内质网蛋白质折叠及其相关通路在耐药绒癌中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     包括绒癌(CC)在内的滋养细胞肿瘤(GTN)是人类最早可以治愈的对化疗高度敏感的实体瘤,90%以上的患者可以通过规范化的化疗而治愈。但是化疗耐药仍是患者治疗失败的主要原因。迄今为止,有关CC耐药发生的确切机制尚不明确,因此,建立耐药CC的体外模型对于其耐药机制的研究尤其重要。
     上个世纪九十年代兴起的蛋白质组学如今正方兴未艾,它以细胞内全部蛋白质的存在以及活动方式做为研究对象,从整体的水平研究细胞、组织以及器官的蛋白质表达的变化。众所周知,肿瘤是多因素共同作用的结果,因此有必要利用蛋白质组学对耐药和敏感绒癌细胞株之间蛋白表达差异进行高通量的检测以筛查出耐药候选蛋白,从而为滋养细胞肿瘤耐药的逆转提供依据。
     为此,本研究采用临床滋养细胞肿瘤五种常用化疗药物(FUDR/5-FU/MTX/KSM/VP 16),使用间断和连续两种方法诱导人绒毛膜上皮癌JeG-3细胞,分别建立耐药细胞株。通过比较蛋白质组学的方法,寻找耐药株和敏感株之间蛋白表达的差异,探讨绒癌的耐药机制,为指导临床化疗方案的制定,改善GTN患者,尤其是耐药GTN患者的预后提供依据。
     研究方法:
     1.采用五种临床滋养细胞肿瘤化疗常用药物(FUDR/5-FU/MTX/KSM/VP 16),使用间断和连续两种方法诱导人绒毛膜上皮癌JeG-3细胞,分别建立相应的耐药细胞株;
     2.用细胞计数法检测上述各个耐药细胞株的耐药性,并比较各个细胞株的细胞形态、生长曲线、群体倍增时间和染色体倍性的差异;用化学发光法检测亲本和耐药细胞株诱导过程中β-HCG和P分泌水平的动态变化;并同时用荧光定量PCR法检测相关化疗药物作用靶基因以及常用耐药相关基因在各个耐药细胞株诱导过程中的表达变化趋势;
     3.利用差异凝胶电泳识别亲本和JeG-3/FUDRA1耐药细胞株差异表达的蛋白质,用MALDI-TOF-MS对差异蛋白质进行鉴定,利用生物信息学和系统生物学方法对鉴定出来的蛋白质进行筛选,确定耐药相关候选蛋白;
     4.用Western blot法分别验证耐药相关候选蛋白在亲本细胞株与各耐药细胞株中的表达差异,同时检测其在各个耐药细胞株诱导过程中的动态变化趋势;RNAi候选蛋白质的表达,检测转染前后细胞生物学特性和耐药性的改变;
     5.用细胞免疫荧光的方法,利用共聚焦显微镜检测亲本和耐药细胞以及诱导过程中候选蛋白质表达量和细胞内定位的改变;
     6.用荧光定量PCR的方法检测候选蛋白质基因mRNA的表达以及与候选蛋白质作用相关网络基因mRNA在亲本和耐药细胞中的表达差异。
     研究结果:
     1.历时10~14月分别建立五株间断耐药细胞株JeG-3/FUDRA1、JeG-3/FUB1、JeG-3/MTXA1、JeG-3/KSMB1和JeG-3/VPC1;三株连续耐药细胞株JeG-3/FUDRC2、JeG-3/FUC2和JeG-3/MTXC2。经无药培养基培养三月后测定其耐药指数在11.26~65.87之间,冻存半年后复苏检测其耐药性无明显回复,提示耐药性稳定;
     2.和亲本细胞相比,各个耐药细胞在细胞形态、生长速度、群体倍增时间、染色体倍性以及细胞周期分布等方面均有不同程度的差异;
     3.动态检测在药物诱导耐药过程中各个细胞p-HCG和P分泌水平变化的结果显示:随着药物诱导浓度的增加和细胞耐药性的增高,其p-HCG和P分泌呈阶段性变化,与药物诱导浓度和细胞耐药性无明显相关性;
     4.针对DHFR/GST-π/LRP/MDR1/MRP/survivin/TopoIIa/TS等常见耐药基因和/或相关化疗药物作用靶酶基因转录水平表达的检测结果提示:除了GST-π基因的表达与5-FU两种方式诱导以及KSM间断诱导浓度和细胞耐药性之间明显正相关、LRP基因的表达在FUDR间断和5-FU连续诱导浓度和细胞耐药性之间明显正相关,各个耐药基因和/或靶酶在相关化疗药物诱导过程中的mRNA表达水平变化与药物诱导浓度和细胞耐药性无明显相关性;
     5.通过差异凝胶电泳和质谱分析,在亲本JeG-3细胞株和耐药JeG-3/FUDRA1细胞株中成功鉴定出46个差异蛋白质点,得到非冗余差异蛋白质31个,其中在耐药细胞株表达上调的蛋白质15个;表达下调的蛋白质12个以及未确定蛋白质4个。分别涵盖结合、酶催化活性、结构分子活性、转录调节活性、运输、酶调节活性和抗氧化活性等七大生物学功能。其中与内质网蛋白质折叠功能相关的CALR、PDIA3和GRP78在耐药细胞株中均有上调。其上调倍数分别为1.56、2.44和1.76倍;
     6.用Western blot的方法在各个耐药细胞株中均检测到上述三种和内质网蛋白质折叠功能相关的蛋白质表达上调,且有随着药物诱导浓度和耐药性的增加表达逐渐上调的趋势。干扰CALR和/或PDIA3在JeG-3/FUDRA1和JeG-3/MTXA1中的表达后,细胞耐药性下降1.52~4.22倍。细胞形态无明显改变;
     7.共聚焦定位显示CALR、PDIA3和GRP78定位于内质网,在耐药细胞表达均较亲本细胞上调,且CALR和PDIA3蛋白在耐药细胞株诱导过程中还有细胞内定位的改变,表现为低浓度药物诱导后CALR和PDIA3呈膜聚集性表达,而高浓度药物诱导后则表现为近核内质网内表达明显增强。该定位转变的现象在VP16耐药株中尤为明显;
     8.与亲本细胞比较,与内质网蛋白质折叠通路相关的各个基因在各个不同化疗药物以及两种不同方式诱导的耐药株中均较亲本细胞有不同程度的表达改变。
     结论:
     1.本研究利用间断和连续两种诱导方法,历时10~14月分别成功建立了针对FUDR、5-FU、MTX、KSM和VP16的稳定耐药株;
     2.由于绒癌细胞分泌β-HCG的水平与药物诱导浓度和细胞耐药性之间无明显相关性,故β-HCG不适用于作为耐药绒癌的预测指标;
     3.就目前结果而言,GST-π和LRP基因的表达量可以作为5-FU耐药的候选标志物,同时上述两种基因转录水平的变化也可以分别预测KSM和FUDR耐药的发生;
     4.本研究结果显示在各个耐药细胞中三大内质网蛋白质折叠系统的主要蛋白质折叠分子伴侣CALR、PDIA3和GRP78在蛋白表达水平均明显上调,且有随药物诱导浓度和耐药性增加而逐渐上调的趋势。对CALR、PDIA3以及两个蛋白同时行RNA干扰的结果显示,下调其表达可以明显增加FUDR和MTX间断耐药株对相应药物的敏感性。提示其参与耐药的发生;
     5.对包括内质网未折叠蛋白反应、内质网相关降解以及内质网相关凋亡在内的内质网应激其他三大反应途径的相关基因mRNA水平的检测结果示显示:在不同化疗药物以及不同方式诱导的绒癌耐药株中均存在有不同程度的ERS和UPR激活。提示ERS相关通路有可能成为绒癌化疗耐药干涉新的靶点;
     6. CALR和PDIA3在亲本细胞和不同浓度药物诱导的绒癌细胞中定位的改变提示CALR和PDIA3介导的肿瘤细胞免疫源性凋亡通路异常可能参与肿瘤耐药的发生。
Background:
     Choriocarcinoma (CC) is a form of gestational trophoblastic neoplasia (GTN). Because of its highly invasive and destructive nature, widespread metastases appear at comparatively early stages of pregnancy. Fortunately, CC is curable, and chemotherapy may be effective for 90% patients. However, drug-resistance is a main cause for the death of CC patients. Thus, understanding the mechanisms of chemo-resistance may lead to biomarkers screening, improved risk stratification and new treatment strategies.
