大鼠腹部手术后胃肠动力功能障碍机制及ω-3脂肪乳剂干预的随机、对照研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Mechanism of Gastrointestinal Motility Dysfunction and the Effect of ω-3 Fatty Acid on Rat Gastrointestinal Motility after Abdominal Operation
  • 作者:张群
  • 论文级别:博士
  • 学科专业名称:外科学
  • 学位年度:2008
  • 导师:于健春 ; 康维明 ; 朱广瑾
  • 学科代码:100210
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:2008-05-01
摘要
第一部分腹部手术后胃肠动力障碍动物模型的建立及其发生机制的研究
     研究背景:腹部手术后早期胃肠动力障碍,是胃肠道手术后常见的现象,严重时可导致麻痹性肠梗阻,增加感染及再手术风险,增加住院时间及医疗费用等。以往研究认为,腹部手术后早期胃肠动力障碍的主要机制在于:手术刺激造成体内致炎细胞因子释放增加、神经-内分泌激素调节机制作用等;为此,我们进行的前期动物实验证实,腹部手术后早期糖皮质激素干预可减少细胞炎性因子的释放、促进术后胃肠动力障碍恢复。但是由于糖皮质激素本身的副作用,其术后早期临床应用目前仍存在争议。因此,需要建立腹部手术后胃肠动力障碍动物模型,为进一步探讨其发生机制及干预措施奠定基础。
     研究目的:建立腹部手术后胃肠动力障碍动物模型,研究腹部手术创伤后炎性细胞因子释放、神经.内分泌激素调节变化在胃肠功能障碍的可能作用机制。
     研究方法:Wistar雄性大鼠24只,体重250±20g,随机分为正常对照组(n=6)、手术组(n=18)。手术组通过大鼠开腹手术,进行胃造口置管及部分盲肠切除术,建立腹部手术创伤模型。再按采取标本时间分成三组:术后24h组、术后72h组及术后6d组,每组6只。
     大鼠行开腹部分盲肠切除+胃造口术后第24h、72h、6天分别测定胃排空率或小肠推进率,同时心脏取血测定血清胃泌素、胃动素、IL-1、IL-6、TNF-α、Cox-2水平。
     研究结果:
     1.大鼠腹部手术创伤后,24h及72h胃排空率及小肠推进率较对照组明显降低(P<0.01),以术后24h抑制最明显,术后72h逐渐恢复,到术后6d达到术前水平。而术后6d胃排空率及小肠推进率较对照组无明显差别。表明大鼠腹部手术创伤后24h-72h,胃肠动力抑制作用最为明显,术后6d已恢复到术前水平。
     2.大鼠腹部手术创伤后24h、72h血清IL-1、IL-6、TNF-α、Cox-2水平较对照组明显升高(P<0.01),以术后24h-72h升高最明显,以后逐渐恢复,到术后6d达术前水平。表明大鼠腹部手术创伤后24h、72h血清IL-1、IL-6、TNF-α等炎症因子及Cox-2水平的明显升高,加重炎症反应,抑制胃肠动力,而术后6d逐步恢复到术前水平。
     3.大鼠腹部手术创伤后24h、72h血清胃泌素、胃动素水平较对照组明显降低(P<0.01),以后逐渐恢复,术后6d达术前水平。表明大鼠腹部手术创伤后24h-72h血清胃泌素、胃动素等胃肠激素水平的明显降低,抑制胃肠动力,术后72h至6d逐步恢复到术前水平。
     结论:腹部手术创伤后24-72h胃肠动力受到明显抑制,其抑制程度与血清IL-1、IL-6、TNF-α、COX-2水平升高,胃动素水平下降密切相关。胃泌素水平仅在术后24h抑制最明显,术后72h-6d逐渐恢复到正常水平。
     第二部分ω-3脂肪乳剂对腹部手术创伤后胃肠功能障碍的干预对照研究
     研究背景:腹部手术后早期胃肠动力障碍,是胃肠道手术后常见的现象,严重时可导致麻痹性肠梗阻,增加感染及再手术风险,增加住院时间及医疗费用等。以往研究认为,腹部手术后早期胃肠动力障碍的主要机制在于:手术刺激造成体内致炎细胞因子释放增加、神经-内分泌激素调节机制作用等;为此,我们进行的前期动物实验证实,腹部手术后早期糖皮质激素干预可减少细胞炎性因子的释放、促进术后胃肠动力障碍恢复。但是由于糖皮质激素本身的副作用,其术后早期临床应用目前仍存在争议。我们在已建立了腹部手术后胃肠动力障碍动物模型及探讨其机制的基础上,对干预措施及效果进行研究。
     由于腹部及胃肠手术后,病人胃肠功能受到抑制,在相当一段时间内需胃肠减压、不能正常进食,肠外营养或肠内营养支持成为必要的支持治疗手段。
     近年来,ω-3脂肪乳剂作为肠外营养脂肪乳制剂之一,已在国内外临床应用。由于其独特的化学结构特点及其对病理生理调节特性,使ω-3脂肪乳剂在抗炎、抗凝、抗肿瘤、降血脂等方面,成为国内外研究的热点。但对手术后应用ω-3脂肪乳剂在减轻和调节炎症反应、促进胃肠动力功能的恢复方面的干预研究尚无报道,为此,我们进行了随机、对照性的动物实验研究。
     研究目的:ω-3脂肪乳剂对大鼠腹部手术后血清炎症因子、血清胃肠激素水平及胃肠动力功能的影响。
     研究方法:Wistar雄性大鼠54只,体重250±20g,随机分为生理盐水组(n=18),中长链脂肪乳组(n=18)及ω-3脂肪乳组(n=18)。每组再按术后采取标本时间分成术后24h组、术后72h组及术后6d组,每组6只。干预治疗:大鼠行开腹部分盲肠切除+胃造口术后1-6d分别通过胃造瘘管给予生理盐水(12.5ml/d)、10%中长链脂肪乳(12.5ml/d,5g/kg·d),10%ω-3脂肪乳组(12.5ml/d,5g/kg·d)。术后第1、3、6天分别测定胃排空率或小肠推进率,同时心脏取血测定血清胃泌素、胃动素、IL-1、IL-6、TNF-α、Cox-2水平。
     研究结果:1.ω-3脂肪乳剂组:在大鼠腹部手术创伤后72h,胃排空率及小肠推进率均明显高于生理盐水组、中长链脂肪乳剂组(P<0.01);术后24h、第6d,ω-3脂肪乳剂组与生理盐水组、中长链脂肪乳剂组相比,上述指标无明显差别。表明与生理盐水、中长链脂肪乳剂干预相比,大鼠开腹手术后经胃造瘘给予ω-3脂肪乳剂在72h后有明显促进胃肠动力恢复的效果。
     2.ω-3脂肪乳剂组:在大鼠腹部手术创伤后72h,血清IL-1、IL-6、TNF-α、Cox-2水平均明显低于生理盐水及中长链脂肪乳组(P<0.05),ω-3脂肪乳剂组术后24h、第6d上述指标与生理盐水组、中长链脂肪乳组相比无明显差别。表明大鼠腹部手术创伤后,经胃造口给予ω-3脂肪乳剂较生理盐水以及中长链脂肪乳剂干预,能明显下调术后72h血清炎症因子、Cox-2水平,有助于减轻全身炎症反应。
     3.ω-3脂肪乳剂组及中长链脂肪乳组:在大鼠腹部手术创伤后72h,血清胃泌素、胃动素水平均明显高于生理盐水组(P<0.01),术后24h、第6d上述指标与术前相比无明显差别。但ω-3脂肪乳剂组与中长链脂肪乳剂组相比,术后24h、72h、6d血清胃泌素、胃动素水平无明显差别。表明腹部手术后经胃造瘘管给予两种脂肪乳剂均可在术后72h提高血清胃泌素、胃动素水平。说明脂肪乳剂均有通过抑制胃酸分泌、促进血清胃泌素分泌,直接刺激胃动素释放的作用。
