低剂量力达霉素诱导小鼠胚胎癌细胞分化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤干细胞的假说认为不是所有肿瘤细胞均具有增殖和维持肿瘤生长的能力,而仅有一小部分肿瘤细胞亚群,具有自我更新潜能和形成肿瘤维持肿瘤生长的能力,称之为肿瘤干细胞[1]。对于治疗反应敏感的肿瘤来说,传统的化疗及放疗所能杀伤的大部分肿瘤细胞,均属于已分化的终末细胞,残存的极少数肿瘤干细胞,成为肿瘤复发和转移的根源,直接影响肿瘤患者的生存率[2]。因此,肿瘤干细胞成为有效治疗的肿瘤新靶点[3]。
     力达霉素(LDM,原名C-1027),是一种由一个酸性蛋白和一个发色团组成的抗肿瘤抗生素。其不稳定发色团可直接断裂DNA双链,酸性蛋白作为载体靶向肿瘤组织。已经证实在体内、体外通过诱导细胞周期停滞和细胞凋亡抑制大多数肿瘤细胞的生长[4]。
     P19胚胎癌(embryonic carcinoma, EC)细胞是从C3H/He鼠胚胎来源的畸胎瘤中分离得到的,具有与多能性的胚胎干细胞(embryonic stem cell,ES cell)极为相似的生物学特征,高表达囊胚内细胞团的标记物,如转录因子Oct4,是体外研究肿瘤干细胞增殖及分化的理想模型[5]。Oct4是维持胚胎干细胞自我更新和多能性的一种关键转录因子,其在全能性或多能性干细胞及一些实体肿瘤干细胞中高表达,但在正常体细胞和正常成体干细胞分化的子细胞中不表达。因此,有学者提出Oct4可以作为肿瘤干细胞的标志分子之一。
     前期实验结果证实低剂量(0.01nmol)力达霉素处理P19EC细胞诱导G0/G1期阻滞而不引起凋亡,与其下调了胚胎干细胞样基因Oct4有关,提示力达霉素可作为研究胚胎干细胞分化的诱导剂[6]。
     本研究发现:首先,小鼠P19EC细胞在诱导分化培养后,形态学符合神经细胞样改变,在mRNA、蛋白水平上检测到神经细胞的标志分子;其次,低剂量力达霉素处理小鼠P19EC细胞后,下调转录因子Oct4及上调p21的表达;其三,通过染色质免疫沉淀分析证实转录因子Oct4结合到p21的启动子的量逐渐减少,并且低剂量力达霉素通过下调转录因子Oct4,解除对其下游靶基因p21的抑制作用。
     因此,我们得出结论:低剂量力达霉素可以诱导小鼠P19EC细胞向神经样细胞分化;低剂量力达霉素诱导小鼠P19EC细胞向神经样细胞分化与其下调转录因子Oct4的表达有关;转录因子Oct4的下调导致其靶基因p21的上调,促进肿瘤干细胞的分化;低剂量力达霉素通过诱导分化达到抗肿瘤作用,为其应用于临床提供理论基础和实验依据。
The cancer stem cell hypothesis suggests that not all the cells in thetumour have the ability to proliferate and maintain growth of the tumour, butonly a small subpopulation of cells in the tumour with a self-renewal potentialand the capacity to form a tumour and maintain its growth, called cancer stemcells. Conventional chemotherapy and radiotherapy are effective against thebulk cancer cells, but the presence of rare resistant CSCs may lead to tumorrecurrence and poor survival outcomes. Therefore, CSCs are considered ascrucial targets for curing the cancer.
     Lidamycin (LDM, also known as C-1027) is an anticancer chromoproteinincluding an apoprotein and a chromophore. Its labile chromophore can directlybreak the DNA double-strand, and its noncovalently bound apoprotein acts as adelivery carrier targeting tumor tissue. LDM has been confirmed to inhibit thegrowth of most of cancers in vitro and in vivo by cell cycle arrest andapoptosis.
