无机纳米粒子进入肝癌细胞的过程及肝癌细胞的变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究的目的是为了确认癌细胞质内的颗粒物质是否为无机纳米粒子,并探讨无机纳米粒子进入癌细胞的途径、过程,及无机纳米粒子和癌细胞的变化规律。
     研究将Bel—7402肝癌细胞与HAP纳米粒子共同孵育8小时后,电镜观察到癌细胞内有与HAP纳米粒子形貌相似的颗粒物质;能谱和电子衍射图检测表明:细胞质内外的的颗粒物质均为含钙磷成分的物质,且具有典型的HAP晶体结构特征。证实了HAP纳米粒子进入到癌细胞内。
     实验发现:与DMSO处理后的肝癌细胞共同孵育后,大部分HAP纳米粒子进入到细胞核。表明生理状态下的核膜可阻挡纳米粒子,自由扩散进入细胞的可能性较小。与细胞松弛素B处理过的癌细胞共同孵育后,仅有少量处理1小时的癌细胞内有纳米粒子,而处理12小时的癌细胞内均未发现纳米颗粒。证明了HAP纳米粒子被细胞吞噬进入的,吞噬的过程需要微丝参与。与尼莫地平处理过的肝癌细胞共同孵育,HAP纳米粒子同样进入癌细胞质内,主动运输的方式的可能性较小。与肝癌细胞分别孵育0.5小时到40小时,均发现HAP纳米粒子进入癌细胞的细胞质内。说明细胞吞噬纳米粒子的速度很快。
     经过高温高压消毒后,无机纳米晶体粒子的形貌和粒径均无明显影响。说明高温高压法是简便易行的消毒方法。在生理环境中,无机纳米粒子仍能保持分散的晶体粒子状态,但其平均粒径减少约50%。低速离心对其粒径无明显影响。因此,本研究中的无机纳米粒子仍为分散的纳米颗粒,不影响实验结果。
     进入癌细胞后,TiO_2纳米粒子逐渐被浓缩,团聚,但不能被细胞代谢分解,因此不能作为理想的材料。而HAP纳米粒子的尺寸变小,颗粒边缘变模糊圆钝,晶体的结晶度逐渐不完全,说明它被细胞降解。
     与无机纳米粒子共同孵育后,发现肝癌细胞发生纳米粒子周围细胞质的溶解,内质网过度肿胀,线粒体肿胀崩解、嵴结构紊乱,核膜周间隙扩大、核固
It had been reported that inorganic crystal nanoparticles (ICN) could inhibit the proliferation of cancer cells. The purpose of this study is to confirm that ICN could be absorbed into cytoplasm, exam the approach and process of absorption, and investigate change of nanoparticles and cancer cell.Bel-7402 cells, a hepatoma cell line, were selected to incubation with HAP nanoparticles for 8 hours. Then many particles in shape similar to HAP were found in cytoplasm under Transmission Electronic Microscope (TEM ) . By energy dispersing spectrum (EDS) analysis, the intracellular particles contained calcium (Ca) and phosphorus (P) . The classic rings of HAP crystal appeared in the electronic diffraction (ED) pictures of these particles. So these particles were confirmed as HAP nanoparticles. Thus, it was concluded that HAP nanoparticles coulc be absorbed by cancer cells as the crystal particles.To investigate the approach of nanoparticles absorption, the Bel-7402 cells were treated before incubation with HAP nanoparticles. After incubation with the Bel-7402 cells treated by DMSO, most of HAP nanoparticles appeared in the nuclear area. This illustrated that nuclear envelope could block off free diffusion of nanoparticles. After treated by Cytochalasin B for 1 hour, only few nanoparticles could be absorbed into cytoplasm. In treated by Cytochalasin B for 12 hour group, no HAP nanoparticle was found in cells. This indicated cancer cells phagocytosised nanoparticles by microfiber assistance. After treated by Nimodipine, HAP nanoparticles were absorbed into cytoplasma as before. So calcium channel block had nothing to do with the absorption process. Another, the fact that intracellular HAP nanoparticles were found after incubation with Bel-7402 cells for 0.5 hour, indicated the phagocytosis process finished fast.After high temperature and press disinfection, no change in the shape and size of ICN stated that this disinfection way was fitted to nanoparticles. When mixed with medium, the ICN dispersed but about 50% reducing in size. However, the ICN size did not change after low speed centrifugation. So those nanoparitcles in this study still remained dispersing and nano-size, and the results did not affected by disinfection,
    mix in medium and centrifugation.After phagocytosised into cytoplasm, TiC>2 could not be decompounded in cancer cells. On the contrary, HAP nanoparticles could be digested in cells so that they should be the ideal biomaterials.Endocytosised ICN, the Bel-7402 cells were examined under TEM: disruption of cytoplasm around nanoparticles, expansion of endoplasmic reticulums, swelling and collapse of most of mitochondrias, disorder of mitochondrias crista, expansion of nuclear space, shrinkage of nuclear envelope, pycnosis of karyotin. Even apoptosis body was found. By TUNEL technology, more brown signals were detected in the HAP nanoparticle group than the control group. After incubation with HAP nanoparticles, the DNA of Bel-7402 cells appeared 'ladder'. So it could be concluded that HAP nanoparticles induced apoptosis of Bel-7402 cells.
