新型靶向性聚乙烯亚胺转基因载体的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因治疗有三个重要环节,即目的基因、转基因载体和靶细胞。基因导入系统是基因治疗的核心技术。目前,应用于基因治疗的载体主要有病毒载体系统和非病毒载体系统。病毒载体转染效率高,是体内基因治疗的主要工具,但安全性存在隐患及有免疫原性,体内不能反复应用。而非病毒载体具有安全性高、免疫原性低、易于对DNA进行操作等优点,故人们愈来愈重视人工合成的非病毒载体的研究,而解决靶向性问题是非病毒中载体中最为关注的问题,理想的载体系统是能将治疗基因输送到并进入特定的靶细胞,从而能在该细胞中得到有效表达,这对于恶性肿瘤基因治疗尤为重要。以受体靶向的非病毒载体系统是最常用和有效的策略,利用细胞表面表达特异性的受体或蛋白,将特定的配体分子或片段与载体连接形成分子偶联体,使DNA能靶向性地转到表达受体的细胞。同时,针对非病毒载体的缺陷及DNA转移过程中的内吞小泡释放问题、转运入核问题,根据具体情况选择合适的载体,并对其作进一步的优化、改善以获得满意的治疗或应用效果。目前常用的非病毒载体包括裸DNA,脂质体载体及阳离子多聚物型载体等。聚乙烯亚胺(polyethylenimine,PEI)是最常用的阳离子多聚物非病毒载体,PEI可把质粒DNA缩合(condense)成数百纳米大小的颗粒,通过静电作用黏附到细胞表面上,被动内吞。PEI在吞噬泡内不能降解,同时保护DNA免受溶酶体降解;另外,PEI有渗透性肿胀效应,导致吞噬泡破裂,使DNA进入胞浆,并促进DNA进入细胞核。本实验利用PEI作为载体系统的骨架,同时利用FGF受体(fibroblast growth factor receptor,FGFR)和整合素在大多数肿瘤细胞和肿瘤新生血管高表达的特点,设计了能与肿瘤细胞表面相应受体结合的寡肽:碱性细胞生长因子(basic fibroblast growth factor,bFGF)寡肽、靶向于整合素的RGD寡肽,利用交联技术将寡肽与PEI偶联,构建了新型的非病毒基因载体系统,以增加其对肿瘤细胞及其新生血管的靶向性,旨在用于恶性肿瘤基因治疗的研究。
     研究分两部分:第一部分,PEI转染参数的测定及转染条件的优化。第二部分,靶向于FGFR的bFGF寡肽和靶向于整合素的RGD寡肽的设计与合成,bFGF寡肽/RGD寡肽单靶向的PEI转基因载体的构建及其介导基因转移的有效性和靶向性研究;bFGF寡肽和RGD寡肽联合靶向的PEI转基因载体的制备。
    
    习而绷眨甲巴泊.恨L月民之二自.月眨月睡冲全刁‘因月之,卜白匀月升门回
    中j忆按畏.
     第一部分PEI转染效率的优化
     目的:用分枝状25 kDa PEI作为转基因载体,介导报告基因质粒的转染,测定转染效
    率的多种影响因素,优化转染条件,为合成更复杂的载体积累数据。
     方法:利用电泳阻滞实验测定PEI与DNA的结合能力。利用编码增强型绿色荧光蛋自
    的pEGFP质粒和编码p一半乳糖苍酶的PSVp质粒及Pc0NA3.甲质粒作为报告基因,通过PEI
    转染pEGFP质粒和psvp质粒及peDNA3.邓质粒,检测自蛋白、血清、稀释溶媒、氯喳等
    对PEI转染效率的影响,探索操作方法(包括转染次数、水平摇动、转染复合物与细胞温育
    的时间等)和质粒因素(质粒质量、纯度等)对转染效率的影响。通过MTT法测定PEI的
    细胞毒性。
     结果:经过数据推导,得出PEI与ONA的N用比=7.53xb/c,其中N为PEI中的氮含
    量,P为DNA中的磷含量,b为PEI的质徽扭g),‘为质粒的质量(雌)。PEI对COS一7细
    胞和NIH3T3细胞存在一定的毒性,其C50(50%死亡浓度)为7一8林g八111。电泳阻滞试验,
    PEI/D NA的N用比在2.5~3.0以上可完全阻滞DNA在电泳中的迁移。通过一系列细胞的
    研究,证明PEI心NA转染效率一般以N于=7.5~10最仕。生理盐溶液作为配制PEI心NA复
    合物的溶媒,转染效率高于5%葡萄糖溶液。溶酶体抑制剂氯哇降低PEI转染效果而且增加
    PEI细胞毒性。培养液中的自蛋自、血清显著降低转染效率。试验发现,新鲜制备的PEI心NA
    复合物转染效率>4oC放置24h>>一sooC冻存24h>>一Zooe冻存24h,<0.05)。
     PEI心NA转染psVp后,12h不能测到目的基因表达产物,转染后24h目的基因开始
    表达,在36h表达量达峰值,并持续数大,然后表达量开始卜降。质粒中生物活性抑制剂
    (质粒提取试剂盒的残留成分,内毒素等)显著降低转染效率,通过超滤除去截流分子量小
    于30,000的物质,显著增加转染效率。转染效率与质粒用量呈剂量依赖效应。
     结论:PEI是有效的体外真核细胞转染剂,可用于合成更复杂的转基因载体;本研究检
    测优化了PEI的转染条件井应用于卜而的实验研究。
    第二部分b「G「寡肤偶联的和整合素的RGD寡肤偶联的PE!载体的设计和制备
     目的:设计合成新刑的bFGF寡肤靶向的PEI转基因系统、靶向于整合素的PEI转基因
    载体,研究该载体复合物系统用于基闪转移的效率。许多病毒感染细胞需要双受体机制,除
    细胞特异性受体外,整合素是许多病毒的第二受体,本研究模拟病毒双受体转染细胞的机制,
    制备整合素与FGFR双受体介导的PEI转基因载体。同时探讨核定位信号(nuc!ear locational
    signal,NLs)肤对pEI心NA转染效率的影响。
     方法:根据bFGF(1 55 AA)的三维结构、bFGF分子与FGFR(fibroblast growth factor
The prospect of curing inherited and acquired diseases through gene therapy has engendered considerable effort toward the development of gene transfer vectors. Most ongoing human gene therapy protocols rely on recombinant retroviral and adenoviral vehicles, which risk encountering acute safety and immunological problems with large scale or repeated use, besides their limited carrier capacity. Synthetic vectors, although currently orders of magnitude less efficient than biological vectors, are increasingly being considered to be possible solutions as well.
    Polyethylenimine (PEI) is the most common used polycation gene delivery vector, which can condense plasmids DNA into the particles of hundreds of nanometer or so. PEI/DNA particles abundant with positive charge adhere to negative charged mucoproteins on the surface of the cells, then passively pinocytized into the cells. PEI can not be decomposed by enzymes in the endosome, has a "proton sponge effect" which make endosome osmotic swelling to rupture, and help DNA escape into the cytosol from the endosome. Receptor targeted PEI can enhance PEI's transfection efficiency. In this study, the oligopeptides of basic fibroblast growth factor (bFGF) and RGD oligopeptide were coupled with PEI, aiming at integrins and fibroblast growth factor receptor (FGFR) which are highly expressee on neoplasm neovasculature.
    The study was divided into two parts: 1) To determine the related parameters affecting PEI/DNA transfection and to optimize the PEI/DNA transfection efficiency; 2) To design and synthesize bFGF oligopeptide and RGD oligopeptide binding integrins, to conjugate oligopeptide with PEI, and to assay their transfection efficiency. At the same time, we investigated the effect of nuclear locational peptide (NLS) on PEI/DNA transfection efficiency. Additionally, we developed a novel bFGF oligopeptide/RGD peptide dual-targeted PEI gene delivery vectors and investigated its transfection efficiency in vitro and in vivo.
    Part I : The optimization of PEI/DNA transfection efficiency
    Objective: We chose branched 25 kDa PEI as plasmids DNA delivery vector. In this part, parameters related to PEI/DNA transfection were investigated and PEI/DNA transfection efficiency was optimized, and the data were used for the synthetic targeted PEI vectors.
    Methods: PEI's cytotoxicity was determined by MTT method. The binding capacity of PEI and DNA was determined through electrophoresis gel shift assay. With PEI transfection of pEGFP plasmid coding enhanced green fluoroscene protein (EGFP), pSVp plasmid and pcDNA3.1β coding β-galactosidase(p-gal), the effect of influencing factors (including albumin, serum, dilution medium, endosome inhibitor-chioroquine, etc.) were determined. The manipulation methods (including transfection times, level shaking, incubation times, etc.) and plasmids factors (including the compatibility between the plasmid and the target cells, purity
    
