抗体修饰肿瘤细胞疫苗实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤疫苗作为生物疗法之一被人们广泛研究,尤其在防止肿瘤复发转移中具有重要价值。肿瘤细胞疫苗含有所有的肿瘤相关抗原,所以至今肿瘤细胞疫苗仍有不可替代的优势。为了提高肿瘤疫苗的免疫效果,该课题研究了新型的抗体修饰肿瘤细胞疫苗。为了进行临床前的体内实验研究,我们建立了小鼠模型。通过文献查阅和抗原抗体结合空间结构分析,选择克隆人CD20胞外区和部分跨膜区基因与次级淋巴组织趋化因子信号肽基因区域进行拼接,构建了融合基因真核表达质粒(pcDNA3f-sig-CD20)。该质粒导入B16F10肿瘤细胞后筛选出稳定克隆株,经流式细胞法和荧光显微镜验证该细胞株(B16/CD20)表达目的蛋白。通过与临床抗CD20单克隆抗体药物Rituximab(美罗华)结合后制备成疫苗,治疗同系C57BL/6小鼠人工肺肿瘤转移模型,并对其抗肿瘤效应机制进行了初步探讨。此外,应用Rituximab修饰人CD20~+肿瘤细胞制备疫苗诱导抗肿瘤特异性T细胞,并用抗HLA-A0201抗体封闭实验验证MHC限制性的杀伤肿瘤作用。
     研究结果显示,在人工肺转移肿瘤实验动物模型中,该疫苗能有效的干预肿瘤结节的生长,延长小鼠生存期,获得较好的抗肿瘤效果。LDH释放法测定表明:该疫苗免疫小鼠后显著提高了脾淋巴细胞特异性杀伤肿瘤的能力。CD8~+细胞和NK删除实验进一步验证CD8~+T淋巴细胞在抗肿瘤转移过程中是主要的效应细胞。实验中我们还观察到抗体修饰瘤苗不仅能诱导针对转染了CD20的肿瘤细胞杀伤反应,而且还提高对野生型黑色素瘤的杀伤效应。共聚焦显微镜和流式细胞测定显示:抗体修饰瘤苗与DC孵育后能明显增强DC对肿瘤细胞的捕获率,提示该疫苗通过抗原呈递细胞Fc受体途径增强对肿瘤抗原捕捉,从而提高了抗原呈递效果和诱导了特异性抗肿瘤作用。人体外实验系统表明:Rituximab修饰人的肿瘤细胞疫苗诱导了抗肿瘤效应细胞。HLA-A2抗体封闭实验进一步证实了该效应细胞是MHC限制性的细胞毒性T细胞。我们建立的抗体修饰瘤苗制备方法简单,体内使用安全有效,抗体用量较少,因此制备成本低廉。此法为临床抗肿瘤单克隆抗体药物开辟了新的应用方法,有望成为临床肿瘤免疫治疗的新手段。
Our study is to clone the extracellular and transmembrane domains (ECD and TMD) of human CD20 and construct its eukaryotic expression vector for the evaluation of the possability of antibody coated tumor cell vaccine therapy in animal model. The desired result is to provide antigens in a stimulatory immunotherapy which allows the in vivo generation of a potent anti-tumor immune response.
     The whole cDNA was amplified by RT-PCR method from the Raji cells and cloned to the downstream of expression vector pcDNA 3f-sig with a signal pepetide. The fragment was identified by enzyme digestion and DNA sequencing. Cells stably expressing sig-CD20 were established by screening with G418 after transfection and characterization of the transfected B16F10 cell line were rightly evaluated by indirect immunoflurescence assay and FACS. To further explore the rituximab mediated antitumor effect, a Rituximab modified tumor cell vaccine which had been inactivated by mitomycin C(MMC)was developed and treated in its syngeneic C57BL/6 mice model effectively. The results demonstrated that the Rituximab-coated tumor cell vaccine had a significant therapeutic effect against tumor pulmonary metastasis formation. The CTLs activity was remarkably higher from the mice vaccinated by Rituximab-coated tumor cell vaccine than normal Ig-coated tumor cell vaccine. Capture rate of tumor cells by DCs, which were detected by flow cytometry, was increased by adding Rituximab. The tumor specific cytolysis could be induced by Rituximab-coated tumor cell in human in vitro assay. Human tumor specific CTLs could also be highly induced by Rituximab-coated tumor cell vaccine. It was inhibited by anti- HLA-A2 site monoclonal antibody. This therapeutic strategy provides a simple way to potentialize CTLs function to combat cancer and may promote more clinical consideration in immunotherapy for tumors. Rituximab-coated tumor cell vaccine also expanded the clinical Rituximab applications.
引文
[1] T. Morisaki, K. Matsumoto, H. Onishi, H. Kuroki, E. Baba, A. Tasaki, M. Kubo, M.Nakamura, S. Inaba, K. Yamaguchi, M. Tanaka, and M. Katano, Dendritic cell-based combined immunotherapy with autologous tumor-pulsed dendritic cell vaccine and activated T cells for cancer patients: rationale, current progress, and perspectives, Hum Cell. 16(2003)175-182.
    