     结论:大鼠腹部手术创伤后,经胃造口给予ω-3脂肪乳剂,较生理盐水、中长链脂肪乳剂能够明显下调手术创伤后72h血清炎症介质(IL-1、IL-6、TNF-α等)及COX-2水平,减轻全身炎症反应,从而减轻胃肠动力的抑制程度,改善胃排空率及小肠推进率,促进胃肠动力的恢复。ω-3脂肪乳剂组与中长链脂肪乳剂组均可在术后72h提高血清胃泌素、胃动素水平,但ω-3脂肪乳剂组较中长链脂肪乳剂组具有更明显的抗炎、促进胃肠动力恢复的作用,其作用机制与下调手术创伤后血清炎症介质、COX-2水平密切相关。
PART I The Establishment of Rat Gastrointestinal Motility Dysfunction Model After Abdominal Operation And Its Mechanism
     Background: Early postoperative gastrointestinal motility dysfunction is a usual complication after laparotomy, especially after gastrointestinal operation. It can result in small bowel obstruction, serious infection and a second operation. It also can prolong hospital stay, increase hospital expenditure. At present, most of the researches were focused on the increase of inflammatory facts and the regulation of neuroendocrine system after operation, and our early studies showed that glucocorticoid could decrease blood inflammatory facts and increase the recovery of gastrointestinal motility after abdominal operation. But because of its side effects, glucocorticoid were limited in clinical treatment. So we established the rat gastrointestinal motility dysfunction model for further research.
     Aim: To establish the rat gastrointestinal motility dysfunction model after abdominal operation and study the mechanism.
     Method: The abdomina operation mode was established by gastrostomy and partial caecectomy in rat. By measuring inflammatory facts and gastrointestinal hormones, we investigated the machanism of gastrointestinal motility disorders after abdominal operation.
     24 wistar rats were randomly divided into normal group (n=6), operation group (n=18). Each group was divided into POD 1 group (n=6), POD 3 group (n=6) and POD 6 (n=6) according to the time of sacrifice.
     On POD 1, POD 3 and POD 6, the rat was sacrificed and gastric emptying rate, small bowel propulsion rate, serum gastrin(GAS), motilin(MTL), IL-1, IL-6, TNF-α, Cox-2 were measured.
     Results: 1. After partial caecectomy and gastrostomosis of rats, the gastric emptying rate and small bowel propulsion rate were reduced significantly on POD 1 and POD 3 (P<0.01), comparing to the normal group. But on POD 6 there was no difference.
     2.After partial caecectomy and gastrostomosis of rats, the serum GAS and MTL level were reduced significantly on POD 1 (P<0.01), comparing to the normal group. But on POD 3 and POD 6 there was no difference.
     3. After partial caecectomy and gastrostomosis of rats, the serum IL-1, IL-6, TNF-αand Cox-2 level were increased significantly on POD 1 and POD3 (P<0.01), comparing to the normal group. But on POD 6 there was no difference.
     Conclusion: After partial caecectomy in rats, the gastrointestinal mobility was inhibited greatly on POD 1, but on POD 6, the inhibition was disappeared and the gastrointestinal mobility was recovered to normal level. The inhibition was related to the decline of serum MTL level and the elevation of serum IL-1 and Cox-2 level. Serum GAS level decreased on POD 1 and gradually recovered from POD 3 to POD 6.