     Much evidence has shown that the mechanisms responsible for chemo-resistance are multi-factorial, and analysis of a single protein as a factor determining chemo-resistance or as a biomarker of it is of limited use. Fortunately, the development of high-resolution techniques such as proteomics and progress in systems biology have made it possible to perform network investigations to identify panels of proteins involved in particular pathological conditions, as to facilitate the study of chemo-resistance mechanisms and biomarker identification.
     In order to clarify the mechanism of chemo-resistance of GTN, we generated chemo-resistant human CC JeG-3 sub-line with five different clinical chemo-reagents including (FUDR,5-FU, MTX, KSM and VP16) by sub-culturing JeG-3 cells with incremental and consecutive feeding methods respectively. Chemo-resistance related proteins were searched for the first time by using differential proteomics-based approaches in choriocarcinoma sensitive and resistance cell lines. Systems biology and bioinformatics were used to screen differentially expressed proteins identified by 2D-DIGE and MALDI-TOF-MS. The roles of the candidate proteins in chemo-resistance choriocarcinoma were further discussed.
     Methods:
     1. Starting from the chemo-sensitive JeG-3 human choriocarcinoma cell line, chemo-resistant variants were obtained by exposing parental cell line to stepwise increased related chemo-reagents concentrations by intermittent and consecutive feeding methods.
     2. The biological characteristics of all the sub-lines were examined under an inverted phase contrast microscope. IC50, cell cycle, hormone secretion and growth curve were detected in all the sub-lines. Cell Counting Kit-8 (CCK-8) assay was used to measure the inhibitory concentration 50%. qRT-PCR was used to measure dynamical profiles of DHFR, GST-π, MDR1, MRP, survivin, TopoⅡαand TS genes mRNA expression during the establishment of related chemo-resistant sub-lines.
     3.2D-DIGE and MALDI-TOF-MS approaches were used to identify the differential proteins in JeG-3 parent cell line and chemo-resistant sub-line. The differentially expressed proteins were screened by using systems biology and bioinformatics methods.
     4. The levels of the candidate proteins in chemo-resistant sub-lines were validated by western blot respectively. RNAi was used to knockdown the expression of CALR and/or PDIA3 respectively. The effects on growth and proliferation and IC50 of RNAi cells were detected.
     5. CALR, PDIA3 and GRP78 expression and sub-cellular location were also detected in different concentration of chemo-reagents-induced sub-lines by immunocytochemistry methods.
     6. qRT-PCR was used to detect the difference of the transcript levels of candidate proteins and ER function related pathway among the chemo-resistance sub-lines and parent cell line.
     Results:
     1. Five kinds of chemo-resistant sub-lines named JeG-3/FUDRA1、JeG-3/FUB1、JeG-3/MTXA1、JeG-3/KSMB1 and JeG-3/VPC1 were established by intermittent inducing method. In consecutive-inducing, three kinds of chemo-resistant sub-lines were established:JeG-3/FUDRC2、JeG-3/FUC2 and JeG-3/MTXC2. The RI of these chemo-resistant sub-lines ranged form 11.26-65.87, and had no significant change after half a year refrigeration.
     2. Many differences could be found among chemo-resistant sub-lines and parent JeG-3 cell line. The dynamical profile ofβ-HCG and P secretion suggested that the hormone secretions were stage-related, and had no relationship with the concentration of chemo-reagent exposure and RI.
     3. The transcript level of LRP seemed to be in coincidence with the concentration of FUDR-and 5-FU-exposure; the mRNA expression level of GST-πhad positive correlation with the concentration of 5-FU-and KSM-exposure and the RI. The transcription levels of other chemo-resistant related genes were all stage-related with the concentration of the drug exposure, and had no relationship with the RI.
     4. Forty-six proteins spots were found to be significantly different in spot intensity by statistical analysis between chemo-resistance sub-line and parent cell line, of which 31 proteins were identified by MALDI-TOF-MS. Comparing to the parent cell lines, CALR, PDIA3 and GRP78 were screened out finally. The expression folds in chemo-resistance sub-lines of these three proteins were 1.56,2.44 and 1.76 respectively.
     5. These three proteins were upregulated in all chemo-resistance sub-lines, and the expression levels of these three proteins seemed to enhance gradually in coincidence with the increased concentration of drug inducing and the increased RI. The RI decreased 1.52-4.22 in JeG-3/FUDRA1 and JeG-3/MTXA1 sub-lines by knockdown the CALR and/or PDIA3 expression respectively. There were no significant changes in morphology and cell growth after RNAi.
     6. All these three proteins were located in ER by confocal microscopy. Besides the high intensities of these three proteins were exhibited in chemo-resistance sub-lines, the translocation of CALR and PDIA3 were also found, especially in JeG-3/VPC1 sub-lines.
     7. The genes involved in ER protein fold-related pathway were changed to certain extention by comparing with parent cell line and chemo-resistance sub-lines.
     Conclusion:
     1. We established eight kinds of chemo-resistance choriocarcinoma sub-lines successfully.
     2. The disaccording profile ofβ-HCG secretion with the concentration of chemo-reagents exposure and RIs of related sub-lines indicated that the P-HCG could not be accurate for the prediction of chemo-resistance in chemo-therapy of choriocarcinoma.
     3. The transcript level of GST-πand LRP could serve as a reliable candidate biomarker for predicting chemo-resistance to 5-FU-based chemotherapy, and might also predict KSM-resistant and FUDR-resistant respectively.
     4. Three endoplasmic reticulum molecular chaperones were found to be up-regulated in all chemo-resistance sub-lines which indicated enhanced ER protein folding ability may be involved in the mechanism of chemo-resistance of GTN.
     5. ERS and UPR seemed to be activated in chemo-resistance choriocarcinoma cell lines, which indicated the related pathway of ER function might be the next target of chemo-resistance choriocarcinoma.
     6. The translocation of CALR and PDIA3 suggested that the immunogenicity of tumour cell death might participate in the mechanism of chemo-resistance.
引文
[1]Berkowitz RS, Goldstein DP.Current management of gestational trophoblastic diseases. [J].Gynecol Oncol,2009,112(3):654-62.
    [2]Bertino JR. Cancer research:from folate antagonism to molecular targets. [J].Best Pract Res Clin Haematol.2009;22(4):577-82.
    [3]Morgan JM, Lurain JR.Gestational trophoblastic neoplasia:an update.[J].Curr Oncol Rep,2008,10(6):497-504.
    [4]Khoo SK. Clinical aspects of gestational trophoblastic disease:A review based partly on 25-year experience of a statewide registry. [J]. Aust N Z J Obstet Gynaecol,2003, 43(4):280-9.
    [5]Di Nicolantonio F, Mercer SJ, Knight LA, Gabriel FG, Whitehouse PA, Sharma S, Fernando A, Glaysher S, Di Palma S, Johnson P, Somers SS, Toh S, Higgins B, Lamont A, Gulliford T, Hurren J, Yiangou C, Cree IA. Cancer cell adaptation to chemotherapy. [J]. BMC Cancer,2005,18(5):78-93.
