复合体颗粒的稳定性,避免被降解是该研究今后的发展方向。通过聚乙二醇化可使DNA与融合蛋白形成的复合体稳定性增加。这是在颗粒进入靶细胞前,维持稳定不被降解的对策。通过对复合体颗粒的修饰,完善基因导入系统,以排除细胞内外的干扰,将为今后的临床基因治疗奠定基础。
The construction of a novel gene delivery system based on Histone H10 targeting epidermal growth factor receptor (EGF R) and its expression in E.coli was described. It is an extension of the research on chemically synthetic composite polypeptide gene delivery system in our lab. So far, it is the first trial in gene delivery system research. The biological activity of the expressed polypeptide was studied.
     In previous research, we have constructed a polylysine-based gene delivery system targeting EGF R. It was composed of GE7-polylysine and HA20-polylysine. GE7 was a synthetic peptide (16 amino acids) targeting EGF R. HA20 was derived from influenza virus hemagglutinin, acting as an endosome-releasing oligopeptide. The functional oligopeptides of GE7 and HA20 have been covalently conjugated to polylysine. This polylysine-based gene delivery system was capable of delivering DNA of exogenous gene to tumor cells over-expressing EGF R both in vitro and in vivo. But the uncertainty of cross-link made it difficult to control the number of oligopeptide linked to polylysine and the homogeneity of the final products.
     To solve these problems, a series of Histone H10-based fused genes which contain Histone H10, GE7 or/and HA20 were constructed and expressed in E.coli. We have managed to express 9 fused proteins: GE7-histone-HA20, GE7-histone97-193-HA20, HA20-histone-GE7, Histone-GE7, Histone-HA20, Histone97-193-GE7, Histone97-193-HA20, Histone and Histone97-193, among which the last two were taken as negative control.
     In the process of construction, Histone H10 and Histone H1097-193 were isolated from a placenta cDNA library by using designed primers and PCR. The GE7 and HA20 linked to
    
    Histone H10 and Histone H1097-193 were prepared by PCR from previous constructs of GE7-protamine and HA20-protamine. The DNA sequences of the above 9 fused genes were constructed by several cycles of PCR with overlapped primers. Then all the sequences were cloned into pT7450 prokaryotic expression vector. The nine fused proteins have been expressed in E.coli HMS174 (DE3), and purified by SP Sepharose and Sephadex G-50.
     After mixed with plasmid DNA, all of these proteins were capable of retarding DNA mobility in 1% agarose gel, indicating the binding ability of the fused proteins to DNA. The optimal ratio of DNA to fused protein was 1:3 by weight.
     We have detected EGF R expression in SKOV3 transplanted tumor tissue, BEL-7402 cells and its transplanted tumor by immunohistochemical analysis. They were taken as target cells to verify the delivery capability of fused proteins. U2OS cells, on which no EGF R was detected, were used as a negative control.
     To test the biological activity of this gene delivery system, we have conducted experiments both in vitro and in vivo. In vitro, only two combinations of proteins (GE7-histone-HA20/Histone-GE7, Histone-GE7/Histone-HA20) could deliver (-galactosidase gene to EGF R expressing cells. Other combination and single fused proteins failed to deliver gene targeting EGF R. In vivo, we have found that Histone without GE7 or HA20 was incapable of delivering (-galactosidase gene targeting EGF R expressing cells. Neither was the case of Histone-HA20. By using Histone-GE7, GE7-histone-HA20, and HA20-histone-GE7, slight extent of (-galactosidase activity could be detected. When we used DNA complexed with Histone-GE7/Histone-HA20, slightly more (-galactosidase activity was detected. However, by using a 1:1 mixture of GE7-histone-HA20 and Histone-GE7 as delivery system, much more (-galactosidase activity was detected both in SKOV3 and BEL-7402 tumor cells in vivo. So far, the combined fused protein GE7-histone-HA20 and Histone-GE7 seems to be the optimal gene delivery system.
    We have also examined the time course of (-gal gene expression delivered into the tumor cells by GE7-histone-HA20/Histone-GE7. We found that (-gal gene began to express from 12 hours after peritumoral injection. At 24 hour, the expression reached the peak, and it began to decline at 48 hour. Then
引文
1. Felgner PL, Barenholz Y, Behr JP, et al. Nomenclature for synthetic gene delivery systems. Hum Gene Ther 1997, 8: 511-512
    2. Cotten M, Wagner E. Non-viral approaches to gene therapy. Current Op Biotech 1993, 4: 705-710
    3. Ledley F. Non-viral gene therapy. Current Op Biotech 1994, 5: 626-636
    4. Perales JC, Ferkol T, Molas M, et al. An evaluation of receptor-mediated gene transfer using synthetic DNA-ligand complexes. Eur J Biochem 1994, 226: 255-266
    5. Cosset FL, Russell SJ. Targeting retrovirus entry. Gene Ther 1996, 3: 946-956
    6. Cheng D, Merlino G, Pastan T. A versatile method for the coupling of protein to DNA: synthesis of (2-macroglobulin-DNA conjugate. Nucleic Acids Res 1983, 11: 659-669
    7. Wu GY, Wu CH. Receptor-mediated in vivo gene transformation by a soluble DNA carrier system. J Biol Chem 1987, 262: 4429-4432
    8. Cristiano RJ, Roth JA. Epidermal growth factor mediated DNA delivery into lung cancer cells via the epidermal growth factor receptor. Cancer Gene Ther 1996, 3: 4-10
    9. Sosnowski BA, Gonzalez AM, Chandler LA, et al. Targeting DNA to cells with basic fibroblast growth factor (FGF2). J Biol Chem 1996, 271: 33647-33653
    10. Huckett B, Aeiatti M, Hawtrey AO. Evidence for targeted gene transfer by receptor-mediated endocytosis: stable expression following insulin-directed entry of neo into HepG2 cells. Biochem Pharmacol 1990, 40: 253-263
    11. Rosenkranz AA, Yachmenev SV, Jans DA, et al. Receptor-mediated endocytosis and nulear transport of a transfecting DNA construct. Exp Cell Res 1992, 199: 323-329
    12. Wagner E, Zenke M, Cotton M, et al. Transferrin-polycation conjugates as carriers for DNA uptake into cells. Proc Natl Acad Sci USA 1990, 87: 3410-3414
    13. Cotten M, Laengle-Rouault F, Kirlappos H, et al. Transferrin-polycation-mediated introduction of DNA into human leukemic cells: stimulation by agents that affect the survival of transfected DNA or modulate transferriin receptor levels. Proc Natl Acad Sci USA 1990, 87: 4033-4037
    