     PART II The Effect ofω-3 Fatty Acid on Rat Gastrointestinal Motility After Abdominal Operation
     Background: Early postoperative gastrointestinal motility dysfunction is a usual complication after laparotomy, especially after gastrointestinal operation. It can result in small bowel obstruction, serious infection and a second operation. It also can prolong hospital stay, increase hospital expenditure. At present, most of the researches were focused on the increase of inflammatory facts and the regulation of neuroendocrine system after operation, and our early studies showed that glucocorticoid could decrease blood inflammatory facts and increase the recovery of gastrointestinal motility after abdominal operation. But because of its side effects, glucocorticoid were limited in clinical treatment.
     Because the patients who underwent abdominal operation usually could not take food for a while, enteral nutrion and parenteral nutrition become the necessary nutritional supports.
     ω-3 fatty acid have already been used in parenteral nutrition. Because of its advantages, including alleviating inflammation, inhibiting the growth of tumor, reducing blood-fat, etc,ω-3 fatty acid becomes a hotspot in domestic and overseas research. But there is no report about its relationship with gastrointestinal mobility after laparotomy.
     Aim: To study the relationship ofω-3 fatty acid with gastrointestinal mobility after laparotomy and its mechanism of action.
     Method: By infusing normal saline, intralipid andω-3 fatty acid through gastric tube, we studied the effect of normal saline, intralipid andω-3 fatty acid on rat gastrointestinal motility by investigating the inflammatory facts, the gastrointestinal hormones and the gastrointestinal motility.
     54 wistar rats were randomly divided into normal saline group (n=18), intralipid group (n=18) andω-3 fatty acid group (n=18). Each group was divided into POD 1 group (n=6), POD 3 group (n=6) and POD 6 (n=6) according to the time of sacrifice.
     Each day after partial caecectomy and gastrostomosis, the rats were perfused normal saline (12.5ml/d), intralipid (12.5ml/d, 5g/kg·d) andω-3 fatty acid (12.5ml/d, 5g/kg·d) through stomach-tube. On POD 1, POD 3 and POD 6, the rat was sacrificed according to its group, and gastric emptying rate, small bowel propulsion rate, serum gastrin(GAS), motilin(MTL), IL-1, IL-6, TNF-α, Cox-2 were measured.
     Results:
     1. On POD 3, the gastric emptying rate and small bowel propulsion rate inω-3 fatty acid group were higher than those in normal saline group and intralipid group, P<0.01, but on POD 1 and POD 6, there was no difference.
     2. On POD 3, the serum GAS and MTL level inω-3 fatty acid group were higher than those in normal saline group, P<0.01, but there was no difference betweenω-3 fatty acid group and intralipid group. On POD 1 and POD 6, there was no difference between them. This indicates the mechanism thatω-3 fatty acid promotes the recovery of gastrointestinal motility does not lie in the increase of serum GAS and MTL level. The possible reasons are: 1. Different food has different effect on gastrointestinal hormones. Bothω-3 fatty acid and intralipid belong to fatty acid, their effects to stimulating gastrointestinal hormones are similar, but more powerful than normal saline. 2.ω-3 fatty acid and intralipid inhibit the secretion of gastric acid, reduce PH value in stomach, then stimulate the secretion of GAS. 3.ω-3 fatty acid and intralipid can stimulate the secretion of MTL.
     3. On POD 3, the serum IL-1、IL-6、TNF-α、Cox-2 level inω-3 fatty acid group were lower than those in normal saline group and intralipid group, P<0.05. But on POD 1 and POD 6, there was no difference between them. This indicates thatω-3 fatty acid can decrease serum inflammatory facts level such as IL-1, IL-6, TNF-αand Cox-2 level. Because postoperative inflammation inhibits gastrointestinal mobility significantly,ω-3 fatty acid can accelerate the recovery of gastrointestinal mobility after operation.
     Conclusion:ω-3 fatty acid can accelerate the recovery of gastrointestinal mobility after caecectomy in rats. Its mechanism of action could be: co-3 fatty acid can decease serum inflammatory facts such as IL-1, IL-6, TNF-αand Cox-2 level, relieve postoperative inflammation.ω-3 fatty acid and intralipid can increase serum GAS, MTL level on POD 3, but comparing to intralipid,ω-3 fatty acid can accelerate the recovery of gastrointestinal mobility and inhibit inflammation after abdominal operation.
引文
1.Cullen J J,Eagon JC,Kelly KA.Gastrointestinal peptide hormones during postoperative ileus.Effect of octreotide.Dig Dis Sci 1994;19(6):1179-1184
    2.Kehlet H,Holte K.review of postoperative ileus.Am J Surg 2001;182(5ASuppl):3S-10S
    3.Schuster TG,Montie JE.Postoperative ileus after abdominal surgery.Urology 1002;59(4):465-471
    4.Ferraz AA,Cowles VE,Condon RE,et al.Nonopioid analgesics shorten the duration of postoperative ileus.Am Surg 1995;61(12):1079-1083
    5.Terry,PD,TE.Rohan,A.Wolk.Intakes of fish and marine fatty acids and the risks of cancers of the breast and prostate and of other hormone-related cancers:a review of the epidemiologic evidence.Am J Clin Nutr,2003.77(3):p.532-43
    6.张群,于健春等.肠内、肠外营养对胃大部切除术后患者胃肠激素及胃动力的影响——前瞻性随机对照研究.中华外科杂志.2006,44(11):728-732
    7.Augustsson K,Michaud DS,Rimm EB,Leitzmann MF,Stampfer MJ,Willett WC,Giovannucci E.A prospective study of intake of fish and marine fatty acids and prostate cancer.Cancer Epidemiol Biomarkers Prev.2003 Jan;12(1):64-7.