    [6]E Tiligada Chemotherapy:induction of stress responses. [J]. Endocrine-Related Cancer,2006,13:S115-24.
    [7]Van Triest B, Pinedo HM, Van Hensbergen Y et al. Thymidylate synthase level as the main predicitive parameter for sensitivity to 5-fluorouracil, but not for folatebased thymidylate synthase inhibitors, in 13 nonselected colon cancer cell lines.[J].Clin Cancer Res,1999,5:643-54.
    [8]Aschele C, Debernardis D, Bandelloni R et al. Thymidylate synthase protein expression in colorectal cancer metastases predicts for clinical outcome to leucovorin-modulated bolus or infusional 5-fluorouracil but not methotrexate-modulated bolus 5-fluorouracil. [J].Ann Oncol,2002,13:1882-92.
    [9]LibraM, Navolanic PM, Talamini R et al Thymidylate synthetase mRNA levels are increased in liver metastases of colorectal cancer patients'resisitant to fluoropyrimidine-based chemotherapy. [J]. BMC Cancer,2004,4:11.
    [10]Findlay MP, Cunningham D, Morgan G et al. Lack of correlation between thymidylate synthase levels in primary colorectal tumors and subsequent response to chemotherapy. [J]. Br J Cancer,1997,75:903-9.
    [11]Paradiso A, Simone G, Petroni S et al Thymidilate synthase and p53 primary tumor expression as predictive factors for advanced colorectal cancer patients. [J]. Br J Cancer,2000,82:560-7.
    [12]Foekens JA, Romain S, Look MP et al. Thymidine kinase and thymidine synthase in advanced breast cancer:response to tamoxifen and chemotherapy. [J]. Cancer Res, 2001,61:1421-5.
    [13]Limtrakul P. Curcumin as chemosensitizer.[J].Adv Exp Med Biol,2007, 595:269-300.
    [14]Kotchetkov R, Driever PH, Cinatl J, Michaelis M, Karaskova J, Blaheta R, Squire JA, Von Deimling A, Moog J, Cinatl J Jr.Increased malignant behavior in neuroblastoma cells with acquired multi-drug resistance does not depend on P-gp expression. [J].Int J Oncol,2005,27(4):1029-37.
    [15]Takagi E, Kawatsu H, Shimokata K, Nishiyama Y, Kojima K, Yoshida S. Establishment and characterization of resistant cells to etoposide (VP16) from a mouse breast cancer cell line, FM3A. [J]. Jpn J Cancer Res,1988,79(8):938-44.
    [16]Nielsen D, Maare C, Eriksen J, Litman T, Friche E, Skovsgaard T. Characterisation of multidrug-resistant Ehrlich ascites tumour cells selected in vivo for resistance to etoposide. [J]. Biochem Pharmacol,2000,60(3):353-61.
    [17]Seneviratne C, Goldenberg GJ. Further characterization of drug-sensitivity and cross-resistance profiles of cloned cell lines of Adriamycin-sensitive and-resistant P388 leukemia. [J]. Cancer Commun,1989, 1(1):21-7.
    [18]Kraljevic S, Sedic M, Scott M, Gehrig P, Schlapbach R, Pavelic K.Casting light on molecular events underlying anti-cancer drug treatment:what can be seen from the proteomics point of view? [J].Cancer Treat Rev,2006,32(8):619-29.
    [19]Ranson M, Jaysonl G.Targeted antitumour therapy-future perspectives. [J]. Br J Cancer,2005,92:S28-S31.
    [20]Lala.P.K, Lee.G Human placental trophoblast as an in vitro model for tumor progression. [J]. Can J Physiol Pharmacol,2002,80(2):142-9.
    [21]Li L, Luan Y, Wang G et al. Development and characterization of five cell models for chemoresistance studies of human ovarian carcinoma. [J]. Int J Mol Med, 2004,14(2):257-64.
    [22]Cunningham FG, Gant NF, Kenneth JL Williams Obstetrics.21st ed. New York: McGraw-hill,2002:569.
    [23]Derveaux S, Vandesompele J, Hellemans J. How to do successful gene expression analysis using real-time PCR. [J]. Methods,2010,50(4):227-30.
    [24]Bereznaya NM, Kirnasovskaya EA, Vinnichuk YD et al. Expression of CD40 by the cells of benign and malignant breast tumors and antitumor action of autologous lymphocytes against chemoresistant and chemosensitive tumors. [J]. Exp Oncol, 2008,30(4):295-9
    [25]Etemadmoghadam D, Defazio A, Beroukhim R et al Integrated Genome-Wide DNA Copy Number and Expression Analysis Identifies Distinct Mechanisms of Primary Chemoresistance in Ovarian Carcinomas. [J]. Clin Cancer Res,2009,15(4):1417-27.
    [26]Cejka D, Preusser M, Fuereder T et al mTOR inhibition sensitizes gastric cancer to alkylating chemotherapy in vivo. [J]. Anticancer Res,2008,28(6A):3801-8.
    [27]Murtaza I, Saleem M, Adhami VM et al Suppression of cFLIP by lupeol, a dietary triterpene, is sufficient to overcome resistance to TRAIL-mediated apoptosis in chemoresistant human pancreatic cancer cells. [J]. Cancer Res,2009,69(3):1156-65.
    [28]Michaelis M, Rothweiler F, Klassert D et al Reversal of P-glycoprotein-mediated multidrug resistance by the murine double minute 2 antagonist nutlin-3. [J]. Cancer Res,2009,69(2):416-21.
    [29]Limburg H. Individual cbemotherapy of ovarian cancer by means of tissue and culture method. In:Human tumors in short term culture. Techniques and clinical application [M].1 st ed.London:Acadmic press 1972:295.
    [30]Yang LY, Trujillo JM. Biological characterization of multidrug-resistant human colon carcinoma sublines induced/selected by two methods. [J]. Cancer Res,1990, 50(11):3218-25.
    [31]Scriven P, Coulson S, Haines R, Balasubramanian S, Cross S, Wyld L. Activation and clinical significance of the unfolded protein response in breast cancer. [J]. Br J Cancer,2009,101(10):1692-8.
    [32]Snow K, Judd W. Characteristics of adriam ycin-and amsacrine-resistant human leukaemic T cell line. [J].Br J Cancer,1991,63(1):17-28.
    [33]Sekiya S, Kaiho T and Takamizawa H. Development of methotrexate-resistant human choriocarcinoma cells in culture. [J]. Gynecol Oncol,1985,21:46-53.
    [34]Chen Y, Qian H, Wang H, Zhang Y, Fu M, Liang X, Ma Y, Zhan Q, Lin C, Xiang Y, et al. Ad-PUMA sensitizes drug-resistant choriocarcinoma cells to chemotherapeutic agents. [J].Gynecol Oncol,2007,107:505-12.
    [35]崔竹梅,向阳,杨秀玉,刘芝华绒癌耐药细胞系的建立及获得性耐药机制的研究[J].现代妇产科进展,2001,10(5):333-6.
    [36]崔竹梅,向阳,杨秀玉,刘芝华绒毛膜癌耐药细胞系的建立及人白细胞介素2基因转染后对其多药耐药性的逆转作用[J].中华妇产科杂志,2001,36(9):549-53.
    [37]Morozkin ES, Sil'nikov VN, Rykova EY, Vlassov VV, Laktionov PP. Extracellular DNA in culture of primary and transformed cells, infected and not infected with mycoplasma.[J]. Bull Exp Biol Med,2009,147(1):63-5.