    [2] M. Nouri-Shirazi, J. Banchereau, D. Bell, S. Burkeholder, E.T. Kraus, J. Davoust, and K.A. Palucka, Dendritic cells capture killed tumor cells and present their antigens to elicit tumor-specific immune responses, J Immunol. 165 (2000) 3797-3803.
    
    [3] J. Zaloudik, L. Lauerova, L. Janakova, R. Talac, M. Simickova, M. Nekulova, I.Mikulikova, J. Kovarik, and M. Sheard, Significance of pre-treatment immunological parameters in colorectal cancer patients with unresectable metastases to the liver,Hepatogastroenterology. 46 (1999) 220-227.
    
    [4] K.A. Berlyn, B. Schultes, B. Leveugle, A.A. Noujaim, R.B. Alexander, and D.L.Mann, Generation of CD4(+) and CD8(+) T lymphocyte responses by dendritic cells armed with PSA/anti-PSA (antigen/antibody) complexes, Clin Immunol. 101 (2001)276-283.
    
    [5] K.M. Dhodapkar, J. Krasovsky, B. Williamson, and M.V. Dhodapkar, Antitumor monoclonal antibodies enhance cross-presentation ofcCellular antigens and the generation of myeloma-specific killer T cells by dendritic cells, J Exp Med. 195 (2002)125-133.
    
    [6] K. Akiyama, S. Ebihara, A. Yada, K. Matsumura, S. Aiba, T. Nukiwa, and T. Takai,Targeting apoptotic tumor cells to Fc gamma R provides efficient and versatile vaccination against tumors by dendritic cells, J Immunol. 170 (2003) 1641-1648.
    
    [7] R. Mukherjee, P. Chaturvedi, H.Y. Qin, and B. Singh, CD4+CD25+ regulatory T cells generated in response to insulin B:9-23 peptide prevent adoptive transfer of diabetes by diabetogenic T cells, J Autoimmun. 21 (2003) 221-237.
    [8] M.H. van Oers, Rituximab maintenance therapy: a step forward in follicular lymphoma, Haematologica. 92 (2007) 826-833.
    
    [9] A.B. Schroeijers, A.W. Reurs, G.L. Scheffer, A.G. Stam, M.C. de Jong, T.Rustemeyer, E.A. Wiemer, T.D. de Gruijl, and R.J. Scheper, Up-regulation of drug resistance-related vaults during dendritic cell development, J Immunol. 168 (2002)1572-1578.
    
    [10] N. Assous, L. Gossec, M. Dougados, A. Kahan, and Y. Allanore, Efficacy of rituximab in patients with rheumatoid arthritis refractory or with contra-indication to anti-tumor necrosis factor-alpha drugs in daily practice: an open label observational study,Clin Exp Rheumatol. 25 (2007) 504.
    
    [11] D.W. Thomas, R.G. Owen, S.A. Johnson, P. Hillmen, J.F. Seymour, M.M. Wolf,and S.A. Rule, Superior quality and duration of responses among patients with mantle-cell lymphoma treated with fludarabine and cyclophosphamide with or without rituximab compared with prior responses to CHOP, Leuk Lymphoma. 46 (2005)549-552.
    
    [12] M.J. Polyak, and J.P. Deans, Alanine-170 and proline-172 are critical determinants for extracellular CD20 epitopes; heterogeneity in the fine specificity of CD20 monoclonal antibodies is defined by additional requirements imposed by both amino acid sequence and quaternary structure, Blood. 99 (2002) 3256-3262.
    