    8.Kojima M,Wakai K,Tokudome S,Suzuki K,Tamakoshi K,Watanabe Y,Kawado M,Hashimoto S,Hayakawa N,Ozasa K,Toyoshima H,Suzuki S,Ito Y,Tamakoshi A;JACC Study Group.Serum levels of polyunsaturated fatty acids and risk of colorectal cancer:a prospective study.Am J Epidemiol.2005 Mar 1;161(5):462-71.
    9.Menendez JA,Lupu R,Colomer R.Exogenous supplementation with omega-3polyunsaturated fatty acid docosahexaenoic acid(DHA;22:6n-3) synergistically enhances taxane cytotoxicity and downregulates Her-2/neu(c-erbB-2) oncogene expression in human breast cancer cells.Eur J Cancer Prev.2005 Jun;14(3):263-70
    10.Baumgartner M,Sturlan S,Roth E,Wessner B,Bachleitner-Hofmann T.Enhancement of arsenic trioxide-mediated apoptosis using docosahexaenoic acid in arsenic trioxide-resistant solid tumor cells.Int J Cancer.2004 Nov 20;112(4):707-12.
    11.Calviello G,Di Nicuolo F,Serini S,Piccioni E,Boninsegna A,Maggiano N,Ranelletti FO,Palozza P.Docosahexaenoic acid enhances the susceptibility of human colorectal cancer cells to 5-fluorouracil.Cancer Chemother Pharmacol.2005 Jan;55(1):12-20.Epub 2004 Sep 10.
    12. Curtis CL, Rees SG, Little CB, et al. Pathologic indicators of degradation and inflammation in human osteoarthritic cartilage are abrogated by exposure to n-3 fatty acids. Arthritis Rheum 2002; 46: 1544
    13. Lee JY, Plakidas A, Lee WH. et al. Diferential modulation of Toll like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. J Lipid Res. 2003; 44: 479
    14. Novak TE, Babcock TA, Jho DH, et al. NF-kappa B inhibition by omega-3 fatty acids modulates LPS-stimulated macrophage TNF-alpha transcription. Am J Physiol Lung Cell Mol Physiol, 2003; 284: L84.
    15. Chen LH, Zhao Y. Eicosapentaenoid acid decreases lipopolysaccharide -stimulated tumor necrosis factor-α expression by inhibiting nuclear factor-ΚB activation. FASEB J, 2001;15: A258.
    16. Kesavalu L, Bakthavatchalu V, Rahman MM, et al. omega-3 fatty acid regulates inflammatory cytokine /mediator messenger RNA expression in Porphyromonas gingivalis -induced experimental periodontal disease. Oral Microbiol Immunol. 2007 Aug;22(4):232-9.
    17. Mund RC, Pizato N, Bonatto S, et al. Decreased tumor growth in Walker 256 tumor-bearing rats chronically supplemented with fish oil involves COX-2 and PGE2 reduction associated with apoptosis and increased peroxidation. Prostaglandins Leukot Essent Fatty Acids. 2007 Feb; 76(2): 113-20. Epub 2007 Jan 17.
    18. Massaro M, Habib A, Lubrano L. The omega-3 fatty acid docosahexaenoate attenuates endothelial cyclooxygenase-2 induction through both NADP(H) oxidase and PKC epsilon inhibition. Proc Natl Acad Sci U S A. 2006 Oct 10;103(41):15184-9. Epub 2006 Oct 3.
    19. Csendes A, Walsh JH, Grossman MI. Effects of atropine and of antral acidification on gastrin release and acid secretion in response to insulin and feeding in dogs. Gastroenterology, 1972; 63: 257
    20. McGuigan JE, Trudeau WL. Serum gastrin levels before and after vagotomy and pyloroplasty or vagotomy and antrectomy. N Engl J Med. 1972; 286: 184
    21. Reeder DD, Jackson BM, Ban JL, et al. Influence of hypercalcemia on gastric secretion and serum gastrin concentrations in man. Ann Surg. 1970; 172: 540
    22. Koh T J, Chen D. Gastrin as a growth factor in the gastrointestinal tract. Regul Pept 2000 Sep 25;93(1-3):37-44.
    23. Schmidt PT, Hansen L, Hilsted L, Hoist JJ. Cholecystokinin inhibits gastrin secretion independently of paracrine Somatostatin secretion in the pig. Scand J Gastroenterol 2004 Mar; 39(3): 217-21.
    24. Richards RD, Valenzuela GA, Davenport KG, et al. Objective and subjective results of a randomized, double-blind, placebo-controlled trial using cisapride to treat gastroparesis. Dig Dis Sci 1993 May, 38(5): 811- 6.
    25. Depoortere I. Motilin and motilin receptors: characterization and functional significance. Verh K Acad Geneeskd Belg 2001 ;63(6):511-29.
    26. Huang J, Zhou H, Mahavadi S, et al. Signaling pathways mediating gastrointestinal smooth muscle contraction and MLC20 phosphorylation by motilin receptors. Am J Physiol Gastrointest Liver Physiol 2005 Jan; 288(1): G23- 31.
    27. Sarna SK, et al. Gastrointestinal motor effects of erythromycin in human. Gastroenterology, 1991, 101(6): 1488
    28. Xu L, Depoortere I, Tomasetto C, et al. Evidence for the presence of motilin, ghrelin, and the motilin and ghrelin receptor in neurons of the myenteric plexus. Regul Pept 2005 Jan 15;124(1-3):119-25.