引文
[1] 秦建民,张阳德,王红阳,等.纳米技术在肝脏疾病诊断与治疗中的应用,中华肝胆外科杂志,2004,10(9):646-648.
    [2] 王娟娟,马晓燕,梁国正.纳米材料在生物医学中的应用.化工新型材料,2003,31(6):1-4.
    [3] 李沐纯,张阳德,潘一峰.纳米材料在医学中的应用.中国现代医学杂志,2003,13(13):140-141.
    [4] 黄渝鸿,许映霞,万昌秀.纳米材料在生物医学中的应用.化工新型材料,2002.30(2):10-12.
    [5] Brigger Irene, D.C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews, 2002, 54(5):631-651.
    [6] 许海燕,孔桦.纳米材料的研究进展及其在生物医学中的应用.基础医学与临床,2002,22(2):97-102.
    [7]姜会庆,陈一飞.纳米材料在医学中的应用.中国修复重建外科杂志,2002,16(6):435-437。
    [8] Hodoshima N. U, C Ando, T Fukuyasu, et al. Lipid nanoparticles for delivering antitumor drugs. International Journal of Pharmaceutics, 2003, 146 (1) :81-92.
    [9] Labhasetwar, V.S, Cunxian, Levy, Robert J. Nanoparticle drug delivery system for restenosis. Advanced Drug Delivery Reviews, 1997, 24 (1) :63-85.
    [10] Wissing, S.A.M, R.H. Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in viyo skin penetration. Journal of Controlled Release, 2002, 81 (3) :225-233.
    [11] Hans ML, L.A. Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State & Materials Science, 2002, 6 (4) :319-327.
    [12] Cs&odblac G, Nacken M. Modified silica particles for gene delivery. Materials Science and Engineering, 2003, (1-2): 93-97.
    [13] Khabir A. Gene delivery by nanoparticles offers cancer hope. Lancet Oncology, 2002, 3 (8) :451.
    [14] Brzoska M. L, K Coester, Loitsch S, et al. Incorporation of biodegradable nanoparticles into human airway epithelium cells-in vitro study of the suitability as a vehicle for drug or gene delivery in pulmonary diseases. Biochemical and Biophysical Research Communications, 2004, 318 (2) :562-570.
    [15] Halbreich Avraham, G. E. V, Raison Danielle. Damage to the protein synthesizing apparaths in mouse liver in vivo by magnetocytolysis in the presence of hepatospecific magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2002, 248 (2) :276-285.
    [16] Chawla Jugminder S. Biodegradable poly (?-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifem International Journal of Pharmaceutics, 2002, 249 (1-2): 127-138.
    [17] Mitra S, G. U, Ghosh PC. Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J of Controlled Release, 2001, 74 (1-3) :317-323.
    [18] John D Hood, M.B, Ricardo Frausto. Tumor Regression by Targeted Gene Delivery to the Neovasculature. Science, 2002, 296:2404-2407.
    [19] Couzin, J. Nanoparticles Cut Tumors' Supply Lines. Science, 2002, 296:2314-2315.
    [20] 李玉宝,魏杰.纳米生物医用材料及其应用.中国医学科学院学报,2002,24(2):203-206.