     P19embryonal carcinoma (EC) cells derived from an embryo-derivedteratocarcinoma in C3H/He mice are multipotent. High expression of markersof the inner cell mass of blastocysts, such as transcription factors Oct4, is theideal model in vitroto linkage between the tumors and cell differentiation. Oct4,a crucial transcriptional factor for maintaining self-renewal and pluripotency, ishigh expressed in the totipotent or multipotent stem cells and solid tumor cells,but not expressed in normal somatic tissues and normal differentiated daughtersof the adult stem cells. Therefore, some scholars have proposed that Oct4canact as one of cancer stem cell markers.
     Preliminary experimental results confirm that low dose of LDM induced G0/G1arrest of P19EC cells without apoptosis. Which relating todown-regulation of embryonic stem cell-like gene Oct4. This indicated thatLDM may be served as an inducer to study ES cell pluripotency anddifferentiation.
     In this study, we found the following results. Firstly, After low-doselidamycin induced differentiation of P19EC cells, the morphology of P19cells undergoing neural differentiation, on the level of mRNA and proteindetected the markers of neural cells; Secondly, Lidamycin suppressedexpression of transcriptional factor Oct4and activated p21gene in mouse P19EC cells;Thirdly, by chromatin immunoprecipitation analysis confirmed thatOct4binding to p21gene promoter was decreased. These results suggested thatsuppression of Oct4by lidamycin led to activation of the p21gene.
     We conclude that low-dose lidamycin induced neural differentiation inP19EC cell; low-dose lidamycin induced neuronal differentiation related todown regulation of Oct4;up regulation of p21played an important role incancer stem cell differentiation;low-dose lidamycin induced differentiation ofcells in chemotherapy,which provides a theoretical basis and experimentalevidence.
引文
[1] Vermeulen L, Sprick MR, Kemper K, et al. Cancer stem cells-old concepts,new insights[J]. Cell Death Differ,2008,15(6):947–958
    [2] Gao MQ, Choi YP, Kang S, et al. CD24(+) cells from hierarchicallyorganized ovarian cancer are enriched in cancer stem cells[J]. Oncogene,2010,29(18):2672-80.
    [3] Tai MH, Chang CC, Chang CC, et al. Oct4expression in adult humanstem cells: evidence in support of the stem cell theory of carcinogenesis[J].Carcinogenesis,2005,26(2):495–502
    [4] Zhen YZ, Lin YJ, Shang BY, et al. Enediyne lidamycin induces apoptosisin human multiple myeloma cells through activation of p38mitogen-activated protein kinase and c-Jun NH2-terminal kinase[J]. Int J Hematol,2009,90(1):44–51
    [5] Blelloch RH, Hochedlinger K, Yamada Y, et al. Nuclear cloning ofembryonic carcinoma cells[J]. Proc Natl Acad Sci USA,2004,101(39):13985–13990
    [6] Zhen HY, He QH, Zhen YZ, et al. Inhibition of mouse embryoniccarcinoma cell growth by lidamycin through down-regulation ofembryonic stem cell-like genes Oct4,Sox2and Myc[J]. Invest New Drugs,2011,29(6):1188-1197
    [7] Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stemcells[J]. Nature,2001,414(6859):105-11
    [8] Furth J, Kahn MC. The transmission of leukaemia of mice with a singlecell[J]. Am J Cancer,1937,31:276–282
    [9] McCulloch EA, Till JE. The radiation sensitivity of normal mouse bonemarrow cells, determined by quantitative marrow transplantation intoirradiated mice[J]. Radiation Res,1960,13:115–125
    [10] Becker AJ, McCulloch EA, Till JE. Cytological demonstration of theclonal nature of spleen colonies derived from transplanted mouse marrowcells [J]. Nature,1963,197:452–46.
    [11] Till JE, McCulloch EA, Siminovitch L. A stochastic model of stem cellproliferation, based on the growth of spleen colony-forming cells [J]. ProcNatl Acad Sci USA,1964,51:29–36.