    
    and quality of plasmids, plasmids concentration, etc.) were investigated.
    Results: PEI concentration above 7~8 g/ml was significantly cytotoxic. N/P molar ratio 2.5-3.0 could completely retard DNA migration in the agarose gel electrophoresis. N/P molar ratio in the range of 7.5-10 is optimal for a variety of cells, not concomitant with significant toxicity. Dilution medium of PEI/DNA influenced the transfection efficiency, and physiological solution as dilution medium excelled over 5% glucose solution. Endosome inhibitor chloroquine decreased PEI's transfection efficiency and enhanced PEI's cytotoxity. Albumin and serum in the culture medium decreased the polycation nonviral vector's transfection efficiency.
    In 12 h after PEI/DNA transfection, expressed products of reporter gene could not be detected. 24 h after the transfection, the reporter gene commenced to express, culminated in 36 h, maintained several days and later the expression amounts began to lower. The transfection efficiency was improved with additional transfection, double transfection was optimal. Level shaking of the culture plates for 30 min afte
引文
1. Kataoka K. Gene delivery systems: viral vs. non-viral vectors. Advanced Drug Delivery Reviews,2001;52(151):1
    2. Belousova N, Korokhov N, Krendelshchikova V, Simonenko V, Mikheeva G, Triozzi PL, Aldrich WA, Banerjee PT, Gillies SD, Curiel DT, Krasnykh V. Genetically targeted adenovirus vector directed to CD40-expressing cells. J Virol, 2003 ;77(21):11367-11377
    3. Wildner O. Comparison of replication-selective, oncolytic viruses for the treatment of human cancers. Curt Opin Mol Ther. 2003 Aug;5(4):351-361. Review.
    4. Hlavaty J, Stracke A, Klein D, Salmons B, Gunzburg WH, Renner M. Multiple modifications allow high-titer production of retroviral vectors carrying heterologous regulatory elements. J Virol, 2004;78(3): 1384-1392
    5. Ye X, Liang M, Meng X, Ren X, Chen H, Li ZY, Ni S, Lieber A, Hu F. Insulation from viral transcriptional regulatory elements enables improvement to hepatoma-specific gene expression from adenovirus vectors. Biochem Biophys Res Commun, 2003;307(4):759-764
    6. Mavria G, Jager U, Porter CD. Generation of a high titre retroviral vector for endothelial cell-specific gene expression in vivo. Gene Ther, 2000; 7(5):368-376
    7. Li Y, Yu DC, Chen Y, Amin P, Zhang H, Nguyen N, Henderson DR. A hepatocellular carcinoma-specific adenovirus variant, CV890, eliminates distant human liver tumors in combination with doxorubicin. Cancer Res, 2001; 61(17):6428-6436
    8. NIH Report-assessment of adenoviral vector safety and toxicity: report of the National Institutes of Health Recombinant DNA Advisory Committee. Human Gene Ther, 2002;13:3-13
    9.李经忠,王青青,余海.阳离子多聚物转基因载体的研究进展.国外医学肿瘤学分册,2002,29(5):344-347
    10.李经忠,王青青,余海.非病毒载体的研究现状。国外医学分子生物学分册.2002,24(5):317-320
    11. Wu GY, Wu CH. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem, 1987, 262(10):4429-4432
    12. Zinselmeyer BH, Mackay SR Schatzlein AG, Uchegbu IF. The lower-generation polypropylenimine dendrimers are effective gene-transfer agents. Pharm Res, 2002, 9(7):960-967
    13. Chen QR, Zhang L, Stass SA, Mixson AJ. Branched co-polymers of histidine and lysine are efficient carriers of plasmids. Nucleic Acids Res, 2001, 29(6):1334-1340.
    14. Li HJ, Chang C, Weiskopf M. Helix-coil transition in nucleoprotein-chromatin structure. Biochemistry, 1973;12(9):1763-1772
    15. Laemmli UK. Characterization of DNA condensates induced by poly(ethylene oxide) and
    