    29. Baker C S, Hall R J, Evans T J, et al. Cyclooxygenase-2 is widely expressed in atherosclerotic lesions affecting native and transplanted human coronary arteries and colocalizes with inducible nitric oxide synthase and nitrotyrosine particularly in macrophages. Arterioscler Thromb Vasc Biol, 1999;19: 646-655
    30. Teismann P, Tieu K, Choi D K, etal. Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegeneration. Proc Natl Acad Sci USA, 2003; 100: 5473-78
    31. Collins SM, Lewis TD, Fox JE, Track NS, Meghji M, Daniel EE.Changes in plasma motilin concentration in response to manipulation of intragastric and intraduoduenal contents in man.Can J Physiol Pharmacol. 1981 Feb;59(2): 188-94.
    32. Fox JE, Track NS, Daniel EE.Relationship of plasma motilin concentration to fat ingestion, duodenal acidification and alkalinization, and migrating motor complexes in dogs.Can J Physiol Pharmacol. 1981 Feb;59(2): 180-7. No abstract available.
    33. Calder PC. N-3 polyunsaturated fatty acids and inflammation: from molecular biology to the clinic. Lipids. 2003 Apr;38(4):343-52.
    34. Bagga D, Wang L, Farias-Eisner R. Differential effects of prostaglandin derived from omega-6 and omega-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc Natl Acad Sci U S A. 2003 Feb 18; 100(4): 1751-6. Epub 2003 Feb 10.
    35. Arlington JL, Chapkin RS, Switzer KC, Morris JS, McMurray DN. Dietary n-3 polyunsaturated fatty acids modulate purified murine T-cell subset activation. Clin Exp Immunol. 2001 Sep;125(3):499-507.
    36. Arrington JL, McMurray DN, Switzer KC, Fan YY, Chapkin RS.Docosahexaenoic acid suppresses function of the CD28 costimulatory membrane receptor in primary murine and Jurkat T cells.J Nutr. 2001 Apr;131(4):1147-53.
    37. Kelley DS, Taylor PC, Nelson GJ, Schmidt PC, Ferretti A, Erickson KL, Yu R, Chandra RK, Mackey BE.Docosahexaenoic acid ingestion inhibits natural killer cell activity and production of inflammatory mediators in young healthy men.Lipids. 1999 Apr;34(4):317-24.
    38. Kelley DS, Taylor PC, Nelson GJ, Schmidt PC, Ferretti A, Erickson KL, Yu R, Chandra RK, Mackey BE. Docosahexaenoic acid ingestion inhibits natural killer cell activity and production of inflammatory mediators in young healthy men. Lipids. 1999 Apr;34(4):317-24.
    39. Lee JY, Plakidas A, Lee WH, et al. Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. J Lipid Res, 2003, 44(3):479-486
    40. Novak TE, Babcock TA, Jho DH, et al. NF-kappa B inhibition by omega-3 fatty acids modulates LPS-stimulated macrophage TNF-alpha transcription[J]. Am J Physiol Lung Cell Mol Physiol, 2003, 284(1):L84-L89.
    41. Zhao Y, Joshi-Barve S, Barve S, et al. Eicosapontaenoic acid prevents LPS-induced TNF-alpha expression by preventing NF-kappa B activation[J]. J Am Coil Nutr, 2004, 23(1): 71-78
    42. Nohe B, Ruof H, Johannes T, et al. A fish oil emulsion used for parenteral nutrition attenuates monocyte-endothelial interactions under flow[J]. Shock, 2002,18(3):217-222.
    43. Xi S, Cohen D, Chen LH. Efects offish oil on cytokines and immune functions of mice with murine AIDS[J]. J Lipid Res, 1998, 39(8)1677-1687.
    44. Novak TE, Babcock TA, Jho DH, et al. NF-kappa B inhibition by omega-3 fatty acids modulates LPS-stimulated macrophage TNF-aipha transcription[J]. Am J Physiol Lung Cell Mol Physiol, 2003, 284(1): L84-L89.
    45. Sethi S, Ziouzenkova O, Ni H, et al. Oxidized omega-3 fatty acids in fish oil inhibit leukocyte-endothelial interactions through activation of PPAR alpha[J]. Kidney Int, 2002, 100(4):1340-1346.
    46.Kavanagh T,Lonergan PE,Lynch MA.Eicosapentaenoic acid and gamma-linolenic acid increase hippocampal concentrations of IL-4 and IL-10 and abrogate lipopolysaccharide-induced inhibition of long-term potentiation[J].Prostaglandins Leukot Essent Fatty Acids,2004,70(4):391-397.
    47.Forman BM,Chen J,Evans RM.Hypolipidemic drugs,polyunsaturated fatty acids,and eicosanoids are ligands for peroxisome proliferators activated receptors alpha and delta[J].Proc Nail Acad Sci USA,1997,94(9):4312-4317.
    48.Curtis CL,Rees SG,Little CB,et al.Pathologic indicators of degradation and inflammation in human osteoarthritic cartilage are abrogated by exposure to n-3 fatty acids.Arthritis Rheum 2002;46:1544
    49.Kesavalu L,Bakthavatchalu V,Rahman MM,et al.omega-3 fatty acid regulates inflammatory cytokine/mediator messenger RNA expression in Porphyromonas gingivalis -induced experimental periodontal disease.Oral Microbiol Immunol.2007 Aug;22(4):232-9.
    50.Calviello G,Serini S,Piccioni,E.n-3 polyunsaturated fatty acids and the prevention of colorectal cancer:molecular mechanisms involved.Curr Med Chem.2007;14(29):3059-69.