    [38]Armstrong SE, Mariano JA, Lundin DJ. The scope of mycoplasma contamination within the biopharmaceutical industry. [J]. Biologicals,2010,38(2):211-3.
    [39]刘玉琴体外培养细胞工作中支原体污染及对策[J].中华病理学杂志,2004,336:571-2.
    [40]Jette L, Bissoon-Haqqani S, Le Francois B, Maroun JA, Birnboim HC. Resistance of colorectal cancer cells to 5-FUdR and 5-FU caused by Mycoplasma infection.[J].Anticancer Res,2008,28(4B):2175-80.
    [41]Zakharova E, Grandhi J, Wewers MD, Gavrilin MA. Mycoplasma suppression of THP-1 Cell TLR responses is corrected with antibiotics. [J]. PLoS One,2010, 5(3):e9900.
    [42]张卓然培养细胞学与细胞培养技术[M].上海:上海科技出版社2004:309.
    [43]Ishiyama M, Miyazono Y, Sasamoto K, Ohkura Y, Ueno K. A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability. [J]. Talanta,1997,44(7):1299-305.
    [44]Kubota N, Nishio K, Takeda Y, Ohmori T, Funayama Y, Ogasawara H, Ohira T, Kunikane H, Terashima Y, Saijo N. Characterization of an etoposide-resistant human ovarian cancer cell line. [J]. Cancer Chemother Pharmacol,1994,34(3):183-90.
    [45]Speeg KV Jr, Azizkhan JC and Stromberg K. The stimulation by methotrexate of human chorionic gonadotropin and placental alkaline phosphatase in cultured choriocarcinoma cells. [J]. Cancer Res,1976,36:4570-6.
    [46]Sekiya S, Kaiho T, Shirotake S et al. Effect of methotrexate on the growth and human chorionic gonadotropin secretion of human choriocarcinoma cell lines in vitro. [J]. Am J Obstet Gynecol,1983,146:57-64.
    [47]Maring JG, Groen HJ, Wachters FM, Uges DR, de Vries EG. Genetic factors influencing pyrimidine-antagonist chemotherapy. [J]. Pharmacogenomics J,2005, 5(4):226-43.
    [48]Banerjee D, Ercikan-Abali E, Waltham M, et al. Molecular mechanisms of resistance to antifolates, a review. [J]. Acta Biochimica Polonica,1995,42(4):457-64.
    [49]Scionti I, Michelacci F, Pasello M et al. Clinical impact of the methotrexate resistance associated genes C-MYC and dihydrofolate reductase (DHFR) in high-grade osteosarcoma. [J]. Annals of Oncology,2008,19:1500-8.
    [50]Serra M, Reverter-Branchat G, Maurici D, et al. Analysis of dihydrofolate reductase and reduced folate carrier gene status in relation to methotrexate resistance in osteosarcoma cells. [J]. Annals of Oncology,2004,15:151-60.
    [51]May C, Gunther R and McIvor RS Protection of mice from lethal doses of methotrexate by transplantation with transgenic marrow expressing drug-resistant dihydrofolate reductase activity. [J].Blood,1995,86:2439-48.
    [52]Capiaux GM, Budak-Alpdogan T, Takebe N et al. Retroviral Transduction of a Mutant Dihydrofolate Reductase-Thymidylate Synthase Fusion Gene into Murine Marrow Cells Confers Resistance to Both Methotrexate and 5-Fluorouracil.[J]. Hum Gene Ther,2003,14:435-46.
    [53]Gori JL, Tian X, Swanson D et al. In vivo selection of human embryonic stem cell-derived cells expressing methotrexate-resistant dihydrofolate reductase. [J]. Gene Ther,2010,17(2):238-49.
    [54]Banerjee D, Mayer-Kuckuk P, Capiaux G et al. Novel aspects of resistance to drugs targeted to dihydrofolate reductase and thymidylate synthase.[J]. Biochim Biophys Acta,2002,1587 (2-3):164-73.
    [55]Levy AS, Sather HN, Steinherz PG et al. Reduced Folate Carrier and Dihydrofolate Reductase Expression in Acute Lymphocytic Leukemia May Predict Outcome:A Children's Cancer Group Study[J]. Journal of Pediatric Hematology/Oncology,2003, 25(9):688-95.
    [56]Wassermann K, Markovits J, Jaxel C, Capranico G, Kohn KW, Pommier Y. Effects of morpholinyl doxorubicins, doxorubicin, and actinomycin D on mammalian DNA topoisomerases Ⅰ and Ⅱ. [J]. Mol Pharmacol,1990,38(1):38-45.
    [57]Champoux JJ. DNA topoisomerases:structure, function, and mechanism. [J]. Annu Rev Biochem,2001,70:369-413.
    [58]Melixetian MB, Beryozkina EV, Pavlenko MA, Grinchuk TM. Altered expression of DNA-topoisomerase Ilalpha is associated with increased rate of spontaneous polyploidization in etoposide resistant K562 cells. [J]. Leuk Res,2000,24(10):831-7.
    [59]Nitiss JL, Beck WT. Antitopoisomerase drug action and resistance. [J]. Eur J Cancer, 1996,32A (6):958-66.
    [60]Coss A, Tosetto M, Fox EJ et al.Increased topoisomerase IIalpha expression in colorectal cancer is associated with advanced disease and chemotherapeutic resistance via inhibition of apoptosis. [J]. Cancer Let,2009,276(2):228-38.
    [61]Dingemans AC, van Ark-Otte J, Span S, Scagliotti GV, van der Valk P, Postmus PE, Giaccone G. Topoisomerase IIalpha and other drug resistance markers in advanced non-small cell lung cancer. [J] Lung Cancer,2001,32(2):117-28.
    [62]Rolff J, Dorn C, Merk J, Fichtner I. Response of Patient-Derived Non-Small Cell Lung Cancer Xenografts to Classical and Targeted Therapies Is Not Related to Multidrug Resistance Markers. [J]. J Oncol,2009:814140.
    [63]Tang R, Cohen S, Perrot JY, Faussat AM, Zuany-Amorim C, Marjanovic Z, Morjani H, Fava F, Corre E, Legrand O, Marie JP. P-gp activity is a critical resistance factor against AVE9633 and DM4 cytotoxicity in leukaemia cell lines, but not a major mechanism of chemoresistance in cells from acute myeloid leukaemia patients.[J].BMC Cancer,2009,23(9):199.
    [64]Perez-Tomas R. Multidrug resistance:retrospect and prospects in anti-cancer drug treatment. [J].Curr Med Chem,2006,13(16):1859-76.
    [65]Lee CH. Reversing agents for ATP-binding cassette drug transporters. [J]. Methods Mol Biol,2010,596:325-40.
    [66]Lee CH. Reversing agents for ATP-binding cassette (ABC) transporters:application in modulating multidrug resistance (MDR). [J]. Curr Med Chem Anticancer Agents, 2004,4(1):43-52.
    [67]Hembruff SL, Laberge ML, Villeneuve DJ, Guo B, Veitch Z, Cecchetto M, Parissenti AM. Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance. [J]. BMC Cancer,2008,3(8):318-43.
    [68]Hanahan D & Weinberg RA. The hallmarks of cancer. [J].Cell,2000,100:57-70.
    [69]E Tiligada Chemotherapy:induction of stress responses. [J]. Endocrine-Related Cancer,2006, (13):S115-S124.
    [70]Kohno K, Uchiumi T, Niina I, Wakasugi T, Igarashi T, Momii Y, Yoshida T, Matsuo K, Miyamoto N & Izumi HTranscription factors and drug resistance. [J]. European Journal of Cancer,2005,41:2577-86.
    [71]Pandey A, Mann M. Proteomics to study genes and genomes. [J].Nature,2000, 405(6788):837-46.
