功能解剖影像PET/CT在肿瘤诊断相关常见问题中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:结、直肠癌术后复发及转移灶监测,原发灶不明转移癌寻找原发灶以及18F-FDG PET/CT'‘假阳性”摄取、肿瘤放射治疗敏感性预测、放射治疗后肿瘤内FDG高摄取区的临床病理学意义等是肿瘤临床常见的有代表性的与诊断相关的问题,通过功能解剖影像PET/CT解决这些常见问题的研究,探讨其在肿瘤定位、定性诊断及放射治疗相关诊断中的应用价值。
     方法:(1)66例结/直肠癌术后临床可疑复发或转移患者、120例原发灶不明转移癌患者的全身18FFDG PET/CT显像与同期增强CT为主的常规影像学检查结果对比研究,根据病理诊断和临床随访结果,探讨18F-FDG PET/CT在肿瘤诊断中的应用价值。
     (2)18F-FDG PET/CT "假阳性”摄取的常见原因是由炎症造成的。解决18F-FDG PET/CT“假阳性”摄取的方法之一就是研发新的PET示踪剂。18-FLT是新近发展起来的反映细胞增殖的示踪剂。通过食管癌ECa109BALB/C裸鼠移植瘤模型探讨"F-FLT PET/CT在肿瘤诊断、肿瘤放射治疗敏感性预测中的应用价值以及放射治疗后肿瘤内FDG高摄取区的临床病理学意义。
     ①食管癌ECa109BALB/C裸鼠移植瘤模型和炎症小鼠模型各20只分别随机分为18F-FDG和18F-FLT组,每组10只,各行18F-FDG及18F-FLT PET/CT显像研究,对比研究F-FLT PET/CT在肿瘤诊断中的应用价值。
     ②40只食管癌ECa109BALB/C裸鼠移植瘤模型随机均分为18F-FDG组和18F-FLT组,IOGy6MV-X线单次照射右后肢移植瘤,分别于放射治疗后第1天、3天、5天、7天、10天行FLT及FDG PET/CT显像,每次显像每组随机抽取4只。测量肿瘤/非肿瘤组织放射性比值(T/N),各组每次取平均值绘制时间变化曲线;FLT PFT显像T/N值与相应移植瘤免疫组化所测的Ki-67指数作相关性分析;放射治疗后移植瘤FDG高摄取区细针穿刺行组织病理及免疫组化测增殖动力学参数Ki-67、乏氧标志物HIF-1α。对比分析放射治疗后FDG高摄取区的临床病理意义。
     结果:(1)经病理或临床随访证实,18F-FDG PET/CT诊断结直肠癌术后复发的灵敏性和特异性分别为96.30%、94.87%,同期增强CT分别为70.37%、87.18%;诊断结直肠癌术后淋巴结或远处器官转移的灵敏性和特异性分别为95.35%、82.61%,同期增强CT分别为61.9%、75.00%。半定量法最大标准摄取值(SUVmax)复发灶(变化区间4.16-22.00,平均值±标准差8.06±4.30)明显高于良性病变(区间1.18-6.25,平均值±标准差2.82±1.02)差异具有统计学意义(P<0.01)。
     (2)经病理或临床随访证实,120例原发灶不明转移癌患者18F-FDG PET/CT准确检测出原发灶54例,检出率42.5%。原发灶位于头颈部17例,肺19例,乳腺2例,食管1例,胃2例,胆管1例,胰腺3例,结肠3例,卵巢2例,前列腺1例,其他部位3例。18F-FD G PET/CT诊断出现假阳性9例(7.5%):头颈部3例,肺1例,胃1例,结肠2例,卵巢1例,前列腺1例。18F-FDG PET/CT未检出原发灶的66例患者在平均32个月(12-45个月)的临床随访中,仅5例找到原发灶,具体为乳腺癌、胃癌、结肠癌、前列腺癌和输尿管癌各1例。18F-FDG PET/CT在原发灶不明转移癌患者中定位原发灶的灵敏性、特异性和准确性分别为91.5%,85.2%和88.3%。
     (3)成功制作食管癌ECa109BALB/C裸鼠移植瘤模型和炎症小鼠模型,并成功合成18F-FLT。187F-FDG及18F-FLT PET组均表现为移植瘤放射性摄取增高,T/N的平均值±标准差分别为4.73±1.34和3.68±1.08,t检验示t=1.75,p>0.05,差异无统计学意义。而在炎性组织,18F-FDG PET组放射性摄取增高,T/N平均值±标准差为2.74±0.64,18F-FLT PET组则无放射性摄取增高,T/N平均值±标准差为1.15±0.14,t检验示t=6.79,p<0.O1。FLT PET T/N在移植瘤放射治疗后第1天即出现明显下降,第3天降到最低;而FDG PET则于移植瘤放射治疗后缓慢下降,3天后出现明显下降至放射治疗后第5天降至最低。T/N的下降程度FLT组与FDG组差别具有统计学意义(53.15±9.22%vs45.62±11.08%,t=2.34,p<0.05)。放射治疗后移植瘤Ki-67表达指数下降,FLT摄取与Ki-67表达指数有显著相关性(r=0.828)。放射治疗后移植瘤FDG高摄取区的Ki-67、HIF-1α等指标均高于瘤内其他区域。
     结论:1.与以CT为代表的常规影像学相比,功能解剖融合影像PET/CT在结直肠癌术后复发及转移灶监测,原发灶不明转移癌寻找原发灶等肿瘤临床常见问题的定位、定性诊断中均表现出更高的灵敏性、特异性及准确性,在肿瘤诊断及分期、优化治疗方案等方面发挥着越来越重要的作用。
     2.18F-FLT作为反映细胞增殖的PET示踪剂,在炎症组织中无放射性摄取,比FDG具有更高的肿瘤诊断特异性。
     3.18F-FLT和F-FDG PET均可用于食管癌放射治疗敏感性预测,18F-FLT更为灵敏,放射治疗后肿瘤放射性摄取较早出现下降,与Ki-67表达指数有显著相关性。放射治疗后肿瘤内FDG高摄取区的增殖和乏氧指标均高于肿瘤内其他区域,可能对放射治疗剂量生物调强、个体化放射治疗提供帮助,有待于进一步临床研究证实。
Purpose:Recurrence and metastases monitoring of postoperative patients with c olorectal cancer, detecting the primary tumor in patients with carcinoma of unk nown primary,"false positive" uptake in F-FDG PET/CT, predicting of tumor radiosensitivity and the clinicopathological significance of high metabolic area i n tumor after radiation therapy are common and urgent issues needed to resolv e.The purpose of this research is to evaluate the application value of function al anatomy imaging PET/CT in these tumor diagnosis related common problem s.