    polylysine. Proc Natl Acad Sci USA, 1975;72(11):4288-4292
    16. Wu GY, Wu CH. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem, 1987, 262(10):4429-4432
    17. Wu GY, Wu CH. Receptor-mediated gene delivery and expression in vivo. J Biol Chem, 1988; 263:14621-14624
    18. Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA, 1995; 92(16):7297-7301
    19. Boussif O, Zanta MA, Behr JP. Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000-fold. Gene Ther, 1996, 3(12):1074-1080
    20. Blessing T, Kursa M, Holzhauser R, Kircheis R, Wagner E. Different strategies for formation of pegylated EGF-conjugated PEI/DNA complexes for targeted gene delivery. Bioconjug Chem, 2001;12(4):529-537
    21. Hildebrandt IJ, lyer M, Wagner E, Gambhir SS. Optical imaging of transferrin targeted PEI/DNA complexes in living subjects. Gene Ther, 2003; 10(9):758-764
    22. Kursa M, Walker GF, Roessler V, Ogris M, Roedl W, Kircheis R, Wagner E. Novel shielded transferrin-polyethylene glycol-polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer. Bioconjug Chem, 2003; 14(1):222-231
    23. Rudolph C, Schillinger U, Plank C, Gessner A, Nicklaus P, Muller R, Rosenecker J. Nonviral gene delivery to the lung with copotymer-protected and transferrin-modified polyethylenimine. Biochim B iophys Acta, 2002; 1573(1):75-83
    24. O'Neill MM, Kennedy CA, Barton RW, Tatake RJ. Receptor-mediated gene delivery to human peripheral blood mononuclear cells using anti-CD3 antibody coupled to polyethylenimine. Gene Ther, 2001; 8(5):362-368
    25. Merdan T, Callahan J, Petersen H, Kunath K, Bakowsky U, Kopeckova P, Kissel T, Kopecek J. Pegylated polyethylenimine-fab' antibody fragment conjugates for targeted gene delivery to human ovarian carcinoma cells. Bioconjug Chem, 2003;14(5):989-996
    26. Benns JM, Mahato RI, Kim SW. Optimization of factors influencing the transfection efficiency of folate-PEG-folate-graft-polyethylenimine.J Control Release, 2002; 79(1-3):255-269
    27. Guo W, Lee RL. Receptor-targeted gene delivery via folate-conjugated polyethylenimine. AAPS PharmSci, 1999; 1(4):E19
    28. Benns JM, Maheshwari A, Furgeson DY, Mahato RI, Kim SW. Folate PEG-folate-graft-polyethylenimine based gene delivery.J Drug Target, 2001;9(2):123-139
    29. Zanta MA, Boussif O, Adib A, and Behr JP. In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjugate Chem, 1997; 8:839-844
    30. Bergelson JM, Shepley MP, Chan BM, Hemler ME, Finberg RW. Identification of the integrin VLA-2 as a receptor for echovirus 1. Science, 1992;255(5052): 1718-1720
    
    
    31. Jackson T, Sharma A, Ghazaleh RA, Blakemore WE, Ellard FM, DL Simmons, Newman JW, Stuart DI and King AM. Arginine-glycine-aspartic acid-specific binding by foot-and-mouth disease viruses to the purified integrin alpha(v)beta3 in vitro. J Virol, 1997, (11):8357-8361
    32. Logan D, Abu-Ghazaleh R, Blakemore W, Curry S, Jackson T, King A, Lea S, Lewis R, Newman J, Parry N, et al. Structure of a major immunogenic site on foot-and-mouth disease virus. Nature, 1993;362(6420):566-568
    33. Boonyakiat Y, Hughes P J, Ghazi F, and Stanway G. Arginine-Glycine-Aspartic Acid Motif Is Critical for Human Parechovirus 1 Entry. J Virol, 2001; 75(20):10000-10004
    34. Triantafilou K, Takada Y, Triantafilou M. Mechanisms of integrin-mediated virus attachment and internalization process. Crit Rev Immunol, 2001; 21(4):311-322.
    35. Guerrero CA, Mendez E, Zarate S, Isa P, Lopez S, Arias CF. Integrin alpha(v)beta(3) mediates rotavirus cell entry. Proc Natl Acad Sci USA, 2000;97(26): 14644-14649.
    36. Cartier R, Reszka R. Utilization of synthetic peptides containing nuclear localization signals for nonviral gene transfer systems. Gene Ther, 2002; 9(3):157-167
    37. Adam SA, Gerace L. Cytosolic proteins that specifically bind nuclear location signals are receptors for nuclear import. Cell, 1991 ;66(5):837-877
    38. Sambrook J, Fritsch EF, Maniatis T, eds. Translated by Jin Dong-yan (金冬雁), Li Meng-feng (黎孟枫), et al. Molecular cloning: a laboratory manual. 2nd ed. Beijing: Science publishers, 1992; 939-941. (in chinese)
    39. Mislick KA, Baldeschwieler JD. Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci USA, 1996; 93(22):12349-12354
    40. Bragonzi A, Boletta A, Biffi A, Muggia A, Sersale G, Cheng SH, Bordignon C, Assael BM, Conese M. Comparison between cationic polymers and lipids in mediating systemic gene delivery to the lungs. Gene Ther, 1999; 6(12): 1995-2004.
    41. Cryan SA, O'Driscoll CM. Mechanistic studies on nonviral gene delivery to the intestine using in vitro differentiated cell culture models and an in vivo rat intestinal loop. Pharm Res, 2003; 20(4):569-675
    42. Ferrari S, Pettenazzo A, Garbati N, Zacchello F, Behr JP, Scarpa M. Polyethylenimine shows properties of interest for cystic fibrosis gene therapy. Biochim Biophys Acta, 1999:1447(2-3):219-225
    43. Demeneix B, Behr J, Boussif O, Zanta MA, Abdallah B, Remy J. Gene transfer with lipospermines and polyethylenimines. Adv Drug Deliv Rev, 1998;30(1-3):85-95
    44. Kichler A, Leborgne C, Coeytaux E, Danos O. Polyethylenimine-mediated gene delivery: a mechanistic study. J Gene Med, 2001; 3(2):135-144
    45. Boussif O, Lezoualc'h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA, 1995; 92(16):7297-7301
    46. Gebhart CL, Kabanov AV. Evaluation of polyplexes as gene transfer agents. J Control
    
    Release, 2001; 73(2-3):401-416
    47. Hashida H, Miyamoto M, Cho Y, Hida Y, Kato K, Kurokawa T, Okushiba S, Kondo S, Dosaka-Akita H, Katoh H. Fusion of HIV-1 Tat protein transduction domain to poly-lysine as a new DNA delivery tool. Br J Cancer, 2004;90(6):1252-1258
    48. Zhang X, Sawyer GJ, Dong X, Qiu Y, Collins L, Fabre JW, The in vivo use of chloroquine to promote non-viral gene delivery to the liver via the portal vein and bile duct. J Gene Med, 2003;5(3):209-218
    49. Walton CM, Wu CH, Wu GY. A DNA delivery system containing listeriolysin O results in enhanced hepatocyte-directed gene expression. World J Gastroenterol, 1999;5(6):465-469
    50. Wu GY, Wu CH. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem, 1987;262(10):4429-4432
    51. Kichler A, Leborgne C, Coeytaux E, Danos O. Polyethylenimine-mediated gene delivery: a mechanistic study. J Gene Med, 2001;3(2):135-144
    52. Talsma H, Cherng J, Lehrmann H, Kursa M, Ogris M, Hennink WE, Cotten M, Wagner E. Stabilization of gene delivery systems by freeze-drying. Int J Pharm, 1997; 157(2):233-238
    53. Ogris M, Steinlein P, Carotta S, Brunner S, Wagner E. DNA/polyethylenimine transfection particles: influence of ligands, polymer size, and PEGylation on internalization and gene expression. AAPS PharmSci, 2001;3(3):E21
    54. Ogris M, Steinlein P, Kursa M, Mechtler K, Kircheis R, Wagner E. The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther, 1998; 5(10):1425-1433
    55. Ogris M, Brunner S, Schuller S, Kircheis R, Wagner E. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther, 1999;6(4):595-605
    56. Dash PR, Read ML, Fisher KD, Howard KA, Wolfert M, Oupicky D, Subr V, Strohalm J, Ulbrich K, Seymour LW. Decreased binding to proteins and cells of polymeric gene delivery vectors surface modified with a multivalent hydrophilic polymer and retargeting through attachment of transferrin. J Biol Chem, 2000, 275(6):3793-3802
    57. Kircheis R, Wightman L, Wagner E. Design and gene delivery activity of modified polyethylenimines. Adv Drug Deliv Rev, 2001, 53(3):341-358
    58. Harada-Shiba M, Yamauchi K, Harada A, Takamisawa I, Shimokado K, Kataoka K. Polyion complex miceiles as vectors in gene therapy--pharmacokinetics and in vivo gene transfer. Gene Ther, 2002, 9(6):407-414
    59. Oku N, Yamazaki Y, Matsuura M, Sugiyama M, Hasegawa M, Nango M.. M. A novel non-viral gene transfer system, polycation liposomes. Adv Drug Deliv Rev, 2001;52(3):209-218
    60. Liu G, Molas M, Grossmann GA, Pasumarthy M, Perales JC, Cooper MJ, Hanson RW. Biological properties of poly-L-lysine-DNA complexes generated by cooperative binding of
    