    [12]. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acutemyeloid leukaemia after transplantation into SCID mice [J]. Nature,1994,367(6464):645–648.
    [13] Lawson DA, Xin L, Lukacs R, et al. Prostate stem cells and prostatecancer [J]. Cold Spring Harb Symp Quant Biol,2005,70:187-96
    [14] Singh SK, Hawkins C, Clarke ID, et al. Identification of human braintumour initiating cells.[J]. Nature,2004,432(7015):396-401
    [15] Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospectiveidentification of tumorigenic breast cancer cells [J]. Proc Natl Acad Sci US A,2003,100(7):3983-3988
    [16] Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification andexpansion of human colon-cancer-initiating cells [J]. Nature,2007,445(7123):111-115
    [17] O’Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cellcapable of initiating tumour growth in immunodeficient mice [J]. Nature,2007,445(7123):106-110
    [18] Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stemcells [J]. Cancer Res,2007,67(3):1030-7
    [19] Evans MJ, Kaufman MH. Establishment in culture of pluripotential cellsfrom mouse embryos [J]. Nature,1981,292(5819):154-6
    [20] Martin GR.. Teratocarcinomas as a model system for the study ofembryogenesis and neoplasia [J]. Cell,5(3):229-43
    [21]胡中华,胡义德,朱勇.非小细胞肺癌中Bmi-1表达情况的初步研究[J].中国肺癌杂志,2008,11(l):107-109.
    [22]黄开红,刘建华,李学先,等. Bmi-1在胃癌组织中的表达及相关性研究[J].中国肿瘤临床,2006,34(17):961-965.
    [23] Duronio RJ, O’Farrell PH. Developmental control of a G1-Stranscriptional program in Drosophila[J]. Development,1994,120(6):1503–1515.
    [24] Galderisi U, Jori FP, Giordano A. Cell cycle regulation and neuraldifferentiation[J]. Oncogene,2003,22(33):5208–5219.
    [25] Molofsky AV, He S, Bydon M, et al. Bmi-1promotes neural stem cellself-renewal and neural development but not mouse growth and survivalby repressing the p16Ink4a and P19Arf senescence pathways [J]. GenesDev,2005,19(12):1432-7.
    [26] Taipale J, Beachy PA. The Hedgehog and Wnt signalling pathways incancer [J]. Nature,2001,411(6835):349–354.
    [27] Herr W, Cleary MA. The POU domain: versatility in transcriptionalregulation by a lexible two-in-one DNA-binding domain [J]. Genes Dev,1995,9(14):1679-1693.
    [28] Suo G, Han J, Wang X, et al. Oct4pseudogenes are transcribed incancers.[J]. Biochem Biophys Res Commun,2005,337(4):1047-1051.
    [29] Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitryin human embryonic stem cells [J]. Cell,2005,122(6):947–956.
    [30] Nichols J, Zevnik B, Anastassiadis KM, et al. Formation of pluripotentstem cells in the mammalian embryo depends on the POU transcriptionfactor Oct4[J]. Cell,1998,95(3):379–391.
    [31] Burdon T, Smith A, Savatier P. Signalling, cell cycle and pluripotency inembryonic stem cells [J]. Trends Cell Biol,2002,12(9):432–438.
    [32] Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cellsto pluripotency with defined factors[J]. Nature,2008,451(7175):141–146.
    [33] Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem celllines derived from human somatic cells[J]. Science,2007,318(5858):1917–1920.
    [34] Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stemcells from adult human fibroblasts by defined factors [J]. Cell,2007,131(5):861–872.
    [35] Atlasi Y, Mowla SJ, Ziaee SA, et al. OCT4spliced variants aredifferentially expressed in human pluripotent and nonpluripotent cells [J].Stem Cells,2008,26(12):3068–3074.
    [36] Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4definesdifferentiation, dedifferentiation or self-renewal of ES cells [J]. Nat Genet,2000,24(4):372–376.