     Methods:(1)66postoperative patients with colorectal cancer,suspicious of recu rrence/metastases and120cases of unknown primary tumor with confirmed met astase(s)were recruited in the research. The final histopathological and formal cl inical follow-up findings were used as gold standard to determine the sensitivit y and specificity of FDG PET/CT and enhanced CT of the same periods.
     (2) More than half of the false positive(FP) interpretations by FDG PET were of uptake by inflammatory infiltrates. The development of F-FLT, as a new P ET tracer, has enabled demonstration of cell proliferation. BALB/c nude mice bearing human esophageal cancer Eca109. BALB/c nude mice bearing human e sophageal cancer Eca109.The study in vivo model of BALB/c nude mice beari ng human esophageal cancer Eca109was to investigate the value of F-FLT PET/CT for diagnosis、predicting of tumor radiosensitivity and the clinicopathol ogical significance of high FDG uptake area in tumor after radiation therapy.
     ①Twenty BALB/c nude mice bearing human esophageal cancer Eca109and twenty inflammation BALB/c mice models were randomly divided into two gr oups according to the different tracers:18F-FLT and18F-FDG(each group:n=10, r espectively). Value of18F-FLT PET/CT for diagnosis of tumor was investigated, compared to18F-FDG PET/CT.
     ②orty BALB/c nude mice bearing human esophageal cancer Eca109were randomly divided into two groups according to the different tracers:18F-FLT and18F-FDG(each group:n=20, respectively). PET/CT imaging was performed for f our mice every time each group at60min after tracer injection from tail vein s. After imaging,instantly sacrificed the four mice respectively and took out tra nsplanted tumor completely to perform pathological and immunohistochemistry examination. The whole process mentioned above was repeated on lstday、3rdday.5thday、7thday、10thday after the xenograft was irradiated with a single dose10Gy6MV-X ray for each group.Based on PET imaging of18F-FLT and18F-FDG, Tumor and tumor-to-nontumor ratios(T/N) were measured.Maximum decline in tumor-to-nontumor ratios(T/N) for18F-FLT and18F-FDG were determined. Aft er irridiation,position the district with high FDG uptake and perform needle asp iration biopsy to investigate the clinicopathological value by pathological and i mmunohistochemical examination:Ki-67label index and HIF-1α.
     Results:The sensitivity and specificity of FDG PET/CT in detecting recurrence are96.30%,94.87%(while enhanced CT are70.37%and87.18%,respectively).The sensitivity and specificity in detecting metastasis are95.35%,82.61%(enhanced CT are61.90%,75.00%).SUVmax was significantly higher in malignant lesions (x±s,8.06±4.30) than in benign ones (x±s,2.82±1.02) and P<0.01.
     FDG PET/CT was able to detect the primary tumor in54/120patients(42.5%).The primary tumors were confirmed by histopathologic and formal clinical follow-up findings,and located in the head and neck(n=17),the lung(n=19),the breast(n=2),the esophagus(n=1),the stomach(n=2),the bile ducts(n=1).the pancreas (n=3).the colon(n=3),the ovary(n=2).the prostate(n=1),others(n=3).FDG PET resul ts were proved false positive in9patients(7.5%),which were located in the hea d and neck(n=3),the lung(n=1),the stomach(n=1),the colon(n=2),the ovary(n=1),th e prostate(n=1).During the clinical follow-up of median32months (range,12-45months),primary tumor was found in only5patients of66cases unidentified by PET/CT(breast cancer,gastric cancer,colon cancer.prostate cancer and urinary tumors,respectively).The sensitivity,specificity, and accuracy of18F-FDG PET/C T in the detection of the primary tumor site were91.5%,85.2%,and88.3%,resp ectively.18F-FLT and18F-FDG PET/CT both showed clear tumor images. F LT uptake was higher than that of FDG,but the T/N of18F-FDG and18F-FLT in Eca109tumors was different without significantly (3.68±1.08vs4.73±1.34, t=1.75, p>0.05). While the T/N of18F-FDG and18F-FLT in inflammatory tissu e was different with significantly(2.74±0.64vs1.15±0.14,t=6.79,p<0.01).Decline in tumor-to-nontumor ratios (T/N) was observed after irridiation. For FDG, mo st significant decline was observed on5th day; whereas, for FLT,this was alread y noted on1st day. Maximum decline in T/N for FDG and FLT was different with significantly(45.62±11.08%vs53.15±9.22%,t=2.34,p<0.05).Expression of Ki-67declined in irradiated tumors compared to that of control,and statistical signif icant correlations were found for Ki-67with FLT uptake(r=0.828).Tumor cells i n irradiation group manifested a significant appearance of apoptosis.After irridia tion,Ki-67,HIF-la in the district with high FDG uptake were expressed higher t han the other regions of the tumor.
     Conclusion:1.Compared to CT, PET/CT showed higher sensitivity, spec ificity and accuracy, and plays an increasingly important role in tumor diagnosi s and staging, optimize treatment regimens.
     2.18F-FLT and18F-FDG uptake can be used to monitor the biologic resp onse of esophageal SCC and normal tissue to radiation therapy. F-FLT PET/C T may have an advantage over F-FDG PET/CT in differentiating inflammation tissue from tumor. After irridiation,Ki-67.HIF-la in the district with high FDG uptake were expressed higher than in the other regions of the tumor, which may be helpful for dose painting of IMRT.and additional investigation is nee ded to validate these findings.
引文
[I]Kobayashi S, Kubo H, Suzuki T, et al. Endogenous secretory receptor for advanced glycation end products in non-small cell lung carcinoma. Am J Respir Crit Care Med.2007.175(2):184-9.