    [13] J.L. Teeling, W.J. Mackus, L.J. Wiegman, J.H. van den Brakel, S.A. Beers, R.R.French, T. van Meerten, S. Ebeling, T. Vink, J.W. Slootstra, P.W. Parren, M.J. Glennie,and J.G. van de Winkel, The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20, J Immunol. 177 (2006) 362-371.
    
    [14] H. Merz, K. Lange, T. Gaiser, A. Muller, U. Kapp, C. Bittner, S. Harder, R. Siebert,M. Bentz, T. Binder, V. Diehl, and A.C. Feller, Characterization of a novel human anaplastic large cell lymphoma cell line tumorigenic in SCID mice, Leuk Lymphoma. 43(2002)165-172.
    
    [15] G. Cartron, L. Dacheux, G. Salles, P. Solal-Celigny, P. Bardos, P. Colombat, and H. Watier, Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene, Blood. 99 (2002) 754-758.
    
    [16] D.M. Aboulafia, Primary cutaneous large B-cell lymphoma of the legs: a distinct clinical pathologic entity treated with CD20 monoclonal antibody (rituximab), Am J Clin Oncol. 24 (2001) 237-240.
    
    [17] R.O. Dillman, The history and rationale for monoclonal antibodies in the treatment of hematologic malignancy, Curr Pharm Biotechnol. 2 (2001) 293-300.
    
    [18] J. Boye, T. Elter, and A. Engert, An overview of the current clinical use of the anti-CD20 monoclonal antibody rituximab, Ann Oncol. 14 (2003) 520-535.
    
    [19] J. Golay, L. Zaffaroni, T. Vaccari, M. Lazzari, G.M. Borleri, S. Bernasconi, F.Tedesco, A. Rambaldi, and M. Introna, Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis, Blood. 95 (2000) 3900-3908.
    
    [20] C.Y. Guo, A. Johnson, T.J. Locke, and R. Eastell, Mechanisms of bone loss after cardiac transplantation, Bone. 22 (1998) 267-271.
    
    [21] B. Coiffier, New treatment strategies in lymphomas: aggressive lymphomas, Ann Hematol. 83 Suppl 1 (2004) S73-74.
    
    [22] D.G. Maloney, Immunotherapy for non-Hodgkin's lymphoma: monoclonal antibodies and vaccines, J Clin Oncol. 23 (2005) 6421-6428.
    
    [23] M.S. Cragg, R.R. French, and M.J. Glennie, Signaling antibodies in cancer therapy,Curr Opin Immunol. 11 (1999) 541-547.
    
    [24] F.J. Esteva, Monoclonal antibodies, small molecules, and vaccines in the treatment of breast cancer, Oncologist. 9 Suppl 3 (2004) 4-9.
    
    [25] Y. Zhao, D. Lou, J. Burke, and H. Kohler, Enhanced anti-B-cell tumor effects with anti-CD20 superantibody, J Immunother (1997). 25 (2002) 57-62.
    
    [26] M.J. Bevan, Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay, J Exp Med. 143(1976) 1283-1288.
    [27] C. Reis e Sousa, Dendritic cells in a mature age, Nat Rev Immunol. 6 (2006)476-483.
    
    [28] P.A. Antony, and N.P. Restifo, Do CD4+ CD25+ immunoregulatory T cells hinder tumor immunotherapy?, J Immunother (1997). 25 (2002) 202-206.
    
    [29] T. Azuma, T. Takahashi, A. Kunisato, T. Kitamura, and H. Hirai, Human CD4+CD25+ regulatory T cells suppress NKT cell functions, Cancer Res. 63 (2003)4516-4520.
    
    [30] T. Takahashi, and S. Sakaguchi, Naturally arising CD25+CD4+ regulatory T cells in maintaining immunologic self-tolerance and preventing autoimmune disease, Curr Mol Med. 3 (2003) 693-706.
    
    [31] C. Baecher-Allan, V. Viglietta, and D.A. Hafler, Human CD4+CD25+ regulatory T cells, Semin Immunol. 16 (2004) 89-98.
    
    [32] S. Makita, T. Kanai, S. Oshima, K. Uraushihara, T. Totsuka, T. Sawada, T.Nakamura, K. Koganei, T. Fukushima, and M. Watanabe, CD4+CD25bright T cells in human intestinal lamina propria as regulatory cells, J Immunol. 173 (2004) 3119-3130.
    