    [21] Tamai N, Myoui A, Hirao M, et al. A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2). Osteoarthritis Cartilage, 2005, 13 (5): 405-17.
    [22] 许国华,李家顺,叶晓健.组织工程化人工骨的研究进展.脊柱外科杂志,2005,3(1):47-50.
    [23] Hollister SJ, Lin CY, Saito E, et al. Engineering craniofacial scaffolds. Orthod Craniofac Res, 2005, 8 (3) :162-73.
    [24] Hilbig H, Wiener T, Armbruster FP, et al. Effects of dental implant surfaces on the expression of bone sialoprotein in cells derived from human mandibular bone. Med Sci Monit, 2005, 11 (4) :111-115.
    [25] Henkel KO, Gerber T, Dorfling P, et al. Repair of bone defects by applying biomatrices with and without autologous osteoblasts. J Craniomaxillofac Surg, 2005, 33 (1): 45-9.
    [26] 杨晓庆,魏杰,李玉宝.纳米磷灰石晶体的制备.化学研究与应用,2003,15(3):411-413.
    [27] 冯庆玲,崔福斋,张伟.纳米羟基磷灰石/胶原骨修复材料.中国医学科学院学报,2002,24(2):124-128.
    [28] 吕国玉,李玉宝,魏杰,等.载银羟基磷灰石抗菌织物的研究.功能材料,2005,36(06):888-891。
    [29] Chen Wei, M.S. C, Lu D Robert. Selective boron drug delivery to brain tumors for boron neutron capture therapy. Advanced Drug Delivery Reviews, 1997, 26 (2-3) :231-247.
    [30] Kreuter, J. Nanoparticulate systems for brain delivery of drugs. Advanced Drug Delivery Reviews, 2001, 47 (1): 65-81.
    [31] Arnedo, A. I, Merodio M, Espuelas Millon. Albumin nanoparticles improved the stability, nuclear accumulation and anticytomegaloviral activity of a phosphodiester oligonucleotide. Journal of Controlled Release, 2004, 94 (1): 217-227.
    [32] McManus AJ, Doremus RH, Siegel RW, et al. Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites. J Biomed Mater Res A, 2005, 72 (1): 98-106.
    [33] Karlov AV, Khlusov IA, Pozhen'ko NS, et al. In vitro regulation of cell behavior by calcium phosphates synthesized by the mechanochemical method. Bull Exp Biol Med, 2004, 138 (3) :316-20.
    [34] Lin CM, Yen SK. Characterization and bond strength of electrolytic HA/Ti02 double layers for orthopedic applications. J Mater Sci Mater Med, 2004, 15 (11): 1237-1246.
    [35] Annaz B, Hing KA, Kayser M, et al. An ultrastructural study of cellular response to variation in porosity in phase-pure hydroxyapatite. J Microsc, 2004, 216 (Pt 2): 97-109.
    [36] Arinzeh TL, Tran T, Mcalary J, et al. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials, 2005, 26 (17): 3631-3638.
    [37] Rossa C, Marcantonio E, Santos LA, et al. Cytotoxicity of two novel formulations of calcium phosphate cements: a comparative in vitro study. Artif Organs, 2005, 29 (2) : 114-121.
    [38] 夏清华,陈道达,张建平.羟基磷灰石-阿霉素复合物对大鼠肝移植性肿瘤局部切除术后治疗作用的研究.中华普通外科杂志,1999,14(3):179-181.
    [39] 王红晖,曹献英,王友法,等.HAP纳米粒子与传统抗癌药物的抗癌效果比较.武汉理工大学学报,2003,25(3):31-32.
    [40] Xia Qinghua, Chen DD, Yan Yuhua et al. Effects of HASMon DNA Content and Cell Cycle W- 256 Sarcoma Cell. J of Wuhan University of Technology, 1999, 21 (2): 5-6.
    [41] Xia QH, Ni H, Chen DD. The Effect of Hydroxyapatite Ultrofine Powder on the Immunity Function of Tumor-bearing Mice. Journal of Tongji Medical University, 2001, 21 (2) :143-144.
    [42] Feng Lingyun , Li Shipu, Chen Wenjie, et al Effect of Hydroxyapatite-sol on Proliferation of W-256 and Aishi Abdomen Sarcoma Cell. J of Nonferrous Metal of China, 1999, 9 (3) :651-654.