    [2]Sun Y, Cheng JJ, Himmel ME, et al. Expression and characterization of Acidothermus cellulolyticus E1 endoglucanase in transgenic duckweed Lemna minor 8627. Bioresour Technol.2007.98(15):2866-72.
    [3]Takeuchi K, Araki H, Sakaue T, et al. Porcine germinal angiotensin I-converting enzyme:isolation, characterization and molecular cloning. Comp Biochem Physiol B Biochem Mol Biol.2007.146(2):215-26.
    [4]Yamamoto Y, Adachi Y, Fujii Y, Kamei C. Ginkgo biloba extract improves spatial memory in rats mainly but not exclusively via a histaminergic mechanism. Brain Res.2007.1129(1):161-5.
    [5]Maehashi K, Matano M, Kondo A, Yamamoto Y, Udaka S. Riboflavin-binding protein exhibits selective sweet suppression toward protein sweeteners. Chem Senses.2007.32(2):183-90.
    [6]Nakamichi Y, Udagawa N, Kobayashi Y, et al. Osteoprotegerin reduces the serum level of receptor activator of NF-kappaB ligand derived from osteoblasts. J Immunol.2007.178(1):192-200.
    [7]Yamamoto Y, Suzuki H. Effects of increased intracellular Cl-concentration on membrane responses to acetylcholine in the isolated endothelium of guinea pig mesenteric arteries. J Physiol Sci.2007.57(1):31-41.
    [8]Funayama E, Igawa HH, Nishizawa N, Oyama A, Yamamoto Y. Velopharyngeal insufficiency in hemifacial microsomia:analysis of correlated factors. Otolaryngol Head Neck Surg.2007.136(1):33-7.
    [9]Yamamoto Y, Kurachi M, Yamaguchi K, Oda T. Induction of multiple cytokine secretion from RAW264.7 cells by alginate oligosaccharides. Biosci Biotechnol Biochem.2007.71(1):238-41.
    [10]Hong R, Halama J, Bova D, Sethi A, Emami B. Correlation of PET standard uptake value and CT window-level thresholds for target delineation in CT-based radiation treatment planning. Int J Radiat Oncol Biol Phys.2007. 67(3):720-6.
    [11]Leong T, Everitt C, Yuen K, et al. A prospective study to evaluate the impact of FDG-PET on CT-based radiation therapy treatment planning for oesophageal cancer. Radiother Oncol.2006.78(3):254-61.
    [12]Bradley J, Thorstad WL, Mutic S, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys.2004.59(1):78-86.
    [13]Hu M, Han A, Xing L, et al. Value of dual-time-point FDG PET/CT for mediastinal nodal staging in non-small-cell lung cancer patients with lung comorbidity. Clin Nucl Med.2011.36(6):429-33.
    [14]Macdonald K, Searle J, Lyburn I. The role of dual time point FDG PET imaging in the evaluation of solitary pulmonary nodules with an initial standard uptake value less than 2.5. Clin Radiol.2011.66(3):244-50.
    [15]Shum WY, Hsieh TC, Yeh JJ, et al. Clinical usefulness of dual-time FDG PET-CT in assessment of esophageal squamous cell carcinoma. Eur J Radiol. 2012.81(5):1024-8.
    [16]Xiu Y, Bhutani C, Dhurairaj T, et al. Dual-time point FDG PET imaging in the evaluation of pulmonary nodules with minimally increased metabolic activity. Clin Nucl Med.2007.32(2):101-5.
    [17]Hu Q, Wang W, Zhong X, et al. Dual-time-point FDG PET for the evaluation of locoregional lymph nodes in thoracic esophageal squamous cell cancer. Eur J Radiol.2009.70(2):320-4.
    [18]Simo M, Lomena F, Setoain J, et al. FDG-PET improves the management of patients with suspected recurrence of colorectal cancer. Nucl Med Commun. 2002.23(10):975-82.
    [19]Tutt AN, Plunkett TA, Barrington SF, Leslie MD. The role of positron emission tomography in the management of colorectal cancer. Colorectal Dis. 2004.6(1):2-9.
    [20]Votrubova J, Belohlavek O, Jaruskova M, et al. The role of FDG-PET/CT in the detection of recurrent colorectal cancer. Eur J Nucl Med Mol Imaging. 2006.33(7):779-84.
    [21]Moertel CG, Fleming TR, Macdonald JS, Haller DG, Laurie JA, Tangen C. An evaluation of the carcinoembryonic antigen (CEA) test for monitoring patients with resected colon cancer. JAMA.1993.270(8):943-7.
    [1]Kobayashi S, Kubo H, Suzuki T, et al. Endogenous secretory receptor for advanced glycation end products in non-small cell lung carcinoma. Am J Respir Crit Care Med.2007.175(2):184-9.
    [2]Sun Y, Cheng JJ, Himmel ME, et al. Expression and characterization of Acidothermus cellulolyticus E1 endoglucanase in transgenic duckweed Lemna minor 8627. Bioresour Technol.2007.98(15):2866-72.
    [3]Takeuchi K, Araki H, Sakaue T, et al. Porcine germinal angiotensin I-converting enzyme:isolation, characterization and molecular cloning. Comp Biochem Physiol B Biochem Mol Biol.2007.146(2):215-26.
    [4]Yamamoto Y, Adachi Y, Fujii Y, Kamei C. Ginkgo biloba extract improves spatial memory in rats mainly but not exclusively via a histaminergic mechanism. Brain Res.2007.1129(1):161-5.
    [5]Maehashi K, Matano M, Kondo A, Yamamoto Y, Udaka S. Riboflavin-binding protein exhibits selective sweet suppression toward protein sweeteners. Chem Senses.2007.32(2):183-90.
    [6]Nakamichi Y, Udagawa N, Kobayashi Y, et al. Osteoprotegerin reduces the serum level of receptor activator of NF-kappaB ligand derived from osteoblasts. J Immunol.2007.178(1):192-200.
    [7]Yamamoto Y, Suzuki H. Effects of increased intracellular Cl-concentration on membrane responses to acetylcholine in the isolated endothelium of guinea pig mesenteric arteries. J Physiol Sci.2007.57(1):31-41.