    the polycation. J Biol Chem, 2001;276(37):34379-34387
    61. Liu G, Molas M, Grossmann GA, Pasumarthy M, Perales JC, Cooper MJ, Hanson RW. Biological properties of poly-L-lysine-DNA complexes generated by cooperative binding of the polycation. J Biol Chem, 2001;276(37):34379-34387
    62. Zaric V, Weltin D, Erbacher P, Remy JS, Behr JP, Stephan D. Effective polyethylenimine-mediated gene transfer into human endothelial cells. J Gene Med, 2004 ;6(2):176-184
    63. Kichler A, Zauner W, Ogris M, Wagner E. Influence of the DNA complexation medium on the transfection efficiency of lipospermine/DNA particles. Gene Ther, 1998; 5(6):855-860
    64. Boussif O, Zanta MA, Behr JP. Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000-fold. Gene Ther, 1996; 3(12): 1074-1080
    65. Zanta MA, Boussif O, Adib A, and Behr JP. In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjugate Chem, 1997; 8:839-844
    66. Bahnson AB, Dunigan JT, Baysal BE, Mohney T, Atchison RW, Nimgaonkar MT, Ball ED, Barranger JA. Centrifugal enhancement of retroviral mediated gene transfer. J Virol Methods, 1995; 54(2-3):131-143
    67. Kircheis R, Kichler, A, Wallner G., Kursa M, Ogris M, Felzmann T, Buchberger M, and Wagner E. Coupling of cell-binding ligands to potyethylenimine for targeted gene delivery. Gene Ther, 1997; 4:409-418
    68. Zanta MA, BoussifO, Adib A, and Behr JP. In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjugate Chem, 1997; 8:839-844
    69. Bettinger T, Remy JS, and Erbacher P. Size reduction of galactosylated PEI/DNA complexes improves lectin-mediated gene transfer into hepatocytes. Bioconjugate Chem, 1999; 10: 558-561
    70. Diebold SS, Lehrmann H, Kursa M, Wagner E, Colten M, and Zenke M. Efficient gene delivery into human dendritic cells by adenovirus polyethylenimine and mannose polyethylenimine transfection. Hum Gene Ther, 1999; 10:775-786
    71. Diebold SS, Kursa M, Wagner E, Cotten M and Zenke M. Mannose polyethylenimine conjugates for targeted DNA delivery into dendritic cells. J Biol Chem, 1999;274: 19087-19094
    72. Ma N, Wu SS, Ma YX, Wang X, Zeng J, Tong G, Huang Y, Wang S. Nerve growth factor receptor-mediated gene transfer. Mol Ther, 2004;9(2):270-281
    73. Merdan T, Callahan J, Petersen H, Kunath K, Bakowsky U, Kopeckova P, Kisset T, Kopecek J. Pegylated polyethylenimine-fab' antibody fragment conjugates for targeted gene delivery to human ovarian carcinoma cells.Bioconjug Chem, 2003;14(5):989-996
    74. Suzuki M, Takayanagi A, Shimizu N. Recombinant single-chain antibodies with various oligopeptide tails for targeted gene delivery. Gene Ther, 2003;10(9):781-788
    75. Ogris M, Brunner S, Schuller S, Kircheis R, and Wagner E. PEGylated DNA/transferrin-PEI
    
    complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther, 1999;6:595-605
    76. Blessing T, Kursa M, Holzhauser R, Kircheis R, Wagner E. Different strategies for formation of pegylated EGF-conjugated PEI/DNA complexes for targeted gene delivery. Bioconjug Chem, 2001; 12(4):529-537
    77. Wolschek MF, Thallinger C, Kursa M, Rossler V, Allen M, Lichtenberger C, Kircheis R, Lucas T, Willheim M, Reinisch W, Gangl A, Wagner E, Jansen B. Specific systemic nonviral gene delivery to human hepatocellular carcinoma xenografts in SCID mice. Hepatology, 2002; 36(5):1106-1114
    78. Larsson T, Marsell R, Schipani E, Ohlsson C, Ljunggren O, Tenenhouse HS, Juppner H, Jonsson KB. Transgenic mice expressing Fibroblast Growth Factor 23 under the control of the {alpha} 1(Ⅰ) collagen promoter exhibit growth retardation, osteomalacia and disturbed phosphate homeostasis. Endocrinology, 2004 Feb 26 [Epub ahead of print]
    79. Tsuchiya Y, Sawada S, Tsukada K, Saiki I. A new pseudo-peptide of Arg-Gly-Asp (RGD) inhibits intrahepatic metastasis of orthotopically implanted murine hepatocellular carcinoma. Int J Oncol, 2002; 20(2):319-324
    80. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer, 2002; 2(2):91-100.
    81. Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell, 1994; 79(7):1157-1164
    82. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science, 1994; 264(5158):569-571
    83. Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 1984 May 3-9; 309(5963):30-33
    84. Pierschbacher MD, Ruoslahti E. Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci USA. 1984 Oct;81(19):5985-5988
    85. Akiyama SK, Yamada KM. Synthetic peptides competitively inhibit both direct binding to fibroblasts and functional biological assays for the purified cell-binding domain of fibronectin. J Biol Chem. 1985 Sep 5;260(19):10402-10405
    86. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science, 1998;279(5349):377-380
    87. Tran Van Nhieu G, Isberg RR. Bacterial internalization mediated by beta 1 chain integrins is determined by ligand affinity and receptor density. EMBO J,1993; 12(5):1887-1895
    88. Nemerow GR and Stewart PL. Role of αv Integrins in adenovirus cell entry and gene delivery. Microbiology and Molecular Biology Reviews, 1999; Vol63(3):725-734
    89. Goldman MJ and Wilson JM.Expression of α_vβ_5 integrin is necessary for efficient adenovirus-mediated gene transfer in the human airway. J. Virol. 1995; 69:5951-5958
    