    [37] Li L, Sun L, Gao F, et al. Stk40links the pluripotency factor Oct4to theErk/MAPK pathway and controls extraembryonic endoderm different-iation [J]. Proc Natl Acad Sci USA,2010,107(4):1402–1407.
    [38] Ambrosetti DC, Basilico C, Dailey L. Synergistic activation of thefibroblast growth factor4enhancer by Sox2and Oct-3depends onprotein–protein interactions facilitated by a specific spatial arrangement offactor binding sites [J]. Mol Cell Biol,1997,17(11):6321–6329.
    [39] Pesce M, Scholer HR. Oct-4: gatekeeper in the beginnings of mammaliandevelopment[J]. Stem Cells,2001,19(4):271-278
    [40] Nishimoto M, Fukushima A, Okuda A, et al. The gene for the embryonicstem cell coactivator UTF1carries a regulatory element which selectivelyinteracts with a complex composed of Oct-3/4and Sox-2[J]. Mol CellBiol,1999,19(8):5453–5465.
    [41] Wang ZX, Teh CH, Kueh JL, et al. Oct4and Sox2directly regulateexpression of another pluripotency transcription factor, Zfp206, inembryonic stem cells [J]. J Biol Chem,2007,282(17):12822–12830.
    [42] Nusslein-Volhard C, Wieschaus E. Mutations affecting segment numberand polarity in Drosophila [J]. Nature,1980,287(5785):795–801.
    [43] Pasca di Magliano M, Hebrok M. Hedgehog signalling in cancerformation and maintenance[J]. Nat Rev Cancer,2003,3(12):903–11.
    [44] Ingham PW, McMahon AP. Hedgehog signaling in animal development:paradigms and principles [J]. Genes Dev,2001,15(23):3059–87.
    [45] Dahmane N, Sanchez P, Gitton Y, et al. The Sonic Hedgehog-Gli pathwayregulates dorsal brain growth and tumorigenesis [J]. Development,2001,128(24):5201–12.
    [46] Palma V, Ruiz i Altaba A. Hedgehog-GLI signaling regulates the behaviorof cells with stem cell properties in the developing neocortex [J].Development,2004,131(2):337–45.
    [47] Lai K, Kaspar BK, Gage FH, et al. Sonic Hedgehog regulates adult neuralprogenitor proliferation in vitro and in vivo [J]. Nat Neurosci,2003,6(1):21–7.
    [48] Nilsson M, Unden AB, Krause D, et al. Induction of basal cell carcinomasand trichoepitheliomas in mice overexpressing GLI-1[J]. Proc Natl AcadSci U S A,2000,97(7):3438–43.
    [49] Thayer SP, di Magliano MP, Heiser PW, et al. Hedgehog is an early andlate mediator of pancreatic cancer tumorigenesis [J]. Nature,2003,425(6960):851–6.
    [50] Jen WC, Wettstein D, Turner D, et al. The Notch ligand, X-Delta-2,mediates segmentation of the paraxial mesoderm in Xenopus embryos [J].Development,1997,124(6):1169–78.
    [51] Androutsellis-Theotokis A, Leker RR, Soldner F, et al. Notch signallingregulates stem cell numbers in vitro and in vivo [J]. Nature,2006,442(7104):823–6.
    [52] Hallahan AR, Pritchard JI, Hansen S, et al. The SmoA1mouse modelreveals that notch signaling is critical for the growth and survival of SonicHedgehog-induced medulloblastomas [J]. Cancer Res,2004,64(21):7794–800.
    [53] Dontu G, Jackson KW, McNicholas E, et al. Role of Notch signaling incell-fate determination of human mammary stem/progenitor cells [J].Breast Cancer Res,2004,6(6): R605–15.
    [54] Gonzalez-Sancho JM, Aguilera O, Garcia JM, et al. The Wnt antagonistDICKKOPF-1gene is a downstream target of beta-catenin/TCF and isdownregulated in human colon cancer [J]. Oncogene,2005,24(6):1098–103.