    51.夏延平,苏宜香.N-3多不饱和脂肪酸影响炎症及免疫分子机制研究进展.现代免疫学.2004;24(6):517-519
    52.王新颖,黎介寿.n-3多不饱和脂肪酸影响炎症和免疫功能的基础研究.肠外与肠内营养2007,14(1):54-58
    53.Yusof HM,Miles EA,Calder P.Influence of very long-chain n-3 fatty acids on plasma markers of inflammation in middle-aged men.Prostaglandins Leukot Essent Fatty Acids.2008 Mar;78(3):219-28.Epub 2008 Apr 9.
    54.Chilton FH,Rudel LL,Parks JS,Ann JP,Seeds MC.Mechanisms by which botanical lipids affect inflammatory disorders.Am J Clin Nutr.2008 Feb;87(2):498S-503S.Review.
    1.Chalon S, Vancassel S, Zimmer L, Guilloteau D, Durand G. Polyunsaturated fatty acids and cerebral function: focus on monoaminergic neurotransmission. Lipids, 2001, 36(9): 937-944.
    2. Burdge GC, Jones AE, Wootton SA.Eicosapentaenoic and docosapentaenoic acids are the principal products of alpha-linolenic acid metabolism in young men. Br J Nutr, 2002, 88(4): 355-364.
    3. Zimmer L, Delpal S, Guiloteau D, et al. Chronic n-3 polyunsaturated fatty acid deficiency alters dopamine vesicle density in the rat frontal cortex. Neurosci Lett, 2000, 284: 25-28.
    4. Moussa M, Le Boucher J, Garcia J, Tkac~k J, Ragab J, Dutot G , et al. In vivo effects of olive oil based lipid emulsion on lymphocyte activation in rats □ . clin Nutr, 2000, 19:49-54.
    5. Schmocker C, Weylandt KH, Kahlke L, Wang J, Lobeck H, Tiegs G, Berg T, Kang JX. Omega-3 fatty acids alleviate chemically induced acute hepatitis by suppression of cytokines. Hepatology. 2007 Apr;45(4):864-9.
    6. Shahbakhti H, Watson RE, Azurdia RM, Ferreira CZ, Garmyn M, Rhodes LE. Influence of eicosapentaenoic acid, an omega-3 fatty acid, on ultraviolet-B generation of prostaglandin-E2 and proinflammatory cytokines interleukin-1 beta, tumor necrosis factor-alpha, interleukin-6 and interleukin-8 in human skin in vivo.Photochem Photobiol. 2004 Sep-Oct;80(2):231-5.
    7. Ferrucci L, Cherubini A, Bandinelli S, Bartali B, Corsi A, Lauretani F, Martin A, Andres-Lacueva C, Senin U, Guralnik JM. Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metab. 2006 Feb;91(2):439-46. Epub 2005 Oct 18.
    8. Hagfors L, Nilsson I, Skoldstam L, Johansson G.Fat intake and composition of fatty acids in serum phospholipids in a randomized, controlled, Mediterranean dietary intervention study on patients with rheumatoid arthritis. Nutr Metab (Lond). 2005 Oct 10;2:26.
    9. Cleland LG, Caughey GE, James MJ, Proudman SM.Reduction of cardiovascular risk factors with longterm fish oil treatment in early rheumatoid arthritis.J Rheumatol. 2006 Oct;33(10): 1973-9. Epub 2006 Aug 1.
    10. Innis SM, Jacobson K.Dietary lipids in early development and intestinal inflammatory disease.Nutr Rev. 2007 Dec;65(12 Pt 2):S 188-93.
    11. Belluzzi AL. Effect of an enteric-coated fish oil preparation on relapses in Crohn's disease. N Engl J Med, 1996, 334, (24): 1557.
    12. Lin MT, Hsu CS, Yeh SL, Yeh CL, Chang KJ, Lee PH, Chen WJ.Effects of omega-3 fatty acids on leukocyte Thl/Th2 cytokine and integrin expression in rats with gut-derived sepsis.Nutrition. 2007 Feb;23(2): 179-86.
    13. Merchant AT, Curhan GC, Rimm EB, Willett WC, Fawzi WW. Intake of n-6 and n-3 fatty acids and fish and risk of community-acquired pneumonia in US men. Am J Clin Nutr. 2006 Feb;83(2):390-1.
    14. Oddy WH, de Klerk NH, Kendall GE, Mihrshahi S, Peat JK.Ratio of omega-6 to omega-3 fatty acids and childhood asthma.J Asthma. 2004;41(3):319-26.
    15. Ma Y, Streiff RJ, Liu J, Spence MJ, Vestal RE.Cloning and characterization of human oncostatin M promoter.Nucleic Acids Res. 1999 Dec l;27(23):4649-57
    16. Arlington JL, Chapkin RS, Switzer KC, Morris JS, McMurray DN. Dietary n-3 polyunsaturated fatty acids modulate purified murine T-cell subset activation. Clin Exp Immunol. 2001 Sep;125(3):499-507.
    17. Arlington JL, McMurray DN, Switzer KC, Fan YY, Chapkin RS.Docosahexaenoic acid suppresses function of the CD28 costimulatory membrane receptor in primary murine and Jurkat T cells.J Nutr. 2001 Apr;131(4):1147-53.
    18. Kelley DS, Taylor PC, Nelson GJ, Schmidt PC, Ferretti A, Erickson KL, Yu R, Chandra RK, Mackey BE.Docosahexaenoic acid ingestion inhibits natural killer cell activity and production of inflammatory mediators in young healthy men. Lipids. 1999 Apr;34(4):317-24.