    [33] K. Karube, K. Ohshima, T. Tsuchiya, T. Yamaguchi, R. Kawano, J. Suzumiya, A.Utsunomiya, M. Harada, and M. Kikuchi, Expression of FoxP3, a key molecule in CD4CD25 regulatory T cells, in adult T-cell leukaemia/lymphoma cells, Br J Haematol.126(2004)81-84.
    
    [34] X. Chen, T. Murakami, J.J. Oppenheim, and O.M. Howard, Differential response of murine CD4+CD25+ and CD4+CD25- T cells to dexamethasone-induced cell death, Eur J Immunol. 34 (2004) 859-869.
    
    [35] E.M. Shevach, C.A. Piccirillo, A.M. Thornton, and R.S. McHugh, Control of T cell activation by CD4+CD25+ suppressor T cells, Novartis Found Symp. 252 (2003) 24-36;discussion 36-44,106-114.
    
    [36] N.G. Chakraborty, S. Chattopadhyay, S. Mehrotra, A. Chhabra, and B. Mukherji,Regulatory T-cell response and tumor vaccine-induced cytotoxic T lymphocytes in human melanoma, Hum Immunol. 65 (2004) 794-802.
    [37] A. Fattorossi, A. Battaglia, G. Ferrandina, A. Buzzonetti, F. Legge, V. Salutari, and G. Scambia, Lymphocyte composition of tumor draining lymph nodes from cervical and endometrial cancer patients, Gynecol Oncol. 92 (2004) 106-115.
    
    [38] T. Sasada, M. Kimura, Y. Yoshida, M. Kanai, and A. Takabayashi, CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression, Cancer. 98 (2003) 1089-1099.
    
    [39] S.J. Bensinger, P.T. Walsh, J. Zhang, M. Carroll, R. Parsons, J.C. Rathmell, C.B.Thompson, M.A. Burchill, M.A. Farrar, and L.A. Turka, Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells, J Immunol. 172 (2004) 5287-5296.
    
    [40] M. Viguier, F. Lemaitre, O. Verola, M.S. Cho, G. Gorochov, L. Dubertret, H.Bachelez, P. Kourilsky, and L. Ferradini, Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells, J Immunol. 173 (2004) 1444-1453.
    
    [41] J.M. van Amelsfort, K.M. Jacobs, J.W. Bijlsma, F.P. Lafeber, and L.S. Taams,CD4(+)CD25(+) regulatory T cells in rheumatoid arthritis: differences in the presence,phenotype, and function between peripheral blood and synovial fluid, Arthritis Rheum.50 (2004) 2775-2785.
    
    [42] T. Takeuchi, N. Konno-Takahashi, Y. Kasuya, T. Ogushi, H. Nishimatsu, and T.Kitamura, Interleukin-2 blocks the antitumour activity caused by depletion of CD25 cells in amurine renal adenocarcinoma model, BJU Int. 94 (2004) 171-176.
    
    [43] L. Scotto, A.J. Naiyer, S. Galluzzo, P. Rossi, J.S. Manavalan, S. Kim-Schulze, J.Fang, R.D. Favera, R. Cortesini, and N. Suciu-Foca, Overlap between molecular markers expressed by naturally occurring CD4+CD25+ regulatory T cells and antigen specific CD4+CD25+ and CD8+CD28- T suppressor cells, Hum Immunol. 65 (2004) 1297-1306.
    
    [44] E.N. Nolte-'t Hoen, J.P. Wagenaar-Hilbers, E.P. Boot, C.H. Lin, G.J. Arkesteijn, W.van Eden, L.S. Taams, and M.H. Wauben, Identification of a CD4+CD25+ T cell subset committed in vivo to suppress antigen-specific T cell responses without additional stimulation, Eur J Immunol. 34 (2004) 3016-3027.
    [45] S.E. Erdman, V.P. Rao, T. Poutahidis, M.M. Ding, Z. Ge, Y. Feng, M. Tomczak,A.B. Rogers, B.H. Horwitz, and J.G. Fox, CD4(+)CD25(+) regulatory lymphocytes require interleukin 10 to interrupt colon carcinogenesis in mice, Cancer Res. 63 (2003)6042-6050.
    