    [8]Funayama E, Igawa HH, Nishizawa N, Oyama A, Yamamoto Y. Velopharyngeal insufficiency in hemifacial microsomia:analysis of correlated factors. Otolaryngol Head Neck Surg.2007.136(1):33-7.
    [9]Yamamoto Y, Kurachi M, Yamaguchi K, Oda T. Induction of multiple cytokine secretion from RAW264.7 cells by alginate oligosaccharides. Biosci Biotechnol Biochem.2007.71(1):238-41.
    [10]Hong R, Halama J, Bova D, Sethi A, Emami B. Correlation of PET standard uptake value and CT window-level thresholds for target delineation in CT-based radiation treatment planning. Int J Radiat Oncol Biol Phys.2007. 67(3):720-6.
    [11]Leong T, Everitt C, Yuen K, et al. A prospective study to evaluate the impact of FDG-PET on CT-based radiotherapy treatment planning for oesophageal cancer. Radiother Oncol.2006.78(3):254-61.
    [12]Bradley J, Thorstad WL, Mutic S, et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys.2004.59(1):78-86.
    [13]Hu M, Han A, Xing L, et al. Value of dual-time-point FDG PET/CT for mediastinal nodal staging in non-small-cell lung cancer patients with lung comorbidity. ClinNucl Med.2011.36(6):429-33.
    [14]Macdonald K, Searle J, Lyburn Ⅰ. The role of dual time point FDG PET imaging in the evaluation of solitary pulmonary nodules with an initial standard uptake value less than 2.5. Clin Radiol.2011.66(3):244-50.
    [15]Shum WY, Hsieh TC, Yeh JJ, et al. Clinical usefulness of dual-time FDG PET-CT in assessment of esophageal squamous cell carcinoma. Eur J Radiol. 2012.81(5):1024-8.
    [16]Xiu Y, Bhutani C, Dhurairaj T, et al. Dual-time point FDG PET imaging in the evaluation of pulmonary nodules with minimally increased metabolic activity. Clin Nucl Med.2007.32(2):101-5.
    [17]Hu Q, Wang W, Zhong X, et al. Dual-time-point FDG PET for the evaluation of locoregional lymph nodes in thoracic esophageal squamous cell cancer. Eur J Radiol.2009.70(2):320-4.
    [18]Simo M, Lomena F, Setoain J, et al. FDG-PET improves the management of patients with suspected recurrence of colorectal cancer. Nucl Med Commun. 2002.23(10):975-82.
    [19]Tutt AN, Plunkett TA, Barrington SF, Leslie MD. The role of positron emission tomography in the management of colorectal cancer. Colorectal Dis. 2004.6(1):2-9.
    [20]Votrubova J, Belohlavek O, Jaruskova M, et al. The role of FDG-PET/CT in the detection of recurrent colorectal cancer. Eur J Nucl Med Mol Imaging. 2006.33(7):779-84.
    [21]Moertel CG, Fleming TR, Macdonald JS, Haller DG, Laurie JA, Tangen C. An evaluation of the carcinoembryonic antigen (CEA) test for monitoring patients with resected colon cancer. JAMA.1993.270(8):943-7.
    [22]Yakushiji S, Ando M, Yonemori K, et al. Cancer of unknown primary site: review of consecutive cases at the National Cancer Center Hospital of Japan. Int J Clin Oncol.2006.11(6):421-5.
    [23]Shaw PH, Adams R, Jordan C, Crosby TD. A clinical review of the investigation and management of carcinoma of unknown primary in a single cancer network. Clin Oncol (R Coll Radiol).2007.19(1):87-95.
    [24]Pavlidis N, Fizazi K. Carcinoma of unknown primary (CUP). Crit Rev Oncol Hematol.2009.69(3):271-8.
    [25]Roh JL, Kim JS, Lee JH, et al. Utility of combined (18)F-fluorodeoxyglucose-positron emission tomography and computed tomography in patients with cervical metastases from unknown primary tumors. Oral Oncol.2009.45(3):218-24.
    [26]Nassenstein K, Veit-Haibach P, Stergar H, et al. Cervical Lymph Node Metastases of Unknown Origin:Primary Tumor Detection with Whole-Body Positron Emission Tomography/Computed Tomography. Acta Radiol.2007 1-8.
    [27]Hu M, Zhao W, Zhang PL, et al. Clinical applications of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in carcinoma of unknown primary. Chin Med J (Engl).2011.124(7):1010-4.
    [28]de Wouw AJ v, Jansen RL, Speel EJ, Hillen HF. The unknown biology of the unknown primary tumour:a literature review. Ann Oncol.2003.14(2):191-6.
    [29]Pavlidis N, Pentheroudakis G. Cancer of unknown primary site:20 questions to be answered. Ann Oncol.2010.21 Suppl 7:vii303-7.
    [30]Kwee TC, Basu S, Cheng G, Alavi A. FDG PET/CT in carcinoma of unknown primary. Eur J Nucl Med Mol Imaging.2010.37(3):635-44.
    [31]Al-Brahim N, Ross C, Carter B, Chorneyko K. The value of postmortem examination in cases of metastasis of unknown origin-20-year retrospective data from a tertiary care center. Ann Diagn Pathol.2005.9(2):77-80.
    [32]Blaszyk H, Hartmann A, Bjornsson J. Cancer of unknown primary: clinicopathologic correlations. APMIS.2003.111(12):1089-94.
    [33]Werner JA, Dunne AA, Myers JN. Functional anatomy of the lymphatic drainage system of the upper aerodigestive tract and its role in metastasis of squamous cell carcinoma. Head Neck.2003.25(4):322-32.
    [34]Kaya AO, Coskun U, Unlu M, et al. Whole body 18F-FDG PET/CT imaging in the detection of primary tumours in patients with a metastatic carcinoma of unknown origin. Asian Pac J Cancer Prev.2008.9(4):683-6.
    [35]Shinya T, Rai K, Okumura Y, et al. Dual-time-point F-18 FDG PET/CT for evaluation of intrathoracic lymph nodes inpatients with non-small cell lung cancer. Clin Nucl Med.2009.34(4):216-21.