    [55] Huelsken J, Vogel R, Brinkmann V, et al. Requirement for beta-catenin inanterior-posterior axis formation in mice [J]. Cell Biol,2000,148(3):567–78.
    [56] Linenberger ML. CD33-directed therapy with gemtuzumab ozogamicin inacute myeloid leukemia: progress in understanding cytotoxicity andpotential mechanisms of drug resistance[J]. Leukemia,2005,19(2):176–182.
    [57] Chen JK, Taipale J, Cooper MK, et al. Inhibition of Hedgehog signalingby direct binding of cyclopamine to Smoothened[J]. Genes Dev,2002,16(21):2743–8.
    [58] Karhadkar SS, Bova GS, Abdallah N, et al. Hedgehog signalling inprostate regeneration, neoplasia and metastasis [J]. Nature,2004,431(7009):707–12.
    [59] Clement V, Sanchez P, de Tribolet N, et al. HEDGEHOG-GLI1signalingregulates human glioma growth, cancer stem cell self-renewal, andtumorigenicity [J]. Curr Biol,2007,17(2):165–72.
    [60] Mimeault M, Moore E, Moniaux N, et al. Cytotoxic effects induced by acombination of cyclopamine and gefitinib, the selective hedgehog andepidermal growth factor receptor signaling inhibitors, in prostate cancercells [J]. Int J Cancer,2006,118(4):1022–31.
    [61] Kubo M, Nakamura M, Tasaki A, et al. Hedgehog signaling pathway is anew therapeutic target for patients with breast cancer [J]. Cancer Res,2004,64(17):6071–4.
    [62] Berman DM, Karhadkar SS, Hallahan AR, et al. Medulloblastoma growthinhibition by hedgehog pathway blockade [J]. Science,2002,297(5586):1559–61.
    [63] Sanchez P, Hernandez AM, Stecca B, et al. Inhibition of prostate cancerproliferation by interference with SONIC HEDGEHOG-GLI1signaling[J]. Proc Natl Acad Sci U S A,2004,101(34):12561–6.
    [64] Watkins DN, Berman DM, Baylin SB. Hedgehog signaling: progenitorphenotype in small-cell lung cancer [J]. Cell Cycle,2003,2(3):196–8.
    [65] Berman DM, Karhadkar SS, Maitra A, et al. Widespread requirement forHedgehog ligand stimulation in growth of digestive tract tumours [J].Nature,2003,425(6960):846–51.
    [66] Jin L, Hope KJ, Zhai Q, et al. Targeting of CD44eradicates human acutemyeloid leukemic stem cells [J]. Nat Med,2006,12(10):1167–1174.
    [67] Ohno R, Asou N, Ohnishi K. Treatment of acute promyelocytic leukemia:strategy toward further increase of cure rate [J]. Leukemia,2003,17(8):1454–1463.
    [68] Sell S. Stem cell origin of cancer and differentiation therapy[J]. Crit RevOncol Hematol,2004,51(1):1–28.
    [69] Shi G, Jin Y. Role of Oct4in maintaining and regaining stem cellpluripotency[J]. Stem Cell Res Ther,2010,1(5):39.
    [70] Jones-Villeneuve EM, McBurney MW, Rogers KA, et al. Retinoic acidinduces embryonal carcinoma cells to differentiate into neurons and glialcells [J]. J Cell Biol,1982,94(2):253–262.
    [71] Pachernik J, Bryja V, Esner M, et al. Neural differentiation of pluripotentmouse embryonal carcinoma cells by retinoic acid: inhibitory effect ofserum[J]. Physiol Res,2005,54(1):115–122.
    [72] Lee J, Go Y, Kang I, et al. Oct-4controls cell-cycle progression ofembryonic stem cells[J]. Biochem J,2010,426(2):171–181.
    [73] Hung SP, Hsu JR., Lo CP, et al. Genistein-induced neuronal differentiationis associated with activation of extracellular signal-regulated kinases andupregulation of p21and N-cadherin[J]. J Cell Biochem,2005,96(5):1061–1070.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700