    [46] C.J. Chang, C.H. Liao, F.H. Wang, and C.M. Lin, Transforming growth factor-beta induces apoptosis in antigen-specific CD4+ T cells prepared for adoptive immunotherapy,Immunol Lett. 86 (2003) 37-43.
    
    [47] S.F. Hussain, and Y. Paterson, CD4+CD25+ regulatory T cells that secrete TGFbeta and IL-10 are preferentially induced by a vaccine vector, J Immunother (1997). 27 (2004)339-346.
    
    [48] O. Preynat-Seauve, P. Schuler, E. Contassot, F. Beermann, B. Huard, and L.E.French, Tumor-infiltrating dendritic cells are potent antigen-presenting cells able to activate T cells and mediate tumor rejection, J Immunol. 176 (2006) 61-67.
    
    [49] E.A. Green, L. Gorelik, C.M. McGregor, E.H. Tran, and R.A. Flavell, CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-beta-TGF-beta receptor interactions in type 1 diabetes, Proc Natl Acad Sci U S A. 100 (2003) 10878-10883.
    
    [50] C. Baecher-Allan, V. Viglietta, and D.A. Hafler, Inhibition of human CD4(+)CD25(+high) regulatory T cell function, J Immunol. 169 (2002) 6210-6217.
    
    [51] J. Shimizu, S. Yamazaki, and S. Sakaguchi, Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity, J Immunol. 163 (1999) 5211-5218.
    
    [52] S. Man, G. Bocci, G. Francia, S.K. Green, S. Jothy, D. Hanahan, P. Bohlen, D.J.Hicklin, G. Bergers, and R.S. Kerbel, Antitumor effects in mice of low-dose (metronomic) cyclophosphamide administered continuously through the drinking water, Cancer Res. 62(2002)2731-2735.
    
    [53] M. Li, Y. Wang, R. Guo, Y. Bai, and Z. Yu, Glucocorticoids impair microglia ability to induce T cell proliferation and Th1 polarization, Immunol Lett. 109 (2007) 129-137.
    
    [54] U. Emmenegger, S. Man, Y. Shaked, G. Francia, J.W. Wong, D.J. Hicklin, and R.S. Kerbel, A comparative analysis of low-dose metronomic cyclophosphamide reveals absent or low-grade toxicity on tissues highly sensitive to the toxic effects of maximum tolerated dose regimens, Cancer Res. 64 (2004) 3994-4000.
    
    [55] R. Samaritani, G. Corrado, E. Vizza, and C. Sbiroli, Cyclophosphamide "metronomic" chemotherapy for palliative treatment of a young patient with advanced epithelial ovarian cancer, BMC Cancer. 7 (2007) 65.
    
    [56] I. Kuehnle, M.H. Huls, Z. Liu, M. Semmelmann, R..A. Krance, M.K. Brenner, C.M.Rooney, and H.E. Heslop, CD20 monoclonal antibody (rituximab) for therapy of Epstein-Barr virus lymphoma after hemopoietic stem-cell transplantation, Blood. 95(2000)1502-1505.
    
    [57] M. Zhang, K.H. Ko, Q.L. Lam, C.K. Lo, G. Srivastava, B. Zheng, Y.L. Lau, and L.Lu, Expression and function of TNF family member B cell-activating factor in the development of autoimmune arthritis, Int Immunol. 17 (2005) 1081-1092.
    
    [58] L. Orlando, A. Cardillo, R. Ghisini, A. Rocca, A. Balduzzi, R. Torrisi, G. Peruzzotti,A. Goldhirsch, E. Pietri, and M. Colleoni, Trastuzumab in combination with metronomic cyclophosphamide and methotrexate in patients with HER-2 positive metastatic breast cancer, BMC Cancer. 6 (2006) 225.
    
    [59] I.F. Hermans, T.W. Chong, M.J. Palmowski, A.L. Harris, and V. Cerundolo,Synergistic effect of metronomic dosing of cyclophosphamide combined with specific antitumor immunotherapy in a murine melanoma model, Cancer Res. 63 (2003)8408-8413.
    