    19. Kelley DS, Taylor PC, Nelson GJ, Schmidt PC, Ferretti A, Erickson KL, Yu R, Chandra RK, Mackey BE. Docosahexaenoic acid ingestion inhibits natural killer cell activity and production of inflammatory mediators in young healthy men. Lipids. 1999 Apr;34(4): 317-24.
    20. Lee JY, Plakidas A, Lee WH, et al. Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. J Lipid Res, 2003, 44(3):479-486
    21. Novak TE, Babcock TA, Jho DH, et al. NF-kappa B inhibition by omega-3 fatty acids modulates LPS-stimulated macrophage TNF-alpha transcription[J].Am J Physiol Lung Cell Mol Physiol,2003,284(1):L84-L89.
    22.Zhao Y,Joshi-Barve S,Barve S,et al.Eicosapontaenoic acid prevents LPS-induced TNF-alpha expression by preventing NF-kappa B activation[J].J Am Coil Nutr,2004,23(1):71-78
    23.Nohe B,Ruof H,Johannes T,et al.A fish oil emulsion used for parenteral nutrition attenuates monocyte-endothelial interactions under flow[J].Shock,2002,18(3):217-222.
    24.Xi S,Cohen D,Chen LH.Efects of fish oil on cytokines and immune functions of mice with murine AIDS[J].J Lipid Res,1998,39(8) 1677-1687.
    25.Novak TE,Babcock TA,Jho DH,et al.NF-kappa B inhibition by omega-3 fatty acids modulates LPS-stimulated macrophage TNF-aipha transcription[J].Am J Physiol Lung Cell Mol Physiol,2003,284(1):L84-L89.
    26.Sethi S,Ziouzenkova O,Ni H,et al.Oxidized omega-3 fatty acids in fish oil inhibit leukocyte-endothelial interactions through activation of PPAR alpha[J].Kidney Int,2002,100(4):1340-1346.
    27.Kavanagh T,Lonergan PE,Lynch MA.Eicosapentaenoic acid and gamma-linolenic acid increase hippocampal concentrations of IL-4 and IL-10 and abrogate lipopolysaccharide-induced inhibition of long-term potentiation[J].Prostaglandins Leukot Essent Fatty Acids,2004,70(4):391-397.
    28.Forman BM,Chen J,Evans RM.Hypolipidemic drugs,polyunsaturated fatty acids,and eicosanoids are ligands for peroxisome proliferators activated receptors alpha and delta[J].Proc Nail Acad Sci USA,1997,94(9):4312-4317.
    29.Curtis CL,Rees SG,Little CB,et al.Pathologic indicators of degradation and inflammation in human osteoarthritic cartilage are abrogated by exposure to n-3 fatty acids.Arthritis Rheum 2002;46:1544
    30.Kesavalu L,Bakthavatchalu V,Rahman MM,et al.omega-3 fatty acid regulates inflammatory cytokine/mediator messenger RNA expression in Porphyromonas gingivalis -induced experimental periodontal disease.Oral Microbiol Immunol.2007 Aug;22(4):232-9.
    31.夏延平,苏宜香.N-3多不饱和脂肪酸影响炎症及免疫分子机制研究进展.现代免疫学.2004;24(6):517-519
    32.王新颖,黎介寿.n-3多不饱和脂肪酸影响炎症和免疫功能的基础研究.肠外与肠 内营养2007,14(1):54-58
    33. Ban K, Kozar RA. Enteral glutamine: a novel mediator of PPAR{gamma} in the postischemic gut. J Leukoc Biol. 2008 Apr 7; [Epub ahead of print]
    34. Dubnov G, Berry EM.Polyunsaturated Fatty acids, insulin resistance, and atherosclerosis: is inflammation the connecting link? Metab Syndr Relat Disord. 2004 Jun;2(2): 124-8.
    35. Mayer K, Seeger W.Fish oil in critical illness. Curr Opin Clin Nutr Metab Care. 2008 Mar;11(2):121-7.
    36. Heller AR. Pharmaconutrition with omega-3 fatty acids: status quo and further perspectives.Mini Rev Med Chem. 2008 Feb;8(2):107-15. Review.
    37. Chilton FH, Rudel LL, Parks JS, Arm JP, Seeds MC. Mechanisms by which botanical lipids affect inflammatory disorders. Am J Clin Nutr. 2008 Feb;87(2):498S-503S. Review.
    1.李幼生,黎介寿.再论术后早期炎性肠梗阻.中国实用外科杂志,2006年1月第26卷第1期
    2.Stewart RM,Page CP,Brender J,et al.The incidence and risk of early postoperative small bowel obstruction[J].Am JSurg,1987,154(6):643-647.
    3.翟保平,任金祥.术后早期炎性肠梗阻81例诊治体会[J].中国实用外科杂志,2000,20(8):467-468.
    4.Mythen MG.Postoperative gastrointestinal tract dysfunction.Anesth Analg 2005;1000(1):196-204
    5.朱维铭,李宁,黎介寿,等.术后早期炎性肠梗阻的治疗[J].中国实用外科杂志,2002,22(4):219-220.
    6.Pickleman J,LeeRM.The management of patients with suspected early postoperative small bowel obstruction[J].Ann Surg,1989,210(2):216-219.