    
    14. Zenke M, Steinlein P, Wagner E, et al. Receptor-mediated endocytosis of transferrin-polycation conjugates: an efficient way to introduce DNA into hematopoietic cells. Proc Natl Acad Sci USA 1990, 87: 3655-3659
    15. Wanger E, Cotton M, Foisner R, et al. Transferrin-polycation-DNA complexes: the effect of polycations on the structure of the complex and DNA delivery to cells. Proc Natl Acad Sci USA 1991, 88: 4255-4259
    16. Wagner E, Cotten M, Mechtler K, et al. DNA-binding transferrin conjugates as functional gene-delivery agent: synthesis by linkage of polylysine or ethidium homodimer to the transferrin carbohydrate moiety. Bioconjugate Chem 1991, 2: 226-231
    17. Cotten M, Wagner E, Birnstiel ML. Receptor-mediated transport of DNA into eukarytic cells. Methods Enzymol 1993, 217: 618-644
    18. Kircheis R, Brunner S, Orgris M, et al. Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J Gene Med 1999, 1: 111-120
    19. Taxman DJ, Lee ES, Wojchowski DM. Receptor-targeted transfection using stable maleimido-transferrin/thio-poly-L-lysine conjugates. Anal Biochem 1993, 213: 97-103
    20. Cheng PW. Receptor ligand-faciliated gene transfer: Enhancement of liposome- mediated gene transfer and expression by transferrin. Hum Gene Ther 1996, 7: 275-282
    21. Kircheis R, Kichler A, Wallner G, et al. Coupling of cell-binding ligand to polyethylenimine for targeted gene delivery. Gene Ther 1997, 4: 409-418
    22. Cotten M, Wagner E, Zatloukal K, et al. Chicken adenovirus (CELO virus) paticles augment receptor-mediated DNA delivery to mammalian cells and yield exceptional levels of stable transformants. J Virol 1993, 67: 3777-3785
    23. Batra RK, Wang-Johanning F, Wagner E, et al. Receptor-mediated gene delivery employing lectin-binding specificity. Gene Ther 1994, 1: 255-260
    24. Yin W, Cheng PW. Lectin conjugate-directed gene transfer to airway epithelial cells. Biochem Biophys Res Commun 1994, 205: 826-833
    25. Seglen PO. Inhibitors of lysosomal function. Methods Enzymol 1983, 96: 737-764
    Pless DD, Wellner RB. In vitro fusion of endocytic vesicles: effects of reagents that
    