    [60] M. Colleoni, A. Rocca, M.T. Sandri, L. Zorzino, G. Masci, F. Nole, G. Peruzzotti, C.Robertson, L. Orlando, S. Cinieri, B.F. de, G. Viale, and A. Goldhirsch, Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumor activity and correlation with vascular endothelial growth factor levels, Ann Oncol. 13 (2002) 73-80.
    
    [61] D. Zhao, L. Jiang, E.W. Hahn, and R.P. Mason, Continuous low-dose (metronomic) chemotherapy on rat prostate tumors evaluated using MRI in vivo and comparison with histology, Neoplasia. 7 (2005) 678-687.
    [62] J.Y. Liu, Y. Wu, X.S. Zhang, J.L. Yang, H.L. Li, Y.Q. Mao, Y. Wang, X. Cheng,Y.Q. Li, J.C. Xia, M. Masucci, and Y.X. Zeng, Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine, Cancer Immunol Immunother. 56 (2007) 1597-1604.
    [1] J. Gao, S. Huang, M. Li, R. Luo, X. Wang, and A. Takashima,GM-CSF-surface-modified B16.F10 melanoma cell vaccine, Vaccine. 24 (2006)5265-5268.
    
    [2] M. Fishman, T.B. Hunter, H. Soliman, P. Thompson, M. Dunn, R. Smilee, M.J.Farmelo, D.R. Noyes, J.J. Mahany, J.H. Lee, A. Cantor, J. Messina, J. Seigne, J.Pow-Sang, W. Janssen, and S.J. Antonia, Phase II trial of B7-1 (CD-86) transduced,cultured autologous tumor cell vaccine plus subcutaneous interleukin-2 for treatment of stage IV renal cell carcinoma, J Immunother. 31 (2008) 72-80.
    
    [3] Q. Zhou, B.D. Johnson, and R.J. Orentas, Cellular immune response to an engineered cell-based tumor vaccine at the vaccination site, Cell Immunol. 245 (2007) 91-102.
    
    [4] R.M. Steinman, The dendritic cell system and its role in immunogenicity, Annu Rev Immunol. 9(1991)271-296.
    
    [S] N. Romani, and G. Schuler, The immunologic properties of epidermal Langerhans cells as a part of the dendritic cell system, Springer Semin Immunopathol. 13 (1992)265-279.
    
    [6] K. Inaba, J.P. Metlay, M.T. Crowley, M. Witmer-Pack, and R.M. Steinman, Dendritic cells as antigen presenting cells in vivo, Int Rev Immunol. 6 (1990) 197-206.
    
    [7] P. Chaux, [Dendritic cells and immune function in cancer], Pathol Biol (Paris). 43(1995) 897-903.
    
    [8] K. Inaba, J.P. Metlay, M.T. Crowley, and R.M. Steinman, Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ, J Exp Med. 172(1990)631-640.
    
    [9] P. Guermonprez, J. Valladeau, L. Zitvogel, C. Thery, and S, Amigorena, Antigen presentation and T cell stimulation by dendritic cells, Annu Rev Immunol. 20 (2002)621-667.
    
    [10] L. Krishnan, S. Sad, G.B. Patel, and G.D. Sprott, The potent adjuvant activity of archaeosomes correlates to the recruitment and activation of macrophages and dendritic cells in vivo, J Immunol. 166 (2001) 1885-1893.
    
    [11] R.M. Steinman, Dendritic cells and the control of immunity: enhancing the efficiency of antigen presentation, Mt Sinai J Med. 68 (2001) 160-166.
    
    [12] O. Preynat-Seauve, P. Schuler, E. Contassot, F. Beermann, B. Huard, and L.E.French, Tumor-infiltrating dendritic cells are potent antigen-presenting cells able to activate T cells and mediate tumor rejection, J Immunol. 176 (2006) 61-67.
    
    [13] L. Chaperot, M. Chokri, M.C. Jacob, P. Drillat, F. Garban, H. Egelhofer, J.P.Molens, J.J. Sotto, J.C. Bensa, and J. Plumas, Differentiation of antigen-presenting cells (dendritic cells and macrophages) for therapeutic application in patients with lymphoma,Leukemia. 14 (2000) 1667-1677.
    
    [14] T. Morisaki, K. Matsumoto, H. Onishi, H. Kuroki, E. Baba, A. Tasaki, M. Kubo, M.Nakamura, S. Inaba, K. Yamaguchi, M. Tanaka, and M. Katano, Dendritic cell-based combined immunotherapy with autologous tumor-pulsed dendritic cell vaccine and activated T cells for cancer patients: rationale, current progress, and perspectives, Hum Cell. 16(2003)175-182.
    