    7.Peter Mattei,John L.Rombeau.Review of the Pathophysiology and Management of Postoperative Ileus.Word J Surg(2006) 30:1382-1391
    8.Bauer A J,Boeckxstaens GE.Mechanisms of postoperative ileus.Neurogastroenterol Motil 2004;16(suppl 2):54-60
    9.Cullen JJ,Eagon JC,Kelly KA.Gastrointestinal peptide hormones during postoperative ileus.Effect of octreotide.Dig Dis Sci 1994;19(6):1179-1184
    10.Espat NJ,Cheng G,Kelley MC,Et al.Vasoactive intestinal peptide and substance P receptor antagonists improve postoperative ileus.J Surg Res 1995;58(6):719-723
    11.Bult H,Boeckxstaens GE,Pelckmans PA,et al.Nitric oxide as an inhibitory non-adrenergic non-cholinergic neuron transmitter.Nature 1990;345(6273):346-347
    12.Kalff JC,Schraut WH,Billiar TR,et al.Role of inducible nitric oxide synthase in postoperative intestinal smooth muscle dysfunction in rodents.Gastroenterology 2000;118(2):316-327
    13.Kehlet H,Holte K.review of postoperative ileus.Am J Surg 2001;182(5ASuppl):3S-10S
    14.Schuster TG,Montie JE.Postoperative ileus after abdominal surgery.Urology 1002;59(4):465-471
    15.Ferraz AA,Cowles VE,Condon RE,et al.Nonopioid analgesics shorten the duration of postoperative ileus.Am Surg 1995;61(12):1079-1083
    16.张宗利,靳祖涛,李占元.术后早期炎性肠梗阻的特点与诊断治疗原则[J].中国现代普通外科进展,2001,4(3):179-180.
    17.肖焕擎,唐伟标,曾山崎.术后早期炎性肠梗阻42例治疗体会[J].实用医学杂志,2002,18(7):759-760.
    18.尹路,黎介寿,李宁,等.腹部手术后早期炎性肠梗阻的处理.胃肠功能性疾病和肠道细菌移位学术研讨会论文汇编,1997.7212.
    19.黎介寿.认识术后早期炎性肠梗阻的特性[J].中国实用外科杂志,1998,18(7):3872378.
    20.胡智明,邹寿椿,赵大建,等.腹部手术后早期炎性肠梗阻的治疗[J].中国胃肠外科杂志,2000,3(4):236-237.
    21.齐立行,李志霞,龚家镇.术后早期肠梗阻及其治疗策略[J].中华普通外科杂志,2000,15(2):95-97.
    22.Ellozy SH,HarrisMT,Bauer JJ,et al.Early postoperative small bowel obstruction:a prospective evaluation in 242 consecutive abdominal operations[J].Dis Colon Rectum,2002,45(9),1214-1217.
    23.Miller EM,Winfield JM.Acute intestinal obstruction secondary to postoperative adhesions[J].Arch Surg,1959,78(2):148-153.
    24.Coletti L,Bossart PA.Intestinal obstruction during the early postoperative period[J].Arch Surg,1964,88(7):774-778.
    25.Quatromoni JC,Rosoff L,Halls JM,et al.Early postoperative small bowel obstruction[J].Ann Surg,1980,191(1):72-74.
    26.陈思曾,林永堃,许东坡.生长抑素和肠外营养支持治疗术后早期炎性肠梗阻[J].肠外与肠内营养,2002,9(1):7-8.
    27.Feigin E,Seroy D,Szold A.Water-soluable contrast material has no therapeutic effects on postoperative small bowel obstruction:results of aprospective,randomized clinical trial[J].Am J Surg,1996,171(2):227-233.
    28.Chen SC,Lin FY,Lee PH,et al.Water-soluble contrast study predicts the need for early surgery in adhensive small bowel obstruction[J].Br J Surg,1998,85(12):1692-1694.
    29.周金.术后早期炎性肠梗阻42例诊治体会[J].河北医学,2001,7(1):44-46.
    30.Mangesi L,Hofmeyr GJ.Early compared with delayed oral fluids and food after caesarean section.Cochrane Database Syst Rev 2002;(3):CD003516.
    31. Johnson Casto C, Krammer J, Drake J. Postoperative feeding: a clinical review. Obstet Gynecol Surv 2000; 55(9): 571-573
    32. Asao T, Kuwano H, Nakamura J, et al. Gum chewing enhances early recovery from postoperative ileus after laparoscopic colectomy. J Am Coll Srug 2002; 195(1):30-32
    33. Miedema BW, Johnson JO. Methods for decreasing postoperative gut dysmotility. Lancet Oncol 2003;4(6):365-372
    34. Kehlet H, Dahl JB. Anaesthesia, surgery, and challenges in postoperative recovery. Lancet 2003; 362(9399): 1921-1928
    35. Kelley MC, Hocking MP, Marchand SD, et al. Ketorolac prevents postoperative small intestinal ileus in rats. Am J Surg 1993; 165(1):107-111
    36. Lobo DN, Bostock KA, Neal KR, et al. Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a radomised controlled trial. Lancet 2002; 359(9320):1812-1818
    37. Bungard TJ, Kale-Pradhan PB. Prokinetic agents for the treatment of postoperative ileus in adults: a review of the literature. Pharmacotherapy 1999; 19(4): 416- 423
    38. Cheape JD, Wexner SD, James K, et al. Does metoclopramide reduce the length of ileus after colorectal surgery? A prospective randomized trial. Dis Colon Rectum 1991; 34(6): 437-441
    39. Seta ML, Kale-Pradhan PB. Efficacy of metoclopramide in postoperative ileus after exploratory laparotomy. Pharmacotherapy 2001; 21(10): 1181-1186.
    40. Bonacini, M. Quiason S, Reynolds M, et al. Effect of intravenous erythromycin on postoperative ileus. Am J Gastroenterol 1993:88(2):208-221
    41. Smith AJ, Nissan A, Lanouette NM, et al. Prokinetic effect of erythromycin after colorectal surgery: randomized, placebo-controlled, double-blind study. Dis Colon Rectum 2000; 43(3):333-337

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700