    [43] Bell A. T. The Impact of Nanoscience on Heterogeneous Catalysis. Science, 2003, 299:1688-1691.
    [44] Yoo Hyuk Sang, Loo. K. H, Oh Jong Eun. In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin-PLGA conjugates. Journal of Controlled Release, 2000, 68 (3) :419-431.
    [45] 袁东锋,易以木.肝靶向纳米粒的研究进展.医药导报,2003,(2):23.
    [46] Sun EJ. Li SP, Yan YH. Selective inhibition of Hepatocarcinoma cells by apatite nanoparticles. Chinese Journal of Biomedical Engineering, 2002, 11 (2) :67-71.
    [47] Gupta A. K. G, Mona Yarwood, Stephen J, et al. Effect of cellular uptake of gelatin nanoparticles on adhesion, images and cytoskeleton organisation of humanfibroblasts. Journal of Controlled Release, 2004, 95 (2) :197-207.
    [48] 张士成,李世普,袁润章.磷灰石超微粉对胃癌MGc-803细胞集落形成和细胞骨架的影响.武汉理工大学学报,1996,18(1):9-11.
    [49] 张士成,李世普,袁润章.磷灰石超微粉对骨癌Os-732细胞形态的影响.武汉理工大学学报,1996,18(1):12-15.
    [50] 冯凌云,阎玉华,陈闻杰.羟基磷灰石溶胶对W-256癌肉瘤细胞内钙离子浓度及细胞形态结构的影响.中国生物医学工程学报,1998,17(4):374-377.
    [51] 冯凌云,李世普,陈闻杰.羟基磷灰石溶胶及其对瘤细胞增殖的影响.中国有色金属学报,1999,9(3):651-654.
    [52] 夏东,刁路明,杨飞,等.无机纳米粒子对人肺癌细胞A_(549)和小鼠成纤维细胞L_(929)生物学特性研究.湖北医科大学学报,2000,21(2):109-111.
    [53] Xia Dong, Diao Luming, Yang Fei. The Study of Human Lung Carcinoma Cell's and Mouse Fibroblast's Biological Speciality after Treated with Inorganic Nanometre Particle. Acta Academiae Medicinae Hubei, 2000, 21 (2) :109-111.
    [54] 袁嫒,唐胜利,洪华,等.纳米羟基磷灰石的制备及其抗肿瘤活性的研究.中国生物医学工程学报,2005,24(1):26-30.
    [55] 唐胜利,袁媛,刘志苏,等.羟基磷灰石纳米粒子对人肝癌BEL-7402细胞毒性的评价.肝脏,2003,8(1):21-24.
    [56] 吴俊燏,彭仁绣,曹献英,等.精密肝切片技术研究羟磷灰石纳米粒子对肝细胞的影响.中国药理学与毒理学杂志,2004,18(4):300-304.
    [57] Nakahara H, Coldberg VM, Caplan AI. Culture expanded preiosteal derived cells exhibit osteochondrogenic potential in porous calciumphosphate ceramecs in vivo. Clin Orthop, 1992, 276:291 - 298.
    [58] L Ning, M. X, H Aoki. Effects Of Apatite Ceramics On Cell Growths And Dna Syntheses In Human Osteoblast Like Cell. Chinese Journal of Biomedical Engineering, 1996, 5 (2) : 74-78.
    [59] H. Aoki, M. A, Seisuke Kano, et al. Effects of Hydroxyapatite-sol Cell Growth. Report of the Institute for Medical & Dental Engineering, 1992, 26:15-21.
    [60] Aoki, H. Medical Applications of Hydroxyapatite. Tokyo: Takayama Press, 1994:14 - 20.
    [61] Cao XY, Qi ZT. Cytotoxinic Mechanism of Hydroxyapatite Nanoparticles on Human Hepatoma Cell Lines. J of Wuhan University of Technology-Materials Science, 2003, 18 (3): 66-68.
    [62] 曹献英,李世普,张然,等.羟基磷灰石纳米粒子对人肝癌细胞增殖及细胞周期的作用研究.肿瘤防治杂志,2003,10(3):256-258.
    [63] 曹献英,李世普,任卫,等.纳米羟基磷灰石的表征及其对肝癌抑制作用的研究.硅酸盐通报,2003,(4):21-24.