    [15] A.M. Livingstone, and M. Kuhn, Peptide-pulsed splenic dendritic cells prime long-lasting CD8(+) T cell memory in the absence of cross-priming by host APC, Eur J Immunol. 32 (2002) 281-290.
    
    [16] F. Battaini, D. Besusso, L. Sfondrini, A. Rossini, D. Morelli, E. Tagliabue, S.Menard, and A. Balsari, Antibody response after vaccination with antigen-pulsed dendritic cells, Int J Biol Markers. 19 (2004) 213-220.
    
    [17] F. Berard, P. Blanco, J. Davoust, E.M. Neidhart-Berard, M. Nouri-Shirazi, N.Taquet, D. Rimoldi, J.C. Cerottini, J. Banchereau, and A.K. Palucka, Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells, J Exp Med. 192 (2000) 1535-1544.
    
    [18] M. Nouri-Shirazi, J. Banchereau, D. Bell, S. Burkeholder, E.T. Kraus, J. Davoust,and K.A. Palucka, Dendritic cells capture killed tumor cells and present their antigens to elicit tumor-specific immune responses, J Immunol. 165 (2000) 3797-3803.
    [19] A. Finckh, A. Ciurea, L. Brulhart, D. Kyburz, B. Moller, S. Dehler, S. Revaz, J.Dudler, and C. Gabay, B cell depletion may be more effective than switching to an alternative anti-tumor necrosis factor agent in rheumatoid arthritis patients with inadequate response to anti-tumor necrosis factor agents, Arthritis Rheum. 56 (2007)1417-1423.
    
    [20] J.F. Fonteneau, D.G. Kavanagh, M. Lirvall, C. Sanders, T.L. Cover, N. Bhardwaj,and M. Larsson, Characterization of the MHC class I cross-presentation pathway for cell-associated antigens by human dendritic cells, Blood. 102 (2003) 4448-4455.
    
    [21] P.K. Wallace, K.Y. Tsang, J. Goldstein, P. Correale, T.M. Jarry, J. Schlom, P.M.Guyre, M.S. Emstoff, and M.W. Fanger, Exogenous antigen targeted to FcgammaRI on myeloid cells is presented in association with MHC class I, J Immunol Methods. 248(2001)183-194.
    
    [22] K.A. Berlyn, B. Schultes, B. Leveugle, A.A. Noujaim, R.B. Alexander, and D.L.Mann, Generation of CD4(+) and CD8(+) T lymphocyte responses by dendritic cells armed with PSA/anti-PSA (antigen/antibody) complexes, Clin Immunol. 101 (2001)276-283.
    
    [23] S. Pilon-Thomas, M. Verhaegen, L. Kuhn, A. Riker, and J.J. Mule, Induction of anti-tumor immunity by vaccination with dendritic cells pulsed with anti-CD44 IgG opsonized tumor cells, Cancer Immunol Immunother. 55 (2006) 1238-1246.
    
    [24] D.H. Schuurhuis, N. van Montfoort, A. Ioan-Facsinay, R. Jiawan, M. Camps, J.Nouta, C.J. Melief, J.S. Verbeek, and F. Ossendorp, Immune complex-loaded dendritic cells are superior to soluble immune complexes as antitumor vaccine, J Immunol. 176(2006) 4573-4580.
    
    [25] C. Akewanlop, M. Watanabe, B. Singh, M. Walker, D.W. Kufe, and D.F. Hayes,Phagocytosis of breast cancer cells mediated by anti-MUC-1 monoclonal antibody, DF3,and its bispecific antibody, Cancer Res. 61 (2001) 4061-4065.
    
    [26] A. Regnault, D. Lankar, V. Lacabanne, A. Rodriguez, C. Thery, M. Rescigno, T.Saito, S. Verbeek, C. Bonnerot, P. Ricciardi-Castagnoli, and S. Amigorena, Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization, J ExpMed. 189(1999)371-380.
    