    [36]Uesaka D, Demura Y, Ishizaki T, et al. Evaluation of dual-time-point 18F-FDG PET for staging in patients with lungcancer. J Nucl Med.2008.49(10): 1606-12.
    [37]Hu Q, Wang W, Zhong X, et al. Dual-time-point FDG PET for the evaluation of locoregional lymph nodes inthoracic esophageal squamous cell cancer. Eur J Radiol.2009.70(2):320-4.
    [38]Hu M, Han A, Xing L, et al Value of dual-time-point FDG PET/CT for mediastinal nodal staging innon-small-cell lung cancer patients with lung comorbidity. Clin Nucl Med.2011.36(6):429-33.
    [39]Zhuang H, Pourdehnad M, Lambright ES, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med.2001.42(9):1412-7.
    [1]Ullrich R, Backes H, Li H, et al. Glioma proliferation as assessed by 3'-fluoro-3'-deoxy-L-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res.2008.14(7):2049-55.
    [2]Yamamoto Y, Nishiyama Y, Ishikawa S, et al. Correlation of 18F-FLT and 18F-FDG uptake on PET with Ki-67 immunohistochemistry in non-small cell lung cancer. Eur J Nucl Med Mol Imaging.2007.34(10):1610-6.
    [3]Yap CS, Czernin J, Fishbein MC, et al. Evaluation of thoracic tumors with 18F-fluorothymidine and 18F-fluorodeoxyglucose-positron emission tomography. Chest.2006.129(2):393-401.
    [4]Waldherr C, Mellinghoff IK, Tran C, et al. Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3'-deoxy-3'-18F-fluorothymidine PET. J Nucl Med.2005.46(1):114-20.
    [5]Oyama N, Ponde DE, Dence C, Kim J, Tai YC, Welch MJ. Monitoring of therapy in androgen-dependent prostate tumor model by measuring tumor proliferation. J Nucl Med.2004.45(3):519-25.
    [6]Sugiyama M, Sakahara H, Sato K, et al. Evaluation of 3'-deoxy-3'-18F-fluorothymidine for monitoring tumor response to radiotherapy and photodynamic therapy in mice. J Nucl Med.2004.45(10): 1754-8.
    [7]Molthoff CF, Klabbers BM, Berkhof J, et al. Monitoring response to radiotherapy in human squamous cell cancer bearing nude mice:comparison of 2'-deoxy-2'-[18F]fluoro-D-glucose (FDG) and 3'-[18F]fluoro-3'-deoxythymidine (FLT). Mol Imaging Biol.2007.9(6):340-7.
    [8]Tut VM, Braithwaite KL, Angus B, Neal DE, Lunec J, Mellon JK. Cyclin D1 expression in transitional cell carcinoma of the bladder:correlation with p53, wafl, pRb and Ki67. Br J Cancer.2001.84(2):270-5.
    [9]Pan MH, Huang SC, Liao YP, et al. FLT-PET imaging of radiation responses in murine tumors. Mol Imaging Biol.2008.10(6):325-34.
    [10]Barthel H, Cleij MC, Collingridge DR, et al.3'-deoxy-3'-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res.2003.63(13):3791-8.
    [11]Cobben DC, Elsinga PH, Suurmeijer AJ, et al. Detection and grading of soft tissue sarcomas of the extremities with (18)F-3'-fluoro-3'-deoxy-L-thymidine. Clin Cancer Res.2004.10(5):1685-90.
    [12]Liu X, Zhou NK, Zhang JM, Liang ZY, Zheng X. [Correlation of 3'-deoxy-3'-18F-fluorothymidine uptake to cell proliferation in lung carcinoma xenografts]. Ai Zheng.2006.25(12):1512-6.
    [13]Barthel H, Perumal M, Latigo J, et al. The uptake of 3'-deoxy-3'-[18F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging.2005. 32(3):257-63.
    [14]Muzi M, Mankoff DA, Grierson JR, Wells JM, Vesselle H, Krohn KA. Kinetic modeling of 3'-deoxy-3'-fluorothymidine in somatic tumors:mathematical studies. J Nucl Med.2005.46(2):371-80.
    [15]Muzi M, Vesselle H, Grierson JR, et al. Kinetic analysis of 3'-deoxy-3'-fluorothymidine PET studies:validation studies in patients with lung cancer. J Nucl Med.2005.46(2):274-82.
    [16]Hengstschlager M, Knofler M, Mullner EW, Ogris E, Wintersberger E, Wawra E. Different regulation of thymidine kinase during the cell cycle of normal versus DNA tumor virus-transformed cells. J Biol Chem.1994.269(19): 13836-42.
    [17]Mikulits W. Hengstschlager M, Sauer T. Wintersberger E. Mullner EW. Overexpression of thymidine kinase mRNA eliminates cell cycle regulation of thymidine kinase enzyme activity. J Biol Chem.1996.271(2):853-60.
    [18]Wintersberger E, Rotheneder H, Grabner M, Beck G, Seiser C. Regulation of thymidine kinase during growth, cell cycle and differentiation. Adv Enzyme Regul.1992.32:241-54.
    [19]Leyton J, Latigo JR, Perumal M, Dhaliwal H, He Q, Aboagye EO. Early detection of tumor response to chemotherapy by 3'-deoxy-3'-[18F]fluorothymidine positron emission tomography:the effect of cisplatin on a fibrosarcoma tumor model in vivo. Cancer Res.2005.65(10): 4202-10.
    [20]Apisarnthanarax S, Alauddin MM, Mourtada F, et al. Early detection of chemoradioresponse in esophageal carcinoma by 3'-deoxy-3'-3H-fluorothymidine using preclinical tumor models. Clin Cancer Res.2006.12(15):4590-7.
    [21]Hohn-Elkarim K, Muhlensiepen H, Altman KI, Feinendegen LE. Modification of effects of radiation on thymidine kinase. Int J Radiat Biol.1990.58(1): 97-110.
    [22]Koumenis C, Alarcon R, Hammond E, et al. Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol.2001.21(4):1297-310.
    [23]Nordsmark M, Overgaard J. A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell carcinoma treated by radiation therapy. Radiother Oncol.2000.57(1):39-43.