    [64] 曹献英,张珠,张然.磷灰石纳米粒子体外致肝癌细胞的胀亡.中国肿瘤,2003,12(6):348-350.
    [65] 曹献英,齐志涛,贺建华.羟基磷灰石纳米粒子的体外致突变作用研究.中国公共卫生.19(6),2003.704.
    [66] 曹献英,戴红莲,贾莉,等.羟基磷灰石纳米粒子体外抗肝癌的实验研究.肿瘤学杂志,2002,8(5):274-276.
    [67] 李戈,符仁义.羟基磷灰石纳米粒子对HL-60细胞增殖抑制作用的研究.肿瘤防治杂志,2005,12(2):103-105.
    [68] 魏凤香,罗佳滨,孟祥才,等.羟基磷灰石纳米粒子对Hela细胞凋亡作用的研究.黑龙江医药科学,2005,28(3):3-5.
    [69] Xiao M, Xin N, H. Z. Photoexcited TiO2 nanoparticles through OH-radicals induced malignant cells to necrosis. Supramolecular Science, 1998, 5 (6): 449-451.
    [70] Xu MH, H. N, Gu JH. Radicals Produced by Photoexcited TiO2 Particles to Oxidatively Stress U937 Cell to Apoptosis. J Southeast Univesity, 1997, 27 (4): 15-18.
    [71] Schumacher, B. D, Y, Plzak, V, Kinne, M, et al. Kinetics, mechanism, and the influence of H2 on the CO oxidation reaction on a Au/TiO2 catalyst. Journal of Catalysis, 2004, 224 (2): 449-462.
    [72] Coronado J. M. K, Sho, Tejedor-Tejedor, et al. Dynamic phenomena during the photocatalytic oxidation of ethanol and acetone over nanocrystalline TiO2: simultaneous FTIR analysis of gas and surface species. Journal of Catalysis, 2003, 219 (1): 219-230.
    [73] 刘艳,任宗茂.纳米TiO2的应用现状.重庆工业高等专科学校学报,2002,(1):11-13.
    [74] 刘朝晖,缪菊红,沈新元.纳米TiO2的多相光催化应用研究进展.郑州轻工业学院学报(自然科学版),2002,(3):43-46.
    [75] 熊先立,吴美玲,李世普.纳米二氧化钛对人肝癌Bei-7402细胞周期的影响.肿瘤防治研究,2003,30(4):300.
    [76] Cao XY, Dai HL, Yan YH. Selective Anti-Hepatoma Treated with Titanium Oxide Nanoparticles in vitro. J of Wuhan University of Technology-Materials Science, 2003, 18 (1): 52-54.
    [77] Feng Lingyun, Li Shipu, Yan Yuhua et al. The Effect of CaCO3 and TiO2 Nanometer Particles on A549 and L929 Cells. Bioceramics, 2000, 3: 325-328.
    [78] Panyam, J. L, Vinod. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews, 2003, 55 (3): 329-347.
    [79] 闫玉华,刘翠秀,李世普.HAp-Sol在血浆中的粒径及安全性研究.生物医学工程学杂志,1999,16(S1):35-36.
    [80] Yoshikawa T, Ohgushi H, Tamai S. Immediate bone forming capability of prefabricated osteogenic hydroxyapatite, J Biomed Mater Res, 1996, 32 (3): 481.
    [81] 冯树生,孙波,牟建松.羟基磷灰石的研究进展.现代实用医学,2004,16(10):622-624.
    [82] Ishikawa K, Asaoka K. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. J Biomed Mater Res, 1995, 29 (12): 1537-1543.
    [83] 李世普,戴红莲,闫玉华,沈春华,江听.无生命材料参与有生命组织的过程.中国有色金属学报,2004,14(S1):337-340.
    [84] 邬鸿彦.HAP的结构及物理性能.四川师范大学学报(自然科学版),1996,19(5):55-58.
    [85] Yuasa T, Miyamoto Y, Kon M, et al. Proliferation and differentiation of cultured MC3T3-E1 osteoblasts on surface-layer modified hydroxyapatite ceramic with acid and heat treatments. Dent Mater J, 2005, 24 (2): 207-212.
    [86] Yoshikawa T, Nakajima H, Takakura Y, et al. Osteogenesis with cryopreserved marrow mesenchymal cells. Tissue Eng, 2005, 11 (1-2): 152-160.