    
    90. Magnusson MK, Hong SS, Boulanger P, and Lindholm L. Genetic Retargeting of Adenovirus: Novel Strategy Employing "Deknobbing" of the Fiber. Journal of Virology, 2001; Vol75(16):7280-7289
    91. Nemerow GR and Stewart PL. Role of α_v Integrins in adenovirus cell entry and gene delivery. Microbiology and Molecular Biology Reviews, 1999; Vol63 (3):725-734
    92. Sosnowski BA, Gonzalez AM, Chandler LA, Buechler YJ, Pierce GF, Baird A. Targeting DNA to cells with basic fibroblast growth factor (FGF2). J Biol Chem, 1996; 271(52):33647-33653
    93. Hart SL, Collins L, Gustafsson K, Fabre JW. Integrin-mediated transfection with peptides containing arginine-glycine-aspartic acid domains. Gene Ther, 1997; 4(11):1225-1230
    94. Takahashi JA, Fukumoto M, Kozai Y, Ito N, Oda Y, Kikuchi H, Hatanaka M. Inhibition of cell growth and tumorigenesis of human glioblastoma cells by a neutralizing antibody against human basic fibroblast growth factor. FEBS Lett, 1991; 288(1-2):65-71
    95. Erbacher P, Remy JS, Behr JP. Gene transfer with synthetic virus-like particles via the integrin-mediated endocytosis pathway. Gene Ther, 1999; 6(1): 138-145
    96. Carstens RP, Eaton JV, Krigman HR, Walther PJ, Garcia-Blanco MA. Alternative splicing of fibroblast growth factor receptor 2(FGF-R2) in human prostate cancer. Oncogene, 1997;15(25):3059-3065
    97. Ozen M, Giri D, Ropiquet F, Mansukhani A, Ittmann M. Role of fibroblast growth factor receptor signaling in prostate cancer cell survival. J Natl Cancer Inst, 2001; 93(23):1783-1790
    98. Huang DM, Guh JH, Chueh SC, Teng CM. Modulation of anti-adhesion molecule MUC-1 is associated with arctiin-induced growth inhibition in PC-3 cells. Prostate, 2004; 59(3):260-267
    99. Moro L, Perlino E, Marra E, Languino LR, Greco M. Regulation of beta 1C and beta 1A integrin expression in prostate carcinoma cells. Biol Chem, 2004;279(3):1692-1702
    100. Lloyd FP Jr, Slivova V, Valachovicova T, Sliva D. Aspirin inhibits highly invasive prostate cancer cells. Int J Oncol, 2003; 23(5):1277-1283
    101. Erbacher P, Remy JS, Behr JP. Gene transfer with synthetic virus-like particles via the integrin-mediated endocytosis pathway.Gene Ther, 1999; 6(1):138-145
    102. Jackson T, Sharma A, Ghazaleh RA, Blakemore WE, Ellard FM, DL Simmons, Newman JW, Stuart DI and King AM. Arginine-glycine-aspartic acid-specific binding by foot-and-mouth disease viruses to the purified integrin alpha (v) beta3 in vitro. J Virol, 1997;(11):8357-8361
    103. Guerrero CA, Mendez E; Zarate S, Isa P, Lopez S, Arias CF. Integrin alpha(v)beta(3) mediates rotavirus cell entry. Proc Natl Acad Sci USA. 2000;97(26):14644-14649
    104. Hart SL, Knight AM, Harbottle RP, Mistry A, Hunger HD, Cutler DF, Williamson R, Coutelle C. Cell binding and internalization by filamentous phage displaying a cyclic Arg-Gly-Asp-containing peptide.J Biol Chem, 1994;269(17): 12468-12474
    
    
    105. Meng QH, Robinson D, Jenkins RG, McAnulty RJ, Hart SL. Efficient transfection of non-proliferating human airway epithelial cells with a synthetic vector system. J Gene Med, 2004; 6(2):210-221
    106. White RE, Wade-Martins R, Hart SL, Frampton J, Huey B, Desai-Mehta A, Cerosaletti KM. Concannon P. James MR. Functional delivery of large genomic DNA to human cells with a peptide-lipid vector.J Gene Med, 2003;5(10):883-892
    107. Hart SL, Arancibia-Carcamo CV, Wolfert MA, Mailhos C, O'Reilly NJ, Ali RR, Coutelle C, George AJ, Harbottle RP, Knight AM, Larkin DF. Levinsky R J, Seymour LW, Thrasher AJ. Kinnon C. Lipid-mediated enhancement of transfection by a nonviral integrin-targeting vector. Hum Gene Ther, 1998; 9(4):575-585
    108. Zanta MA, Belguise-Valladier P, Behr JP. Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci USA, 1999 ;96(1):91-96
    109. Adam SA, Gerace L. Cytosolic proteins that specifically bind nuclear location signals are receptors for nuclear import. Cell, 1991;66(5):837-477
    110. http://www.probes.com
    111. http://srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[{EMBL%20EMBLWGS}-ProteinID:AAA52534]
    112. Plotnikov AN. Hubbard SR, Schlessinger J, Mohammadi M. Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell, 2000; 101(4):413-424
    113. Baird A, Schubert D, Ling N, Guillemin R. Receptor-and heparin-binding domains of basic fibroblast growth factor. Proc Natl Acad Sci USA, 1988; 85(7):2324-2328
    114. Eriksson AE, Cousens LS, Weaver LH, Matthews BW. Three-dimensional structure of human basic fibroblast growth factor. Proc Natl Acad Sci USA, 1991;88(8):3441-3445
    115. Baird A, Schubert D, Ling N, Guillemin R. Receptor-and heparin-binding domains of basic fibroblast growth factor. Proc Natl Acad Sci USA, 1988; 85(7):2324-2328
    116. Walicke PA, Feige JJ, Baird A. Characterization of the neuronal receptor for basic fibroblast growth factor and comparison to receptors on mesenchymal cells. J Biol Chem, 1989;264(7):4120-4126
    117. Ray J, Baird A. Gage FH. A 10-amino acid sequence of fibroblast growth factor 2 is sufficient for its mitogenic activity on neural progenitor cells. Proc Natl Acad Sci USA, 1997; 94(13):7047-7052
    118. Yayon A, Aviezer D, Safran M, Gross JL, Heldman Y, Cabilly S, Givol D. Katchalski-Katzir E. Isolation of peptides that inhibit binding of basic fibroblast growth factor to its receptor from a random phage-epitope library. Proc Natl Acad Sci USA, 1993;90(22): 10643-10647
    119. Thompson LD, Pantoliano MW, Springer BA. Energetic characterization of the basic fibroblast growth factor-heparin interaction: identification of the heparin binding domain.
    