    [72]Thornton JM. From genome to function. [J].Science,2001,292(5524):2095-7.
    [73]Hanash S. Disease proteomics.[J]. Nature,2003,422(6928):226-32.
    [74]Domon B, Aebersold R. Mass spectrometry and protein analysis. [J].Science,2006, 312(5771):212-7.
    [75]Aebersold R, Mann M. Mass spectrometry-based proteomics.[J].Nature,2003, 422(6928):198-207.
    [76]Vermeulen M, Selbach M. Quantitative proteomics:a tool to assess cell differentiation.[J].Curr Opin Cell Biol,2009,21(6):761-6.
    [77]Anderson L, Seilhamer J.A comparison of selected mRNA and protein abundances in human liver. [J]. Electrophoresis,1997,18(3-4):533-7.
    [78]Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I.Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium.[J].Electrophoresis,1995, 16(7):1090-4.
    [79]Kahn P.From genome to proteome:looking at a cell's proteins. [J]. Science,1995, 270(5235):369-70.
    [80]Gershon D. Proteomics technologies:probing the proteome. [J]. Nature,2003, 424(6948):581-7.
    [81]O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. [J] J Biol Chem,1975,250(10):4007-21.
    [82]Leduc-Brodard V, David B, Peltre G. Comparison of three horizontal two-dimensional electrophoretic techniques to separate grass pollen allergens. [J]. Cell Mol Biol (Noisy-le-grand),1994,40(1):1-8.
    [83]Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis:a single gel method for detecting changes in protein extracts. [J].Electrophoresis,1997, 18(11):2071-7.
    [84]McNamara LE, Dalby MJ, Riehle MO, Burchmore R.Fluorescence two-dimensional difference gel electrophoresis for biomaterial applications. [J]. J R Soc Interface, 2010,7 Suppl1:S107-18.
    [85]Minden JS, Dowd SR, Meyer HE, Stuhler K. Difference gel electrophoresis. [J].Electrophoresis,2009,30 Suppl 1:S156-61.
    [86]Friedman DB, Hill S, Keller JW, Merchant NB, Levy SE, Coffey RJ, Caprioli RM. Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. [J]. Proteomics,2004,4(3):793-811.
    [87]Karp NA, Lilley KS.Investigating sample pooling strategies for DIGE experiments to address biological variability. [J]. Proteomics,2009,9(2):388-97.
    [88]Fenn J B, Mann M, Meng C K et al. Electrospray ionization for mass spectrometry of large biomolecules.[J].Science,1989,246(4926):64-71.
    [89]Blueggel M, Chamrad D, Meyer HE.Bioinformatics in proteomics.[J].Curr Pharm Biotechnol,2004,5(1):79-88.
    [90]Hood L. A personal view of molecular technology and how it has changed biology. [J]. J Proteome Res,2002,1(5):399-409.
    [91]吴家睿系统生物学面面观[J].科学,2002,54(6):22-4.
    [92]Hood L. Systems biology:integrating technology, biology, and computation. [J].Mech Ageing De,2003,124(1):9-16.
    [93]郑智国,许沈华肿瘤系统生物学研究进展[J].国外医学肿瘤学分册,2005,32(11):803-5.
    [94]Knox SS. From "omics" to complex disease:a systems biology approach to gene-environment interactions in cancer. [J]. Cancer Cell Int,2010,10(1):11.
    [95]Gonzalez-Angulo AM, Hennessy BT, Mills GB.Future of Personalized Medicine in Oncology:A Systems Biology Approach. [J]. J Clin Oncol,2010,20. [Epub ahead of print]
    [96]Kreeger PK, Lauffenburger DA Cancer systems biology:a network modeling perspective.[J].Carcinogenesis,2010,31(1):2-8.
    [97]Hagner-McWhirter A, Winkvist M, Bourin S, Marouga R. Selective labelling of cell-surface proteins using CyDye DIGE Fluor minimal dyes. [J]. J Vis Exp,2008, (21). pii:945.
    [98]Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I.A novel experimental design for comparative two-dimensional gel analysis:two-dimensional difference gel electrophoresis incorporating a pooled internal standard. [J]. Proteomics,2003,3(1):36-44.
    [99]Karp NA and Lilley KS. Investigating sample pooling strategies for DIGE experiments to address biological variability. [J]. Proteomics,2009,9:388-97.
    [100]Salwinski L, Eisenberg D.Computational methods of analysis of protein-protein interactions.[J]. Curr Opin Struct Biol,2003,13(3):377-82.
    [101]von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P.Comparative assessment of large-scale data sets of protein-protein interactions. [J]. Nature,2002,417(6887):399-403.
    [102]蒋太交,薛艳红,徐涛系统生物学——生命科学的新领域.[J].生物化学与生物物理进展2004,31(11):957-63.
    [103]David B. Williams Beyond lectins:the calnexin/calreticulin chaperone system of the endoplasmic reticulum. [J]. Journal of Cell Science,2006,119:615-23.
    [104]Ostwald TJ, MacLennan DH. Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum.[J].J Biol Chem,1974,10,249(3):974-9.
    [105]Fliegel L, Leberer E, Green NM, MacLennan DH. The fast-twitch muscle calsequestrin isoform predominates in rabbit slow-twitch soleus muscle. [J]. FEBS Lett,1989,242(2):297-300.
    [106]Johnson S, Michalak M, Opas M, Eggleton P. The ins and outs of calreticulin: from the ER lumen to the extracellular space.[J]. Trends Cell Biol,2001, 11(3):122-9.
    [107]Michel Obeid. ERP57 Membrane Translocation Dictates the Immunogenicity of Tumor Cell Death by Controlling the Membrane Translocation of Calreticulin. [J]. The Journal of Immunology,2008,181:2533-43.
    [108]Guo L.Groenedyk J.Papp S et al. Indentification of an N-domain histidine essential for chaperone function in calreticulin. [J]. J Biol Chem,2003,278:50645-53.
    [109]Eva-Maria Frickel, Roland Riek, Ilian Jelesarov, Ari Helenius, Kurt Wu'thrich, and Lars Ellgaard TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. [J]. PNAS,2002,99(4):1954-9.
    [110]Michalak M.Robert Parker JM.Opas M et al. Ca2+ and calcium binding chaperones of the endoplasmic reticulum. [J]. Cell Calcium,2002,32(5-6):269-78.
    [111]Kageyama S, Isono T, Iwaki H, Wakabayashi Y, Okada Y, Kontani K, Yoshimura K, Terai A, Arai Y, Yoshiki T. Identification by proteomic analysis of calreticulin as a marker for bladder cancer and evaluation of the diagnostic accuracy of its detection in urine. [J]. Clin Chem,2004; 50(5):857-66.
    [112]Michel Obeid, Theocharis Panaretakis, Antoine Tesniere, Nick Joza, Roberta Tufi Lionel Apetoh, Francois Ghiringhelli, Laurence Zitvoge and Guido Kroemer Leveraging the Immune System during Chemotherapy:Moving Calreticulin to the Cell Surface Converts Apoptotic Death from'Silent'to Immunogenic. [J].Cancer Res, 2007;67(17):7941-4.
    [113]X-L Du, H Yang, S-G Liu, M-L Luo, J-J Hao, Y Zhang, D-C Lin, X Xu, Y Cai, Q-M Zhan and M-R Wang. Calreticulin promotes cell motility and enhances resistance to anoikis through STAT3-CTTN-Akt pathway in esophageal squamous cell carcinoma. [J]. Oncogene,2009,28:3714-22.
    [114]High S, Lecomte FJ, Russell SJ, Abell BM, Oliver JD. Glycoprotein folding in the endoplasmic reticulum:a tale of three chaperones? [J]. FEBS Lett,2000, 476(1-2):38-41.