    [87] Yang Y, Dennison D, Ong JL. Protein adsorption and osteoblast precursor cell attachment to hydroxyapatite of different crystallinities. Int J Oral Maxillofac Implants, 2005, 20 (2): 187-92.
    [88] Xie J, Baumann MJ, McCabe LR. Adsorption of serum fetuin to hydroxylapatite does not contribute to osteoblast phenotype modifications. J Biomed Mater Res A, 2005, 73 (1): 39-47.
    [89] 张翔,李玉宝,左奕,等.纳米羟基磷灰石/聚酰胺66仿生复合材料的非等温结晶动力学研究.功能材料,2005,36(4):639-642.
    [90] 郭颖,李玉宝,严永刚.纳米磷灰石晶体/聚酰胺66复合材料的制备和界面研究.四川大学学报(自然科学版),2002,39(3):479-483.
    [91] 魏世成,李玉宝,郑谦,等.注射型纳米羟基磷灰石/聚酰胺生物活性骨修复材料的研究。生物医学工程学杂志,2003,20(4):590-593.
    [92] 孟纯阳,安洪,蒋电明,等.新型纳米骨重建和修复材料羟基磷灰石/聚酰胺体内植入的生物相容性及安全性.中国临床康复,2004,8(29):6630-6634.
    [93] 孟纯阳,安洪,蒋电明,等.网孔纳米羟基磷灰石/聚酰胺人工骨修复兔桡骨缺损.中华创伤杂志,2005,21(3):187-191.
    [94] Peter B, Zambelli PY, Guicheux J, et al. The effect of bisphosphonates and titanium particles on osteoblasts: an in vitro study. J Bone Joint Surg Br., 2005, 87 (8): 1157-1163.
    [95] Rammelt S, Schulze E, Witt M, et al. Collagen type Ⅰ increases bone remodelling around hydroxyapatite implants in the rat tibia. Cells Tissues Organs, 2004, 178 (3): 146-157.
    [96] Goncalves Ⅰ, Lindholm MW, Pedro LM, et al. Elastin and calcium rather than collagen or lipid content are associated with echogenicity of human carotid plaques. Stroke, 2004, 35 (12): 2795-2800.
    [97] L. A. Gugliotti, D. L. F, B. E. Eaton. RNA-Mediated Metal-Metal Bond Formation in the Synthesis of Hexagonal Palladium Nanoparticles. Science, 2004, 304: 850-852.
    [98] Reynolds AR, M. M. S, HD Kairbaan. Nanoparticle-mediated gene delivery to tumour neovasculature. Trends in Molecular Medicine, 2003, 9 (1): 2-4.
    [99] Kasten P, Vogel J, Luginbuhl R, et al. Ectopic bone formation associated with mesenchymal stem cells in a resorbable calcium deficient hydroxyapatite carrier. Biomaterials, 2005, 26 (29): 5879-5889.
    [100] Kilian O, Alt V, Heiss C, et al. New blood vessel formation and expression of VEGF receptors after implantation of platelet growth factor-enriched biodegradable nanocrystalline hydroxyapatite. Growth Factors, 2005, 23 (2): 125-33.
    [101] 黄志良,刘羽,王大伟.Sol-Gel法合成HAP的结晶特征及其对F-离子吸附性能研究.无机材料学报,2001,16(4):661-666.
    [102] 冯凌云,陈芳,闫玉华.Sol—gel法制备HAP超微粉.武汉工业大学学报,1996,18(2):121-123.
    [103] 江昕,韩颖超,李世普.快速均匀沉淀法制备纳米级HAP粉末.硅酸盐通报,2002.,(1):44-46.
    [104] 任卫,曹献英,冯凌云.纳米羟基磷灰石合成及表面改性的途径和方法.硅酸盐通报,2002,(1):38-43.
    [105] Wang YF, Y. Y, Li MJ. Electronic microscopy analysis of HAP single crystals prepared by hydrothermal method. Transactions of Nonferrous Metals Society of China, 2003, 13 (1): 69-72.
    [106] 陶佳南,冷莉莉,李慕勤.羟基磷灰石(HAP)电镜样品制作.黑龙江医药科学,2002,25(5):40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700