    Biochemistry 1994;33(13):3831-3840
    120. http://www.biochem.ucl.ac.uk/bsm/pdbsum/1bas/1bas_btn.html
    121. Ray J, Peterson DA, Schinstine M, Gage FH. Proliferation, differentiation, and long-term culture of primary hippocampal neurons. Proc Natl Acad Sci USA, 1993;90(8):3602-3606
    122. Ray J, Baird A, Gage FH. A 10-amino acid sequence of fibroblast growth factor 2 is sufficient for its mitogenic activity on neural progenitor cells. Proc Natl Acad Sci USA, 1997: 94(13):7047-7052
    123. Snyder SL, Sobocinski PZ. An improved 2,4,6-trinitrobenzenesulfonic acid method for the determination of amines. Anal Biochem, 1975;64(1):284-288
    124. Hermanson G. Bioconjuage Technique. Academic Press, San Diego, Califonia, 2003; p112-113
    125. Lemus R, Lukinskeine L, Bier ME, Wisnewski AV, Redlich CA, Karol MH. Development of immunoassays for biomonitoring of hexamethylene diisocyanate exposure. Environ Health Perspect. 2001; 109(11): 1103-1108
    126. Yayon A, Aviezer D, Saffan M, Gross JL, Heldman Y, Cabilly S, Givol D, Katchalski-Katzir E. Isolation of peptides that inhibit binding of basic fibroblast growth factor to its receptor from a random phage-epitope library. Proc Natl Acad Sci USA, 1993;90(22):10643-10647
    127. Presta M, Rusnati M, Urbinati C, Sommer A, Ragnotti G. Biologically active synthetic fragments of human basic fibroblast growth factor (bFGF): identification of two Asp-Gly-Arg-containing domains involved in the mitogenic activity of bFGF in endothelial cells. J Cell Physiol, 1991;149:512-524
    128. Zhu X, Komiya H, Chirino A, Faham S, Fox GM, Arakawa T, Hsu BT. Rees DC. Three-dimensional structures of acidic and basic fibroblast growth factors. Science, 1991: 251(4989):90-93
    129. Schubert D, Ling N, Baird A. Multiple influences of a heparin-binding growth factor on neuronal development. J Cell Biol, 1987; 104(3):635-643
    130. Baird A, Schubert D, Ling N, Guillemin R. Receptor- and heparin-binding domains of basic fibroblast growth factor. Proc Natl Acad Sci USA, 1988:85(7):2324-2328
    131. Springer BA, Pantoliano MW, Barbera FA, Gunyuzlu PL. Thompson LD, Herblin WF, Rosenfeld SA, Book GW. Identification and concerted function of two receptor binding surfaces on basic fibroblast growth factor required for mitogenesis. J Biol Chem, 1994;269(43):26879-26884
    132. Thompson LD, Pantoliano MW, Springer BA. Energetic characterization of the basic fibroblast growth factor-heparin interaction: identification of the heparin binding domain. Biochemistry, 1994; 33(13):3831-3840.
    133. Baird A, Schubert D, Ling N, Guillemin R. Receptor- and heparin-binding domains of basic fibroblast growth factor. Proc Natl Acad Sci USA, 1988; 85(7):2324-2328
    134. Ray J, Baird A, Gage FH. A 10-amino acid-sequence of fibroblast growth factor 2 is
    
    sufficient for its mitogenic activity on neural progenitor cells. Proc Natl Acad Sci USA, 1997; 94(13):7047-7052
    135. Zanta MA, Boussif O, Adib A, and Behr JR In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. Bioconjugate Chem, 1997; 8:839-844
    136. Bettinger T, Remy JS, and Erbacher P. Size reduction of galactosylated PEI/DNA complexes improves lectin-mediated gene transfer into hepatocytes. Bioconjugate Chem, 1999; 10: 558-561
    137. Leclercq F, Dubertret C, Pitard B, Scherman D, Herscovici J. Synthesis of glycosylated polyethylenimine with reduced toxicity and high transfecting efficiency. Bioorg Med Chem Lett, 2000;10(11):1233-1235
    138. Diebold SS, Kursa M, Wagner E, Cotten M and Zenke M. Mannose polyethylenimine conjugates for targeted DNA delivery into dendritic cells. J Biol Chem, 1999;274: 19087-19094
    139. Erbacher R Remy JS, Behr JP. Gene transfer with synthetic virus-like particles via the integrin-mediated endocytosis pathway.Gene Ther, 1999; 6(1):138-145
    140. Kircheis R, Kichler, A, Wallner G., Kursa M, Ogris M, Felzmann T, Buchberger M, and Wagner E. Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene Ther, 1997; 4:409-418
    141. Kircheis R, Wightman L, Schreiber A, Robitza B, Rossler V, Kursa M, Wagner E. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther, 2001;8(1):28-40
    142. Blessing T, Kursa M, Holzhauser R, Kircheis R, Wagner E. Different strategies for formation of pegylated EGF-conjugated PEI/DNA complexes for targeted gene delivery. Bioconjug Chem, 2001;12(4):529-537
    143. Ogris M, Steinlein R Carotta S, Brunner S, Wagner E. DNA/polyethylenimine transfection particles: influence of ligands, polymer size, and PEGylation on internalization and gene expression.AAPS PharmSci, 2001;3(3):E21
    144. Kircheis R, Kichler, A, Wallner G., Kursa M, Ogris M, Felzmann T, Buchberger M, and Wagner E. Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene Ther, 1997;4:409-418
    145. O'Neill MM, Kennedy CA, Barton RW, Tatake RJ. Receptor-mediated gene delivery to human peripheral blood mononuclear cells using anti-CD3 antibody coupled to polyethylenimine. Gene Ther, 2001;8(5):362-368
    146. Li S, Tan Y, Viroonchatapan E, Pitt BR, Huang L. Targeted gene delivery to pulmonary endothelium by anti-PECAM antibody. Am J Physiol Lung Cell Mol Physiol, 2000; 278(3):L504-511
    147. Benns JM, Mahato RI, Kim SW. Optimization of factors influencing the transfection efficiency of folate-PEG-folate-graft-polyethylenimine. J Control Release,
    