    [24]Movsas B, Chapman JD, Hanlon AL, et al. Hypoxic prostate/muscle pO2 ratio predicts for biochemical failure in patients with prostate cancer:preliminary findings. Urology.2002.60(4):634-9.
    [1]Apisarnthanarax S, Alauddin MM, Mourtada F, et al. Early detection of chemoradioresponse in esophageal carcinoma by 3'-deoxy-3'-3H-fluorothymidine using preclinical tumor models. Clin Cancer Res.2006.12(15):4590-7.
    [2]Barthel H, Cleij MC, Collingridge DR, et al.3'-deoxy-3'-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res.2003.63(13):3791-8.
    [3]Liu X, Zhou NK, Zhang JM, Liang ZY, Zheng X. [Correlation of 3'-deoxy-3'-18F-fluorothymidine uptake to cell proliferation in lung carcinoma xenografts]. Ai Zheng.2006.25(12):1512-6.
    [4]Price SJ, Fryer TD, Cleij MC, et al. Imaging regional variation of cellular proliferation in gliomas using 3'-deoxy-3'-[18F]fluorothymidine positron-emission tomography:an image-guided biopsy study. Clin Radiol. 2009.64(1):52-63.
    [5]Pirotte B, Goldman S, Van Bogaert P, et al. Integration of [11C]methionine-positron emission tomographic and magnetic resonance imaging for image-guided surgical resection of infiltrative low-grade brain tumors in children. Neurosurgery.2005.57(1 Suppl):128-39; discussion 128-39.
    [6]Viel T, Talasila KM, Monfared P, et al. Analysis of the growth dynamics of angiogenesis-dependent and-independent experimental glioblastomas by multimodal small-animal PET and MRI. J Nucl Med.2012.53(7):1135-45.
    [7]Sohn HJ, Yang YJ, Ryu JS, et al. [18F]Fluorothymidine positron emission tomography before and 7 days after gefitinib treatment predicts response in patients with advanced adenocarcinoma of the lung. Clin Cancer Res.2008. 14(22):7423-9.
    [8]Herrmann K, Wieder HA, Buck AK, et al. Early response assessment using 3'-deoxy-3'-[18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin's lymphoma. Clin Cancer Res.2007.13(12):3552-8.
    [9]Kenny LM, Vigushin DM, Al-Nahhas A, et al. Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging:evaluation of analytical methods. Cancer Res.2005.65(21):10104-12.
    [10]Wieder HA, Geinitz H, Rosenberg R, et al. PET imaging with [18F]3'-deoxy-3'-fluorothymidine for prediction of response to neoadjuvant treatment in patients with rectal cancer. Eur J Nucl Med Mol Imaging.2007. 34(6):878-83.
    [11]Fowler JF. Rapid repopulation in radiotherapy:a debate on mechanism. The phantom of tumor treatment--continually rapid proliferation unmasked. Radiother Oncol.1991.22(3):156-8.
    [12]Baumann M, Liertz C, Baisch H, Wiegel T, Lorenzen J, Arps H. Impact of overall treatment time of fractionated irradiation on local control of human FaDu squamous cell carcinoma in nude mice. Radiother Oncol.1994.32(2): 137-43.
    [13]Petersen C, Zips D, Krause M, et al. Repopulation of FaDu human squamous cell carcinoma during fractionated radiotherapy correlates with reoxygenation. Int J Radiat Oncol Biol Phys.2001.51(2):483-93.
    [14]Withers HR, Taylor JM, Maciejewski B. The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol.1988.27(2):131-46.
    [15]Saunders MI, Dische S, Fowler JF, et al. Radiotherapy employing three fractions on each of twelve consecutive days. Acta Oncol.1988.27(2):163-7.
    [16]Yamada S, Takai Y, Nemoto K, et al. Prognostic impact of the period between surgery and postoperative irradiation in esophageal carcinoma. Tohoku J ExpMed.1994.172(3):275-82.
    [17]Kajanti M, Kaleta R, Kankaanranta L, Muhonen T, Holsti L. Effect of overall treatment time on local control in radical radiotherapy for squamous cell carcinoma of esophagus. Int J Radiat Oncol Biol Phys.1995.32(4):1017-23.
    [18]Hoskin PJ, Sibtain A, Daley FM, Saunders MI, Wilson GD. The immunohistochemical assessment of hypoxia, vascularity and proliferation in bladder carcinoma. Radiother Oncol.2004.72(2):159-68.
    [19]Salskov A, Tammisetti VS, Grierson J, Vesselle H. FLT:measuring tumor cell proliferation in vivo with positron emission tomography and 3'-deoxy-3'-[18F]fluorothymidine. Semin Nucl Med.2007.37(6):429-39.
    [20]Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med.2002.43(9):1210-7.
    [21]Buck AK, Halter G, Schirrmeister H, et al. Imaging proliferation in lung tumors with PET:18F-FLT versus 18F-FDG. J Nucl Med.2003.44(9): 1426-31.
    [22]Yap CS, Czernin J, Fishbein MC, et al. Evaluation of thoracic tumors with 18 F-fluoro thymidine and 18F-fluorodeoxyglucose-positron emission tomography. Chest.2006.129(2):393-401.
    [23]Yamamoto Y, Nishiyama Y, Ishikawa S, et al. Correlation of 18F-FLT and 18F-FDG uptake on PET with Ki-67 immunohistochemistry in non-small cell lung cancer. Eur J Nucl Med Mol Imaging.2007.34(10):1610-6.
    [24]Yang W, Zhang Y, Fu Z, et al. Imaging of proliferation with 18F-FLT PET/CT versus 18F-FDG PET/CT in non-small-cell lung cancer. Eur J Nucl Med Mol Imaging.2010.37(7):1291-9.
    [25]Perumal M, Pillai RG, Barthel H. et al. Redistribution of nucleoside transporters to the cell membrane provides a novel approach for imaging thymidylate synthase inhibition by positron emission tomography. Cancer Res. 2006.66(17):8558-64.
    [26]Everitt S, Hicks RJ, Ball D, et al. Imaging cellular proliferation during chemo-radiotherapy:a pilot study of serial 18F-FLT positron emission tomography/computed tomography imaging for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys.2009.75(4):1098-104.