    [115]Kozlov G, Maattanen P, Schrag JD, Pollock S, Cygler M, Nagar B, Thomas DY, Gehring K. Crystal structure of the bb'domains of the protein disulfide isomerase ERp57.[J]. Structure,2006,14(8):1331-9.
    [116]Coe H, Michalak M. ERp57, a multifunctional endoplasmic reticulum resident oxidoreductase.[J]. Int J Biochem Cell Biol,2010,42:796-9.
    [117]Grillo C, D'Ambrosio C, Consalvi V, Chiaraluce R, Scaloni A, Maceroni M, Eufemi M, Altieri F. DNA-binding activity of the ERp57 C-terminal domain is related to a redox-dependent conformational change. [J]. J Biol Chem,2007, 282(14):10299-310.
    [118]Hong Ren, Ning Du, Gang Liu, Heng-Tong Hu, Wei Tian, Zhi-Ping Deng, Jing-Sen Shi. Analysis of variabilities of serum proteomic spectra in patients with gastric cancer before and after operation. [J]. World J Gastroenterol,2006,12(17): 2789-92.
    [119]Yoshimura FK, Luo X. Induction of endoplasmic reticulum stress in thymic lymphocytes by the envelope precursor polyprotein of a murine leukemia virus during the preleukemic period. [J]. J Virol,2007,81(8):4374-7.
    [120]Zhang J, Wu J, Huo R, Mao Y, Lu Y, Guo X, Liu J, Zhou Z, Huang X, Sha J. ERp57 is a potential biomarker for human fertilization capability. [J].Mol Hum Reprod,2007,13(9):633-9.
    [121]Ma L, Xiang Y, et al. Comparative proteomic analysis between benign and maliganant transformed hydatidiform mole. [J]. J Reprod Med,2008,53:623-8.
    [122]Lee E, Nichols P, Spicer D, Groshen S, Yu MC, Lee AS.GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer.[J]. Cancer Res,2006, 66(16):7849-53.
    [123]Haas IG.BiP (GRP78), an essential hsp70 resident protein in the endoplasmic reticulum.[J].Experientia,1994,50(11-12):1012-20.
    [124]Quinones QJ, de Ridder GG, Pizzo SV.GRP78:a chaperone with diverse roles beyond the endoplasmic reticulum.[J].Histol Histopathol,2008,23(11):1409-16.
    [125]Lee AS GRP78 induction in cancer:therapeutic and prognostic implications.[J].Cancer Res,2007,67(8):3496-9.
    [126]Li J, Lee AS.Stress induction of GRP78/BiP and its role in cancer.[J].Curr Mol Med,2006,6(1):45-54.
    [127]Misra UK, Deedwania R, Pizzo SV.Activation and cross-talk between Akt, NF-kappaB, and unfolded protein response signaling in 1-LN prostate cancer cells consequent to ligation of cell surface-associated GRP78.[J]. J Biol Chem,2006, 281(19):13694-707.
    [128]Misra UK, Pizzo SV.Ligation of cell surface GRP78 with antibody directed against the COOH-terminal domain of GRP78 suppresses Ras/MAPK and PI 3-kinase/AKT signaling while promoting caspase activation in human prostate cancer cells.[J].Cancer Biol Ther,2010,9(2):142-52.
    [129]蔡真内质网——肿瘤治疗的新靶点[J].中国肿瘤生物治疗杂志,2005,12(1):5-8.
    [130]Healy SJ, Gorman AM, Mousavi-Shafaei P, Gupta S, Samali A.Targeting the endoplasmic reticulum-stress response as an anticancer strategy. [J].Eur J Pharmacol, 2009,625(1-3):234-46.
    [131]Kapoor A, Sanyal AJ.Endoplasmic reticulum stress and the unfolded protein response. [J]. Clin Liver Dis,2009,13(4):581-90.
    [132]Lederkremer GZ.Glycoprotein folding, quality control and ER-associated degradation.[J].Curr Opin Struct Biol,2009,19(5):515-23.
    [133]Scheper W, Hoozemans JJ.Endoplasmic reticulum protein quality control in neurodegenerative disease:the good, the bad and the therapy.[J].Curr Med Chem, 2009,16(5):615-26.
    [134]Saibil HR.Chaperone machines in action.[J].Curr Opin Struct Biol,2008, 18(1):35-42.
    [135]Anelli T, Sitia R. Protein quality control in the early secretory pathway.[J].EMBO J,2008,27(2):315-27.
    [136]Roth J, Yam GH, Fan J, Hirano K, Gaplovska-Kysela K, Le Fourn V, Guhl B, Santimaria R, Torossi T, Ziak M, Zuber C. Protein quality control:the who's who, the where's and therapeutic escapes. [J]. Histochem Cell Biol,2008,129(2):163-77.
    [137]Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR.Rapid degradation of a large fraction of newly synthesized proteins by proteasomes.[J]. Nature,2000,404(6779):770-4.
    [138]Molinari M, Eriksson KK, Calanca V, Galli C, Cresswell P, Michalak M, Helenius A. Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. [J]. Mol Cell,2004,13(1):125-35.
    [139]Maattanen P, Kozlov G, Gehring K, Thomas DY. ERp57 and PDI:multifunctional protein disulfide isomerases with similar domain architectures but differing substrate-partner associations.[J].Biochem Cell Biol,2006,84(6):881-9.
    [140]Jessop CE, Tavender TJ, Watkins RH, Chambers JE, Bulleid NJ. Substrate specificity of the oxidoreductase ERp57 is determined primarily by its interaction with calnexin and calreticulin. [J]. J Biol Chem,2009,284(4):2194-202.
    [141]Saito Y, Ihara Y, Leach MR, Cohen-Doyle MF, Williams DB. Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. [J]. EMBO J,1999,18(23):6718-29.
    [142]Jessop CE, Chakravarthi S, Garbi N, Hammerling GJ, Lovell S, Bulleid NJ. ERp57 is essential for efficient folding of glycoproteins sharing common structural domains. [J]. EMBO J,2007,26(1):28-40.
    [143]曹剑,宋保亮未折叠蛋白质应答[J].生命的化学,2008,28(6):673-76.
    [144]Jin Y, Awad W, Petrova K, Hendershot LM. Regulated release of ERdj3 from unfolded proteins by BiP. [J]. EMBO J,2008,27(21):2873-82.
    [145]Meunier L, Usherwood YK, Chung KT, Hendershot LM. A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins.[J]. Mol Biol Cell,2002,13(12):4456-69.
    [146]Wang N, Daniels R, Hebert DN. The cotranslational maturation of the type I membrane glycoprotein tyrosinase:the heat shock protein 70 system hands off to the lectin-based chaperone system. [J]. Mol Biol Cell,2005,16(8):3740-52.
    [147]Ma Y, Hendershot LM.The role of the unfolded protein response in tumour development:friend or foe? [J]. Nat Rev Cancer,2004,4(12):966-77.
    [148]Rasheva VI, Domingos PM.Cellular responses to endoplasmic reticulum stress and apoptosis.[J].Apoptosis,2009,14(8):996-1007.
    [149]李载权,周爱儒,唐朝枢内质网应激反应分子机理研究进展[J].中国生物化学与分子生物学报,2004,20(3):283-8.
    [150]Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, Shokat KM, Lavail MM, Walter P. IRE1 signaling affects cell fate during the unfolded protein response. [J].Science,2007,318(5852):944-9.
    [151]Zhang K, Kaufman RJ. Signaling the unfolded protein response from the endoplasmic reticulum. [J]. J Biol Chem,2004,279(25):25935-8.
    [152]Yoshida, H., K. Haze, H. Yanagi, T. Yura, and K. Mori. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. [J]. J Biol Chem,1998,273:33741-9.