    26. alter endosomal pH. J Cell Biochem 1996, 62: 27-39
    27. Haensler J, Szoka FC. Polyamidoamine cascade polymer mediate efficient transfection of cells in culture. Bioconjugate Chem 1993, 4: 372-379
    28. Cain CC, Sipe DM, Murphy RF. Regulation of endocytic pH by the NA +, K+ ATPase in living cells. Proc Natl Acad Sci USA 1989, 86: 544-548
    29. Sipe DM, Jesurum A, Murphy RF. Absence of NA+, K+ ATPase regulation of endosomal acidification in K562 erythroleukemia cells. J Biol Chem 1991, 266: 3469-3474
    30. Cristiano RJ, Smith LC, Kay MA, et al. Hepatic gene delivery and expression in primary hepatocytes utilizing a conjugated adenovirus-DNA complex. Proc Natl Acad Sci USA 1993, 90: 11548-11552
    31. Cristiano RJ, Smith LC, Woo SLC. Hepatic gene therapy: adenovirus enhancement of receptor-mediated gene delivery and expression in primary hepatocytes. Proc Natl Acad Sci USA 1993, 90: 2122-2126
    32. Carrasco L. Entry of animal viruses and macromolecules into cells. FEBS Lett 1994, 350: 151-154
    33. Wagner E, Zatloukal K, Cotten M, et al. Coupling of adenovirus to transferrin- polylysine/DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes. Proc Natl Acad Sci USA 1992, 89: 6099-6103
    34. Curiel DT, Agarwal S, Wagner E, et al. Adenovirus enhancement of transferrin -polylysine-mediated gene delivery. Proc Natl Acad Sci USA 1991, 88: 8850-8854
    35. Cotten M., Wagner E, Zatloukal K, et al. High-efficiency receptor-mediated delivery of small and large (48 kb) gene constructs using the endosome-disruption activity of defective or chemically inactivated adenovirus particles. Proc Natl Acad Sci USA 1992, 89: 6094-6098.
    36. Curiel DT, Wagner E, Cotten M, et al. High-efficiency gene transfer mediated by adenovirus coupled to DNA-polylysine complexes. Hum Gene Ther 1992, 3: 147-154
    37. Kupfer JM, Ruan XM, Liu G, et al. High-efficiency gene transfer to autologous rabbit jugular vein grafts using adenovirus-transferrin/polylysine-DNA complex. Hum Gene Ther 1994, 5: 1437-1443
    
    
    38. Cotten M, Saltik M, Kursa M, et al. Psoralen treatment of adenovirus particles eliminates virus replication and transcription while maintaining the endosomolytic activity of the virus capsid. Virology 1994, 205: 254-261
    39. Baker A. and M. Cotton. Delivery of bacterial artificial chromosomes into mammalian cells with psoralen-inactivated adenovirus carrier. Nucleic Acids Res 1997, 25: 1950-1956
    40. Baker A., Saltik M, Lehrmann H, et al. Polyethylenimine (PEI) is a simple, inexpensive and effective reagent for condensing and linking plasmid DNA to adenovirus for gene delivery. Gene Ther 1997, 4: 773-782
    41. Fasbender A, Zabner J, Chillon M, et al. Complexes of adenovirus with polycationic polymers and cationic lipids increase the efficiency of gene transfer in vitro and in vivo. J Biol Chem 1997, 272: 6479-6489
    42. Zauner W, Blaas D, Kuchler E, et al. Rhinovirus-mediated endosomal release of transfection complexes. J Virol 1995, 69: 1085-1092
    43. Plank C, Oberhauser B, Mechtler K, et al. The influence of endosome-disruptive peptides on gene transfer using synthetic virus like gene transfer systems. J Biol Chem 1994, 269: 12918-12924
    44. Gottschalk S, Sparrow JT, Hauer J, et al. A novel DNA-peptide complex for efficient gene transfer and expression in mammalian cells. Gene Ther 1996, 3: 448-457
    45. Kichler A, Mechtler K, Behr JP, et al. The influence of membrane-active peptides and helper lipids on lipospermine/DNA complex mediated gene transfer. Bioconjugate Chem 1997, 8: 213-221
    46. Wyman TB, Nicol F, Zelphati O, et al. Design, synthesis and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry 1997, 36: 3008-3017
    47. Wagner E, Plank C, Zatloukal K, et al. Influenza virus hemagglutinin HA2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes; toward a synthetic virus-like gene transfer vehicle. Proc Natl Acad Sci USA 1992, 89: 7934-7938
    Murata, M., Kagiwada, S., Takahashi, SH., et al. Membrane fusion induced by mutual
    
    48. interaction of the two charge-reversed amphiphilic peptides at neutral pH. J Biol Chem 1991, 266: 14353-14358
    49. 田培坤,任圣俊,任常春,等。一种新的以细胞表面受体为靶向的基因导入系统。中国科学1998, 28:554-560
    50. Sambrook J., Fritsch E.F. and Maniatis T. Molecular cloning: A laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989
    51. Owens RJ, Young RJ. The genetic engineering of monoclonal antibody. J Immunol Methods. 1994, 168:149-165
    52. 鄂征. 组织培养和分子细胞学技术. 北京出版社,1995
    53. 蛋白质电泳实验技术。郭尧君 编著。科学出版社,1999。2 ISBN 7-03- 006899-8
    54. Fritz JD, Herweijer H, Zhang G, et al. Gene transfer into mammalian cells using histone-condensed plasmid DNA. Hum Gene Ther 1996, 7: 1395-1404
    55. Jian Chen, Robert J, Katherine A, et al. Galactosylated histone-mediated gene transfer and expression. Hum Gene Ther 1994, 5: 429-435
    56. Doenecke D, Tonjes R. Differential distribution of lysine and arginine residues in the closely related histones H1 and H5. J Mol Biol 1986, 187: 461-464
    57. Antoni Kozlowski J, Milton Harris. Improvements in protein PEGylation: PEGylated interferons for treatment of hepatitis C. Journal of Controlled Release 2001, 72: 217-224
    58. Wolfgang Zauner, Manfred Ogris, Ernst Wagner. Polylysine-based transfection systems utilizing receptor-mediated delivery. Advanced Drug Delivery Reviews 1998, 30: 97-113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700