    [27]Yue J, Chen L, Cabrera AR, et al. Measuring tumor cell proliferation with 18F-FLT PET during radiotherapy of esophageal squamous cell carcinoma:a pilot clinical study. J Nucl Med.2010.51(4):528-34.
    [28]van WHL, Cobben DC, Jager PL, et al. Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer. J Nucl Med.2005.46(3):400-4.
    [29]Menda Y, Boles PLL, Dornfeld KJ, et al. Kinetic analysis of 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) in head and neck cancer patients before and early after initiation of chemoradiation therapy. J Nucl Med.2009.50(7):1028-35.
    [30]Troost EG, Bussink J, Hoffmann AL, Boerman OC, Oyen WJ, Kaanders JH. 18F-FLT PET/CT for early response monitoring and dose escalation in oropharyngeal tumors. J Nucl Med.2010.51(6):866-74.
    [31]Rajendran JG, Schwartz DL, O'Sullivan J, et al. Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res.2006.12(18):5435-41.
    [32]Lee NY, Mechalakos JG, Nehmeh S, et al. Fluorine-18-Iabeled fluoromisonidazole positron emission and computed tomography-guided intensity-modulated radiotherapy for head and neck cancer:a feasibility study. Int J Radiat Oncol Biol Phys.2008.70(1):2-13.
    [33]Madani I, Duthoy W, Derie C, et al. Positron emission tomography-guided, focal-dose escalation using intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys.2007.68(1):126-35.
    [34]Lawrence J, Vanderhoek M, Barbee D, Jeraj R, Tumas DB, Vail DM. Use of 3'-deoxy-3'-[18F]fluorothymidine PET/CT for evaluating response to cytotoxic chemotherapy in dogs with non-Hodgkin's lymphoma. Vet Radiol Ultrasound.2009.50(6):660-8.
    [35]Eckel F, Herrmann K, Schmidt S, et al. Imaging of proliferation in hepatocellular carcinoma with the in vivo marker 18F-fluorothymidine. J Nucl Med.2009.50(9):1441-7.
    [36]Spence AM, Muzi M, Link JM, et al. NCI-sponsored trial for the evaluation of safety and preliminary efficacy of 3'-deoxy-3'-[18F]fluorothymidine (FLT) as a marker of proliferation in patients with recurrent gliomas:preliminary efficacy studies. Mol Imaging Biol.2009.11(5):343-55.
    [37]Kameyama R, Yamamoto Y, Izuishi K, et al. Detection of gastric cancer using 18F-FLT PET:comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2009.36(3):382-8.
    [1]Antoch G, Saoudi N, Kuehl H, et al.(2004) Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol.22(21):4357-68.
    [2]Macdonald K, Searle J, Lyburn 1.(2011) The role of dual time point FDG PET imaging in the evaluation of solitary pulmonary nodules with an initial standard uptake value less than 2.5. Clin Radiol.66(3):244-50.
    [3]Shum WY, Hsieh TC, Yeh JJ, et al.(2012) Clinical usefulness of dual-time FDG PET-CT in assessment of esophageal squamous cell carcinoma. Eur J Radiol. 81(5)1024-8.
    [4]Xiu Y, Bhutani C, Dhurairaj T, et al.(2007) Dual-time point FDG PET imaging in the evaluation of pulmonary nodules with minimally increased metabolic activity. Clin Nucl Med.32(2):101-5.
    [5]Hu Q, Wang W, Zhong X, et al.(2009) Dual-time-point FDG PET for the evaluation of locoregional lymph nodes in thoracic esophageal squamous cell cancer. Eur J Radiol.70(2):320-4.
    [6]Hong R, Halama J, Bova D, Sethi A, Emami B.(2007) Correlation of PET standard uptake value and CT window-level thresholds for target delineation in CT-based radiation treatment planning, Int J Radiat Oncol Biol Phys.67(3):720-6.
    [7]Leong T, Everitt C, Yuen K, et al.(2006) A prospective study to evaluate the impact of FDG-PET on CT-based radiotherapy treatment planning for oesophageal cancer. Radiother Oncol.78(3):254-61.
    [8]Zhu D, Ma T, Niu Z, et al.(2011) Prognostic significance of metabolic parameters measured by (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with small cell lung cancer. Lung Cancer.73(3):332-7.
    [9]Naruke T, Suemasu K, Ishikawa S.(1976) Surgical treatment for lung cancer with metastasis to mediastinal lymph nodes. J Thorac Cardiovasc Surg.71(2):279-85.
    [10]Martini N, Flehinger BJ.(1987) The role of surgery in N2 lung cancer. Surg Clin North Am.67(5):1037-49.
    [11]Izbicki JR, Thetter O, Habekost M, et al.(1994) Radical systematic mediastinal lymphadenectomy in non-small cell lung cancer:a randomized controlled trial. Br J Surg.81(2):229-35.
    [12]Tsim S, O'Dowd CA, Milroy R, Davidson S.(2010) Staging of non-small cell lung cancer (NSCLC):a review. Respir Med.104(12):1767-74.
    [13]Wrona A, Jassem J.(2010) [The new TNM classification in lung cancer]. Pneumonol Alergol Pol.78(6):407-17.
    [14]Antoch G, Stattaus J, Nemat AT, et al.(2003) Non-small cell lung cancer: dual-modality PET/CT in preoperative staging. Radiology.229(2):526-33.
    [15]Dwamena BA, Sonnad SS, Angobaldo JO, Wahl RL.(1999) Metastases from non-small cell lung cancer:mediastinal staging in the 1990s--meta-analytic comparison of PET and CT. Radiology.213(2):530-6.
    [16]Hu M, Han A, Xing L, et al.(2011) Value of dual-time-point FDG PET/CT for mediastinal nodal staging in non-small-cell lung cancer patients with lung comorbidity. Clin Nucl Med.36(6):429-33.
    [17]de Geus-Oei LF, van KJH, Aliredjo RP, et al.(2007) Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer.55(1):79-87.
    [18]Li M, Liu N, Hu M, et al.(2009) Relationship between primary tumor fluorodeoxyglucose uptake and nodal or distant metastases at presentation in Tl stage non-small cell lung cancer. Lung Cancer.63(3):383-6.