    [153]Yamamoto K, Yoshida H, Kokame K, Kaufman RJ, Mori K. Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE, UPRE and ERSE-Ⅱ. [J]. J Biochem, 2004,136(3):343-50.
    [154]Hirota M, Kitagaki M, Itagaki H, Aiba S. Quantitative measurement of spliced XBP1 mRNA as an indicator of endoplasmic reticulum stress. [J]. J Toxicol Sci, 2006,31(2):149-56.
    [155]Lee AH, Iwakoshi NN, Glimcher LH. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. [J]. Mol Cell Biol,2003,23(21):7448-59.
    [156]Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E, Gravallese EM, Friend D, Grusby MJ, Alt F, and Glimcher LH. Plasma cell differentiation requires the transcription factor XBP-1.[J]. Nature,2001, 412(6844):300-7.
    [157]Iwakoshi NN, Lee AH, Vallabhajosyula P, Otipoby KL, Rajewsky K, Glimcher LH. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. [J]. Nat Immunol,2003,4(4):321-9.
    [158]Shuda M, Kondoh N, Imazeki N, Tanaka K, Okada T, Mori K, Hada A, Arai M, Wakatsuki T, Matsubara O, Yamamoto N, Yamamoto M. Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma:a possible involvement of the ER stress pathway in hepatocarcinogenesis. [J]. J Hepatol,2003,38(5):605-14.
    [159]Hosoi T, Ozawa K.Endoplasmic reticulum stress in disease:mechanisms and therapeutic opportunities.[J].Clin Sci (Lond),2009,118(1):19-29.
    [160]So AY, de la Fuente E, Walter P, Shuman M, Bernales S. The unfolded protein response during prostate cancer development.[J].Cancer Metastasis Rev,2009, 28(1-2):219-23.
    [161]Koumenis C. ER stress, hypoxia tolerance and tumor progression.[J].Curr Mol Med,2006,6(1):55-69.
    [162]Jamora C, Dennert G, Lee AS.Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. [J]. Proc Natl Acad Sci USA,1996,93(15):7690-4.
    [163]Romero-Ramirez L, Cao H, Nelson D, Hammond E, Lee AH, Yoshida H, Mori K, Glimcher LH, Denko NC, Giaccia AJ, Le QT, Koong AC.XBP1 is essential for survival under hypoxic conditions and is required for tumor growth.[J]. Cancer Res, 2004,64(17):5943-7.
    [164]Salminen A, Kauppinen A, Suuronen T, Kaarniranta K, Ojala J.ER stress in Alzheimer's disease:a novel neuronal trigger for inflammation and Alzheimer's pathology.[J].J Neuroinflammation,2009,6:41.
    [165]Willis MS, Townley-Tilson WH, Kang EY, Homeister JW, Patterson C. Sent to destroy:the ubiquitin proteasome system regulates cell signaling and protein quality control in cardiovascular development and disease.[J]. Circ Res,2010, 106(3):463-78.
    [166]时莎,许海楠,崔利,王华芹内质网应激与肿瘤[J].医学综述,2009,15(4):525-7.
    [167]Hsu JL, Chiang PC, Guh JH. Tunicamycin induces resistance to camptothecin and etoposide in human hepatocellular carcinoma cells:role of cell-cycle arrest and GRP78. [J].Naunyn Schmiedebergs Arch Pharmacol,2009,380(5):373-82.
    [168]Xiao-Li, Du Hai Hu, De-Chen Lin, Shu-Hua Xia, Xiao-Ming Shen,Yu Zhang, Man-Li Luo,Yan-Bin Feng, Yan Ca, Xin Xu, Ya-Ling Han, Qi-Min Zhan, Ming-Rong Wang Proteomic profiling of proteins dysregulted in Chinese esophageal squamous cell carcinoma. [J] J Mol Med,2007,85:863-75.
    [169]Gass JN, Gifford NM, Brewer JW. Activation of an unfolded protein response during differentiation of antibody-secreting B cells. [J].J Biol Chem,2002, 277(50):49047-54.
    [170]Ma Y, Brewer JW, Diehl JA, Hendershot LM. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. [J]. J Mol Biol,2002,318(5):1351-65.
    [171]Wang T, Hebert DN. EDEM an ER quality control receptor. [J]. Nat Struct Biol, 2003,10(5):319-21.
    [172]Yamamoto K, Hamada H, Shinkai H, Kohno Y, Koseki H, Aoe T. The KDEL receptor modulates the endoplasmic reticulum stress response through mitogen-activated protein kinase signaling cascades. [J]. J Biol Chem,2003, 278(36):34525-32.
    [173]Eriksson KK, Vago R, Calanca V, Galli C, Paganetti P, Molinari M. EDEM contributes to maintenance of protein folding efficiency and secretory capacity. [J]. J Biol Chem,2004,279(43):44600-5.
    [174]Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. [J].Cell,2000, 101(3):249-58.
    [175]杨芬,蒋志文内质网应激对肿瘤发展及化疗反应的影响[J].蚌埠医学院学报,2009,34(5):457-9.
    [176]宋小燕,赵永波未折叠蛋白反应与细胞转归[J].国际神经病学神经外科学杂志,2007,34(1):99-102.
    [177]A Tesniere, T Panaretakisl, O Kepp, L Apetoh, F Ghiringhelli, L Zitvogel and G Kroemer Molecular characteristics of immunogenic cancer cell death [J]. Cell Death and Differentiation,2008,15:3-12.
    [178]Shyra J. Gardai, Kathleen A. McPhillips, S. Courtney Frasch, William J. Janssen, Anna Starefeldt, Joanne E. Murphy-Ullrich, Donna L. Bratton, Per-Arne Oldenborg, Marek Michalak, and Peter M. Henson. Cell-Surface Calreticulin Initiates Clearance of Viable or Apoptotic Cells through trans-Activation of LRP on the Phagocyte Cell. [J].Cell,2005,123:321-34.
    [179]Ozcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, Myers MG Jr, Ozcan U. Endoplasmic reticulum stress plays a central role in development of leptin resistance. [J]. Cell Metab,2009,9(1):35-51.
    [180]汤钊猷 从生物学角度看肝癌治疗趋势[J].中华肝胆外科杂志,2009,15(6):401-2.
    [181]向阳,杨秀玉,杜景云,宋鸿钊子宫切除对治疗滋养细胞肿瘤价值的探讨[J].中华肿瘤杂志,1999,2:139-41.
    [182]Mandic A, Hansson J, Linder S, Shoshan MC. Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. [J]. J Biol Chem,2003, 278(11):9100-6.
    [183]Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs:simple building blocks of complex networks.[J]. Science,2002, 298(5594):824-7.
    [1]David B. Williams Beyond lectins:the calnexin/calreticulin chaperone system of the endoplasmic reticulum. [J]. Journal of Cell Science,2006,119:615-23.
    [2]Johnson S, Michalak M, Opas M, Eggleton P. The ins and outs of calreticulin:from the ER lumen to the extracellular space.[J]. Trends Cell Biol,2001,11(3):122-9.
    [3]Michel Obeid. ERP57 Membrane Translocation Dictates the Immunogenicity of Tumor Cell Death by Controlling the Membrane Translocation of Calreticulin. [J]. The Journal of Immunology,2008; 181:2533-43.
    [4]Guo L.Groenedyk J.Papp S et al. Indentification of an N-domain histidine essential for chaperone function in calreticulin. [J]. J Biol Chem,2003,278:50645-53.
    [5]Eva-Maria Frickel, Roland Riek, Ilian Jelesarov, Ari Helenius, Kurt Wu"thrich, and Lars Ellgaard. TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. [J]. PNAS,2002,99(4):1954-9.