    2002;79(1-3):255-269
    148. Guo W, Lee RL. Receptor-targeted gene delivery via folate-conjugated polyethylenimine. AAPS PharmSci. 1999; 1(4):E19
    149. Beattie GM, Lappi DA, Baird A, Hayek A. Selective elimination of fibroblasts from pancreatic islet monolayers by basic fibroblast growth factor-saporin mitotoxin. Diabetes, 1990;39(8):1002-1005
    150. Behar-Cohen FF, David T, D'Hermies F, Pouliquen YM, Buechler Y, Nova MP, Houston LL, Courlois Y. In vivo inhibition of lens regrowth by fibrobtast growth factor 2-saporin. Invest Ophthalmol Vis Sci, 1995; 36(12):2434-2448
    151. Beitz JG, Davol P, Clark JW, Kato J, Medina M, Frackelton AR Jr, Lappi DA, Baird A, Calabresi P. Antitumor activity of basic fibroblast growth factor-saporin mitotoxin in vitro and in vivo. Cancer Res, 1992; 52(1):227-230
    152. Behar-Cohen FF, David T, Buechler Y, Nova MP, Houston LL, Pouliquen YM, Courtois Y. Cytotoxic effects of FGF2-saporin on bovine epithelial lens cells in vitro. Invest Ophthalmol Vis Sci, 1995;36(12):2425-2433
    153. Esch F, Baird A, Ling N, Ueno N, Hill F, Denoroy L, Klepper R, Gospodarowicz D, Bohlen P, Guillemin R. Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF. Proc Natl Acad Sci USA, 1985; 82(19):6507-6511
    154. Moscatelli D. High and low affinity binding sites for basic fibroblast growth factor on cultured cells: absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. J Cell Physiol, 1987;131(1):123-130
    155. Chandler LA, Sosnowski BA, Greenlees L, Aukerman SL, Baird A, Pierce GF. Prevalent expression of fibroblast growth factor (FGF) receptors and FGF2 in human tumor cell lines. Int J Cancer. 1999, 81(3):451-458
    156. Doukas J, Hoganson DK, Ong M, Ying W, Lacey DL, Baird A, Pierce GF, Sosnowski BA. Retargeted delivery of adenoviral vectors through fibroblast growth factor receptors involves unique cellular pathways. FASEB J, 1999; 13(11):1459-1466
    157. Sosnowski BA, Gu DL, D'Andrea M, Doukas J, Pierce GF. FGF2-targeted adenoviral vectors for systemic and local disease. Curr Opin Mol Ther, 1999; 1(5):573-279.
    158. Gu DL, Gonzalez AM, Printz MA, Doukas J, Ying W, D'Andrea M, Hoganson DK, Curiel DT, Douglas JT, Sosnowski BA, Baird A, Aukerman SL, Pierce GF. Fibroblast growth factor 2 retargeted adenovirus has redirected cellular tropism: evidence for reduced toxicity and enhanced antitumor activity in mice. Cancer Res, 1999; 59(11):2608-2614
    159. Kleeff J, Fukahi K, Lopez ME, Friess H, Buchler MW, Sosnowski BA, Korc M. Targeting of suicide gene delivery in pancreatic cancer cells via FGF receptors. Cancer Gene Ther, 2002;9(6):522-532
    
    
    160. Hoganson DK, Sosnowski BA, Pierce GF, Doukas J. Uptake of adenoviral vectors via fibroblast growth factor receptors involves intracellular pathways that differ from the targeting ligand. Mol Ther. 2001; 3(1):105-112.
    161. Sosnowski BA, Gonzalez AM, Chandler LA, Buechler YJ, Pierce GF, Baird A. Targeting DNA to cells with basic fibroblast growth factor (FGF2), J Biol Chem, 1996;271(52):33647-33653
    162. Hoganson DK, Chandler LA. Fleurbaaij GA, Ying W, Black ME, Doukas J, Pierce GF, Baird A, Sosnowski BA. Targeted delivery of DNA encoding cytotoxic proteins through high-affinity fibroblast growth factor receptors. Hum Gene Ther, 1998;9(17):2565-2575
    163. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell, 1991; 64(4):841-848
    164. McKeehan WL, Kan M. Heparan sulfate fibroblast growth factor receptor complex: structure-function relationships. Mol Reprod Dev, 1994; 39(1):69-81; discusison 81-82
    165. Amalric F, Bouche G, Bonnet H, Brethenou P, Roman AM, Truchet I, Quarto N. Fibroblast growth factor-2(FGF-2) in the nucleus: translocation process and targets. Biochem Pharmacol, 1994;47(1):111-115
    166. Adam SA, Gerace L. Cytosolic proteins that specifically bind nuclear location signals are receptors for nuclear import. Cell, 1991 ;66(5):837-477
    167. Goldfarb DS, Gariepy J, Schoolnik G, Kornberg RD. Synthetic peptides as nuclear localization signals. Nature, 1986; 322(6080):641-644
    168. Adam SA, The nuclear pore complex. Genome Biol, 2001, 2(9):REVIEWS0007
    169. Zanta MA, Belguise-Valladier R Behr JP.Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci USA, 1999; 96(1):91-96
    170. Dedhar S, Ruoslahti E, Pierschbacher MD.A cell surface receptor complex for collagen type 1 recognizes the Arg-Gly-Asp sequence.J Cell Biol, 1987; 104(3):585-893
    171. Gehlsen KR, Argraves WS, Pierschbacber MD, Ruoslahti E. Inhibition of in vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic peptides. J Cell Biol, 1988:106(3):925-930
    172. Pierschbacher MD, Ruoslahti E. Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. J Biol Chem, 1987;262(36):17294-17298
    173. Erbacher P, Remy JS, Behr JP. Gene transfer with synthetic virus-like particles via the integrin-mediated endocytosis pathway.Gene Ther, 1999;6(1):138-145
    174. Sub W, Han SO, Yu L, Kim SW. An angiogenic, endothelial-cell-targeted polymeric gene carrier. Mol Ther, 2002; 6(5):664-672
    175. Hart SL, Collins L, Gustafsson K, Fabre JW. Integrin-mediated transfection with peptides containing arginine-glycine-aspartic acid domains. Gene Ther, 1997;4(11):1225-1230.
    