    [19]Higashi K. Ueda Y. Yagishita M, et al.(2000) FDG PET measurement of the proliferative potential of non-small cell lung cancer. J Nucl Med.41(1):85-92.
    [20]Higashi K, Ueda Y. Ayabe K, et al.(2000) FDG PET in the evaluation of the aggressiveness of pulmonary adenocarcinoma:correlation with histopathological features. Nucl Med Commun.21(8):707-14.
    [21]Duhaylongsod FG, Lowe VJ, Patz EF Jr, et al. (1995)Lung tumor growth correlates with glucose metabolism measured by fluoride-18 fluorodeoxyglucose positron emission tomography. Ann Thorac Surg.60(5):1348-52.
    [22]Guo J, Higashi K, Ueda Y, et al.(2006) Microvessel density:correlation with 18F-FDG uptake and prognostic impact in lung adenocarcinomas. J Nucl Med. 47(3):419-25.
    [23]Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA.(2004) Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med.45(9):1519-27.
    [24]Westerterp M, Pruim J, Oyen W, et al.(2007) Quantification of FDG PET studies using standardised uptake values in multi-centre trials:effects of image reconstruction, resolution and ROI definition parameters. Eur J Nucl Med Mol Imaging.34(3):392-404.
    [1]Hu M, Han A, Xing L, et al. Value of dual-time-point FDG PET/CT for mediastinal nodal staging innon-small-cell lung cancer patients with lung comorbidity. Clin Nucl Med.2011.36(6):429-33.
    [2]Antoch G, Saoudi N, Kuehl H, et al. Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol.2004.22(21):4357-68.
    [3]Macdonald K, Searle J, Lyburn I. The role of dual time point FDG PET imaging in the evaluation of solitary pulmonary nodules with an initial standard uptake value less than 2.5. Clin Radiol.2011.66(3):244-50.
    [4]Shum WY, Hsieh TC, Yeh JJ, et al. Clinical usefulness of dual-time FDG PET-CT in assessment of esophageal squamous cell carcinoma. Eur J Radiol. 2011
    [5]Xiu Y, Bhutani C, Dhurairaj T, et al. Dual-time point FDG PET imaging in the evaluation of pulmonary nodules with minimally increased metabolic activity. ClinNucl Med.2007.32(2):101-5.
    [6]Hu Q, Wang W, Zhong X, et al. Dual-time-point FDG PET for the evaluation of locoregional lymph nodes in thoracic esophageal squamous cell cancer. Eur J Radiol.2009.70(2):320-4.
    [7]Pavlidis N. Fizazi K. Carcinoma of unknown primary (CUP). Crit Rev Oncol Hematol.2009.69(3):271-8.
    [8]Roh JL. Kim JS, Lee JH, et al. Utility of combined (18)F-fluorodeoxyglucose-positron emission tomography and computed tomography in patients with cervical metastases from unknown primary tumors. Oral Oncol.2009.45(3):218-24.
    [9]Nassenstein K, Veit-Haibach P, Stergar H, et al. Cervical Lymph Node Metastases of Unknown Origin:Primary Tumor Detection with Whole-Body Positron Emission Tomography/Computed Tomography. Acta Radiol.2007 1-8.
    [10]Hu M, Zhao W, Zhang PL, et al. Clinical applications of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in carcinoma of unknown primary. Chin Med J (Engl).2011.124(7):1010-4.
    [11]de Wouw AJ v, Jansen RL, Speel EJ, Hillen HE The unknown biology of the unknown primary tumour:a literature review. Ann Oncol.2003.14(2):191-6.
    [12]Pavlidis N, Pentheroudakis G. Cancer of unknown primary site:20 questions to be answered. Ann Oncol.2010.21 Suppl 7:vii303-7.
    [13]Kwee TC, Basu S, Cheng G, Alavi A. FDG PET/CT in carcinoma of unknown primary. Eur J Nucl Med Mol Imaging.2010.37(3):635-44.
    [14]Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology.2004.231(2):305-32.
    [15]Al-Brahim N, Ross C, Carter B, Chorneyko K. The value of postmortem examination in cases of metastasis of unknown origin-20-year retrospective data from a tertiary care center. Ann Diagn Pathol.2005.9(2):77-80.
    [16]Blaszyk H, Hartmann A, Bjornsson J. Cancer of unknown primary: clinicopathologic correlations. APMIS.2003.111(12):1089-94.
    [17]Werner JA, Dunne A A, Myers JN. Functional anatomy of the lymphatic drainage system of the upper aerodigestive tract and its role in metastasis of squamous cell carcinoma. Head Neck.2003.25(4):322-32.
    [18]Kaya AO, Coskun U, Unlu M, et al. Whole body 18F-FDG PET/CT imaging in the detection of primary tumours in patients with a metastatic carcinoma of unknown origin. Asian Pac J Cancer Prev.2008.9(4):683-6.
    [19]Shinya T, Rai K, Okumura Y, et al. Dual-time-point F-18 FDG PET/CT for evaluation of intrathoracic lymph nodes inpatients with non-small cell lung cancer. Clin Nucl Med.2009.34(4):216-21.
    [20]Uesaka D, Demura Y, Ishizaki T, et al. Evaluation of dual-time-point 18F-FDG PET for staging in patients with lungcancer. J Nucl Med.2008.49(10): 1606-12.
    [21]Hu Q, Wang W, Zhong X, et al. Dual-time-point FDG PET for the evaluation of locoregional lymph nodes inthoracic esophageal squamous cell cancer. Eur J Radiol.2009.70(2):320-4.
    [22]Rosen EL, Eubank WB, Mankoff DA. FDG PET, PET/CT, and breast cancer imaging. Radiographics.2007.27 Suppl 1:S215-29.
    [23]Schapira DV, Jarrett AR. The need to consider survival, outcome, and expense when evaluating and treating patients with unknown primary carcinoma. Arch Intern Med.1995.155(19):2050-4.
    [24]Kwee TC, Kwee RM. Combined FDG-PET/CT for the detection of unknown primary tumors:systematic review and meta-analysis. Eur Radiol.2009.19(3): 731-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700