    [6]Michalak M, Robert Parker JM, Opas M et al. Ca2+signaling and calcium binding chaperones of the endoplasmic reticulum. [J]. Cell Calcium,2002,32(5-6):269-78.
    [7]Bastianutto C, Clementi E, Codazzi F, Podini P, De Giorgi F, Rizzuto R, Meldolesi J, Pozzan T. Overexpression of calreticulin increases the Ca2+capacity of rapidly exchanging Ca2+stores and reveals aspects of their lumenal microenvironment and function. [J]. J Cell Biol,1995,130(4):847-55.
    [8]Arnaudeau S, Frieden M, Nakamura K. Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria [J]. J Biol Chem, 2002,277:46696-705.
    [9]John LM, Lechleiter JD, Camacho P. Differential modulation of SERCA2 isoforms by calreticulin. [J]. J Biol Chem,1998,142:963-73.
    [10]Conte IL, Keith N, Gutierrez-Gonzalez C, Parodi AJ, Caramelo JJ. The interplay between calcium and the in vitro lectin and chaperone activities of calreticulin.[J]. Biochemistry,2007,46(15):4671-80.
    [11]Mesaeli N, Nakamura K, Zvaritch E. Calreticulin is essential for cardiac development. [J]. J Cell Biol,1999,144:857-68.
    [12]林胜利,李载权,唐朝枢Calnexin/Calreticulin循环与糖蛋白内质网相关性降解.[J].医学分子生物学杂志,2004,1(5):298-301.
    [13]Molinari M, Eriksson KK, Calanca V, Galli C, Cresswell P, Michalak M, Helenius A. Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. [J].Mol Cell,2004,13(1):125-35.
    [14]Kepp O, Tesniere A, Schlemmer F, Michaud M, Senovilla L, Zitvogel L, Kroemer G. Immunogenic cell death modalities and their impact on cancer treatment [J].Apoptosis,2009,14:364-75.
    [15]Shyra J. Gardai, Kathleen A. McPhillips,S. Courtney Frasch, William J. Janssen,Anna Starefeldt, Joanne E. Murphy-Ullrich,Donna L. Bratton, Per-Arne Oldenborg, Marek Michalak, and Peter M. Henson. Cell-Surface Calreticulin Initiates Clearance of Viable or Apoptotic Cells through trans-Activation of LRP on the Phagocyte. [J]. Cell,2005,123:321-34.
    [16]Takemura Y, Ouchi N, Shibata R, Aprahamian T, Kirber MT, Summer RS, Kihara S, Walsh K. Adiponectin modulates inflammatory reactions via calreticulin receptor-dependent clearance of early apoptotic bodies. [J].J Clin Invest,2007, 117(2):375-86.
    [17]Ogden CA, deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA, Henson PM. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. [J]. J Exp Med, 2001,194(6):781-95.
    [18]Oyadomari S, Takeda K, Takiguchi M, Gotoh T, Matsumoto M, Wada I, Akira S, Araki E, Mori M, Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. [J]. Proc Natl Acad Sci U S A,2001, 98(19):10845-50.
    [19]Zhu N, Wang Z. Calreticulin expression is associated with androgen regulation of the sensitivity to calcium ionophore-induced apoptosis in LNCaP prostate cancer cells.[J].Cancer Res,1999,59(8):1896-902.
    [20]Gao B, Adhikari R, Howarth M, et al. Assembly and antigen-presenting function of MHC class I molecules in cells lacking the ER chaperone Calreticulin. [J].Immunity, 2002,16(1):99-109.
    [21]Sreyashi B, Pramod KS. Calreticulin, a peptide-binding chaperone of the endoplasmic reticulum, elicits tumor and peptide-specific immunity. [J].Exp Med 1999,189(5):797-802.
    [22]Michel Obeid, Theocharis Panaretakis, Antoine Tesniere, Nick Joza, Roberta Tufi Lionel Apetoh, Francois Ghiringhelli, Laurence Zitvoge and Guido Kroemer. Leveraging the Immune System during Chemotherapy:Moving Calreticulin to the Cell Surface Converts Apoptotic Death from'Silent'to Immunogenic [J].Cancer Res, 2007,67(17):7941-4.
    [23]Andrin C, Pinkoski MJ.Burns K. Interaction between a Ca2+-binding protein calreticulin and perforin, a component of the cytotoxic T-cell granules. [J]. Biochemistry,1998,37:10386-94.
    [24]Chiran I, Klickstein LB, Nicholson-Weller. A Calreticulin is at the surface of circulating neutrophils and uses CD59 as an adaptor molecule. [J]. J Biol Chem,2003, 278:21024-31.
    [25]Coppolino MG, Woodside MJ, Demaurex N. Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. [J]. Nature,1997,386:843-7.
    [26]X-L Du, H Yang, S-G Liu, M-L Luo, J-J Hao, Y Zhang, D-C Lin, X Xu, Y Cai, Q-M Zhan and M-R Wang. Calreticulin promotes cell motility and enhances resistance to anoikis through STAT3-CTTN-Akt pathway in esophageal squamous cell carcinoma. [J]. Oncogene,2009,28:3714-22.
    [27]徐菲菲,刘秀华钙网蛋白在心肌肥大中的研究进展[J].生理科学进展,2009,40(2):165-9.
    [28]Yao L, Pike SE, Tosato G. Laminin binding to the calreticulin fragment vasostatin regulates endothelial cell function.[J]. J Leukoc Biol,2002,71(1):47-53.
    [29]张振英,刘秀华,郭晓笋,刘凤英 钙网蛋白参与缺血后处理减轻大鼠骨骼肌缺血/再灌注损伤生理学报,2007,59(5):643-50.
    [30]Jalali S, Aghasi M, Yeganeh B, Mesaeli N. Calreticulin regulates insulin receptor expression and its downstream PI3 Kinase/Akt signaling pathway. [J]. Biochem Biophys Acta,2008,1783:2344-51.
    [31]Nunes A, Ohadi M, Rahimi A, Aghajani A, Najmabadi H, Curraisa A, Soriano S. A mutation in the calreticulin gene promoter in a family case of schizoaffective disorder leads to its aberrant transcriptional activation.[J].Brain Res,2008,1239:36-41.
    [32]Ruddat VC, Whitman S, Klein RD, Fischer SM, Holman TR. Evidence for downregulation of calcium signaling proteins in advanced mouse adenocarcinoma. [J].Prostate,2005,64(2):128-38.
    [33]Kageyama S et al. Identification by proteomic analysis of calreticulin as a marker for bladder cancer and evaluation of the diagnostic accuracy of its detection in urine. [J].Clin Chem,2004,50(5):857-66.
    [34]Brunagel G, Shah U, Schoen RE, Getzenberg RH. Identification of calreticulin as a nuclear matrix protein associated with human colon cancer.[J].J Cell Biochem,2003, 89(2):238-43.
    [35]Chignard N, Shang S, Wang H, Marrero J, Brechot C, Hanash S, Beretta L. Cleavage of endoplasmic reticulum proteins in hepatocellular carcinoma:Detection of generated fragments in patient sera. [J].Gastroenterology,2006,130(7):2010-22.
    [36]Hsu WM, Hsieh FJ, Jeng YM, Kuo ML, Chen CN, Lai DM, Hsieh LJ, Wang BT, Tsao PN, Lee H, Lin MT, Lai HS, Chen WJ. Calreticulin expression in neuroblastoma-a novel independent prognostic factor. [J].Ann Oncol,2005, 16(2):314-21.
    [37]Hsieh CH, Kima TB, Hunga CF. Enhancement of vaccinia vaccine potency by linkage of tumor antigen gene to gene encoding calreticulin。 [J]. Vaccine,2004, 22(29/30):3993-4001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700