    
    176. Harvie E Dutzar B, Galbraith T, Cudmore S, O'Mahony D, Anklesaria P, Paul R. Targeting of lipid-protamine-DNA (LPD) lipopolyplexes using RGD motifs. J Liposome Res, 2003; 13(3-4):231-247
    177. Kunath K, Merdan T, Hegener O, Haberlein H, Kissel T. Integrin targeting using RGD-PEI conjugates for in vitro gene transfer. J Gene Med, 2003;5(7):588-599
    178. Meng QH, Robinson D, Jenkins RG, McAnulty RJ, Hart SL. Efficient transfection of non-proliferating human airway epithelial cells with a synthetic vector system. J Gene Med, 2004; 6(2):210-221
    179. White RE, Wade-Martins R, Hart SL, Frampton J, Huey B, Desai-Mehta A, Cerosaletti KM, Concannon P, James MR. Functional delivery of large genomic DNA to human cells with a peptide-lipid vector.J Gene Med, 2003;5(10):883-892
    180. Hart SL, Arancibia-Carcamo CV, Wolfert MA, Mailhos C, O'Reilly NJ, Ali RR, Coutelle C, George AJ, Harbottle RP, Knight AM, Larkin DF, Levinsky RJ, Seymour LW, Thrasher AJ, Kinnon C. Lipid-mediated enhancement of transfection by a nonviral integrin-targeting vector. Hum Gene Ther, 1998; 9(4):575-585
    181. Estruch EJ, Hart SL, Kinnon C, Winchester BG. Non-viral, integrin-mediated gene transfer into fibroblasts from patients with lysosomal storage diseases. J Gene Med, 2001; 3(5):488-497
    182. Schneider H, Harbottle RP, Yokosaki Y, Kunde J, Sheppard D, Coutelle C. A novel peptide, PLAEIDGIELTY, for the targeting of alpha9betal-integrins. FEBS Lett, 1998;429(3):269-273
    183. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science, 1994; 264(5158):569-571
    184. Gasparini G, Brooks PC, Biganzoli E, Vermeulen PB, Bonoldi E, Dirix LY, Ranieri G, Miceli R, Cheresh DA. Vascular integrin alpha(v)beta3: a new prognostic indicator in breast cancer. Clin Cancer Res, 1998; 4(11):2625-2634.
    185. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC. Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med, 1998;4(5):623-626
    186. Gasparini G, Brooks PC, Biganzoli E, Vermeulen PB, Bonoldi E, Dirix LY, Ranieri G, Miceli R, Cheresh DA. Vascular integrin alpha(v)beta3: a new prognostic indicator in breast cancer. Clin Cancer Res, 1998;4(11):2625-2634
    187. Erdreich-Epstein A, Shimada H, Groshen S, Liu M, Metelitsa LS, Kim KS, Stins MF, Seeger RC, Durden DL. Integrins alpha(v)beta3 and alpha(v)beta5 are expressed by endothelium of high-risk neuroblastoma and their inhibition is associated with increased endogenous ceramide. Cancer Res, 2000; 60(3):712-721
    188. Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of
    
    angiogenic blood vessels. Cell, 1994; 79(7): 1157-1164
    189. Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell, 1994;79(7):1157-1164
    190. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA. Definition of two angiogenic pathways by distinct α_v Integrins. Science, 1995;270:1500
    191. Hammes HP, Brownlee M, Jonczyk A, Sutter A, Preissner KT. Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. Nat Med, 1996; 2(5):529-533
    192. CD40 activation mediates p53-dependent cell cycle regulation in human multiple myeloma cell lines.CD40 activation mediates p53-dependent cell cycle regulation in human multiple myeloma cell lines. Blood, 2000; 95(3):1039-1046
    193. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell, 1993;73(2):309-319
    194. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science, 1997;275(5304):1320-1323
    195. Greber UF, Willetts M, Webster P, Helenius A. Stepwise dismantling of adenovirus 2 during entry into cells. Cell, 1993;75(3):477-486
    196. Einfeld DA, Schroeder R, Roelvink PW, Lizonova A, King CR, Kovesdi I, Wickham TJ. Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions. J Virol, 2001;75(23):11284-11291
    197. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell, 1992;69(1):11-25
    198. Curiel DT. High-efficiency gene transfer employing adenovirus-polylysine-DNA complexes. Nat Immun. 1994; 13(2-3):141-164
    199. Oh YK, Kim JP, Yoon H, Kim JM, Yang JS, Kim CK. Prolonged organ retention and safety of plasmid DNA administered in polyethylenimine complexes. Gene Ther, 2001;8(20):1587-1592
    200. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science, 1994; 264(5158):569-571
    201. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science, 1994; 264(5158):569-571
    202. Martiny-Baron G, Marme D. VEGF-mediated tumour angiogenesis: a new target for cancer therapy. Curr Opin Biotechnol, 1995;6(6):675-680
    203. Meier F, Caroli U, Satyamoorthy K, Schittek B, Bauer J, Berking C, Moller H, Maczey E, Rassner G, Herlyn M, Garbe C. Fibroblast growth factor-2 but not Mel-CAM and/or beta3
    
    integrin promotes progression of roelanocytes to melanoma. Exp Dermatol, 2003; 12(3):296-306
    204. Evdokimov YM, Platonov AL, Tikhonenko AS, Varshavsky YM. A compact form of double-stranded DNA in solution. FEBS Lett, 1972; 23(2):180-184
    205. Phillips SC. Receptor-mediated DNA delivery approaches to human gene therapy. Biologicals, 1995; 23(1):13-16
    206. Golan R, Pietrasanta LI, Hsieh W, Hansma HG. DNA toroids: stages in condensation. Biochemistry, 1999; 38(42):14069-14076
    207. Erbacher P, Remy JS, Behr JP. Gene transfer with synthetic virus-like particles via the integrin-mediated endocytosis pathway.Gene Ther, 1999; 6(1): 138-145
    208. Golan R, Pietrasanta LI, Hsieh W, Hansma HG. DNA toroids: stages in condensation. Biochemistry, 1999; 38(42): 14069-14076
    209. Lin Z, Wang C, Feng X, Liu M, Li J, Bai C. The observation of the local ordering characteristics of spermidine-condensed DNA: atomic force microscopy and polarizing microscopy studies. Nucleic Acids Res, 1998; 26(13):3228-3234
    210. Kichler A. Gene transfer with modified polyethylenimines.J Gene Med, 2004;6 Suppl 1:S3-S10
    211.李经忠,王青青,曹雪涛.新型非病毒载体聚乙烯亚胺体内应用的研究进展.国外医学约学分册,2004;31(1):34-37
    212. Merlin JL, N'Doye A, Bouriez T, Dolivet G. Polyethylenimine Derivatives as Potent Nonviral Vectors for Gene Transfer. Drug News Perspect, 2002; 15(7):445-451
    213. Dolivet G, Merlin JL, Barberi-Heyob M, Ramacci C, Erbacher P, Parache RM, Behr JP, Guillemin F. In vivo growth inhibitory effect of iterative wild-type p53 gene transfer in human head and neck carcinoma xenografts using glucosylated polyethylenimine nonviral vector. Cancer Gene Ther, 2002;9(8):708-714
    214. Tang GP, Zeng JM, Gao SJ, Ma YX, Shi L, Li Y, Too HP, Wang S. Polyethylene glycol modified polyethylenimine for improved CNS gene transfer: effects of PEGylation extent. Biomaterials, 2003; 24(13):2351-2362
    215. Ogris M, Brunner S, Schuller S, and Kircheis R. Wagner E. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther, 1999;6(4):595-605
    216. Sung SJ, Min SH, Cho KY, Lee S, Min YJ, Yeom YI, Park JK. Effect of polyethylene glycol on gene delivery of polyethylenimine. Biol Pharm Bull, 2003; 26(4):492-500
    217. Ogris M, Walker G, Blessing T, Kircheis R, Wolschek M, Wagner E. Tumor-targeted gene therapy: strategies for the preparation of ligand-polyethylene glycol-polyethylenimine/DNA complexes. J Control Release, 2003; 91(1-2):173-181
    218.韩峻松,田培坤,柳湘,姚明,顾健人.靶向性非病毒载体介导p21WAF-1基因对肝癌细胞的抑制作用.中国科学(C辑),2000;30(5):523-527

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700