    [27] P.S. Tan, A.L. Gavin, N. Barnes, D.W. Sears, D. Vremec, K. Shortman, S.Amigorena, P.L. Mottram, and P.M. Hogarth, Unique monoclonal antibodies define expression of Fc gamma RI on macrophages and mast cell lines and demonstrate heterogeneity among subcutaneous and other dendritic cells, J Immunol. 170 (2003)2549-2556.
    
    [28] K.M. Dhodapkar, J. Krasovsky, B. Williamson, and M.V. Dhodapkar, Antitumor monoclonal antibodies enhance cross-presentation ofcCellular antigens and the generation of myeloma-specific killer T cells by dendritic cells, J Exp Med. 195 (2002)125-133.
    
    [29] Y. Drechsler, S. Chavan, D. Catalano, P. Mandrekar, and G. Szabo, FcgammaR cross-linking mediates NF-kappaB activation, reduced antigen presentation capacity, and decreased IL-12 production in monocytes without modulation of myeloid dendritic cell development, J Leukoc Biol. 72 (2002) 657-667.
    
    [30] K. Akiyama, S. Ebihara, A. Yada, K. Matsumura, S. Aiba, T. Nukiwa, and T. Takai,Targeting apoptotic tumor cells to Fc gamma R provides efficient and versatile vaccination against tumors by dendritic cells, J Immunol. 170 (2003) 1641-1648.
    
    [31] J.F. Cohen-Solal, L. Cassard, W.H. Fridman, and C. Sautes-Fridman, Fc gamma receptors, Immunol Lett. 92 (2004) 199-205.
    
    [32] L. Frisoni, L. McPhie, L. Colonna, U. Sriram, M. Monestier, S. Gallucci, and R.Caricchio, Nuclear autoantigen translocation and autoantibody opsonization lead to increased dendritic cell phagocytosis and presentation of nuclear antigens: a novel pathogenic pathway for autoimmunity?, J Immunol. 175 (2005) 2692-2701.
    
    [33] N. Guriec, C. Daniel, K. Le Ster, E. Hardy, and C. Berthou, Cytokine-regulated expression and inhibitory function of FcgammaRIIBl and -B2 receptors in human dendritic cells, J Leukoc Biol. 79 (2006) 59-70.
    [34] R. Zeidler, G. Reisbach, B. Wollenberg, S. Lang, S. Chaubal, B. Schmitt, and H.Lindhofer, Simultaneous activation of T cells and accessory cells by a new class of intact bispecific antibody results in efficient tumor cell killing, J Immunol. 163 (1999) 1246-1252.
    
    [35] V. Groh, Y.Q. Li, D. Cioca, N.N. Hunder, W. Wang, S.R. Riddell, C. Yee, and T.Spies, Efficient cross-priming of tumor antigen-specific T cells by dendritic cells sensitized with diverse anti-MICA opsonized tumor cells, Proc Natl Acad Sci U S A. 102(2005) 6461-6466.
    
    [36] A. Bennett, R. Phillip, P. Scott, D. Minden, T. Jones, and A. Mistlin, Rheumatology,rehabilitation medicine and sports and exercise medicine, J R Army Med Corps. 152(2006) 163-174.
    
    [37] M.M. Nogueira, M.T. Mitjavila-Garcia, F. Le Pesteur, M.D. Filippi, W. Vainchenker,A. Dubart Kupperschmitt, and F. Sainteny, Regulation of Id gene expression during embryonic stem cell-derived hematopoietic differentiation, Biochem Biophys Res Commun. 276 (2000) 803-812.
    
    [38] R. Benezra, The Id proteins: targets for inhibiting tumor cells and their blood supply, Biochim Biophys Acta. 1551 (2001) F39-47.
    
    [39] J.M. Timmerman, D.K. Czerwinski, T.A. Davis, F.J. Hsu, C. Benike, Z.M. Hao, B.Taidi, R. Rajapaksa, C.B. Caspar, C.Y. Okada, A. van Beckhoven, T.M. Liles, E.G.Engleman, and R. Levy, Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma:clinical and immune responses in 35 patients, Blood. 99 (2002) 1517-1526.
    
    [40] S.N. Franki, K.K. Steward, D.J. Betting, K. Kafi, R.E. Yamada, and J.M.Timmerman, Dendritic cells loaded with apoptotic antibody-coated tumor cells provide protective immunity against B-cell lymphoma in vivo, Blood. 111 (2008) 1504-1511.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700