人胆囊癌干细胞的分离、鉴定及其恶性生物学行为的调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分体外无血清培养胆囊癌悬浮细胞球及其生物学特性研究
     目的:通过体外培养扩增胆囊癌悬浮细胞球并分析其生物学特性,明确其中是否富含有肿瘤干细胞,并初步筛选其细胞表面标志物。
     方法:将人原代胆囊癌组织和胆囊癌细胞系GBC-SD消化制成单细胞悬液,置入含有多种细胞因子的无血清培养液DMEM/F12中培养出肿瘤细胞克隆球;将培养出肿瘤细胞克隆球给予传代扩增;并将其置入含有血清的分化环境中贴壁培养,14天后实时定量RT-PCR检测干细胞标记物Oct-4和Nestin的表达;MTT法检测克隆球细胞和贴壁细胞的增殖能力和对化疗药的敏感性,并植入裸鼠皮下比较移植瘤形成能力;用流式细胞术法检测肿瘤干细胞标志物CD24、CD44、CD133在克隆球细胞和贴壁细胞中的表达。
     结果:人原代胆囊癌细胞和GBC-SD细胞均可在干细胞培养环境中长出克隆球,并可以连续传代形成新的克隆球;克隆球细胞在含血清的环境中出现贴壁生长并分散开,克隆球渐变小最后消失,同时干细胞标记物Oct-4和Nestin的表达下调;与贴壁细胞相比,克隆球细胞在体外具有强的增殖、耐受吉西他滨和5-氟尿嘧啶和在裸鼠皮下形成新的移植瘤能力;经流式细胞术检测,CD133+细胞在克隆球细胞中的比例高于在贴壁细胞中的比例。
     结论:人原代胆囊癌细胞和GBC-SD细胞中存在肿瘤干细胞,可以通过在干细胞培养条件下培养得到一定程度的扩增,CD133蛋白可能为其细胞表面标志物。
     第二部分胆囊癌干细胞的分离及生物学特性鉴定
     目的:用细胞表面标志物CD24、CD44、CD133分离出胆囊癌亚群细胞并进行肿瘤干细胞特性分析,鉴定出胆囊癌干细胞样细胞。
     方法:将新鲜的人胆囊癌组织标本切成小块后置入裸鼠皮下建立裸鼠荷瘤模型,为下一步研究提供胆囊癌标本材料;将胆囊癌组织和GBC-SD细胞制成单细胞悬液后,标上抗人CD24-FITC、CD44-APC和CD133-PE流式抗体,流式细胞术检测并分离出CD24+、CD44+和CD133+细胞,进一步研究各亚群的生物学特性;将具有肿瘤干细胞特性的亚群标志物联合检测、分选亚群细胞及研究生物学特性包括在无血清培养环境中克隆形成球、对化疗药吉西他滨和5-氟尿嘧啶的敏感性、在NOD/SCID鼠体内形成异种移植瘤能力及体内自我更新、分化潜能。
     结果:新鲜的人胆囊癌组织标本植入裸鼠皮下3-6月后大部分裸鼠成功长出移植瘤;经流式分析CD24+、CD44+和CD133+细胞在原代胆囊癌和GBC-SD细胞中的比例分别为:20.83%-35.72%和55.73%,78.19%~93.36%和96.78%,1.93%-3.43%和61.28%;经生物学特性研究,CD24+和CD24-细胞在形成克隆球、移植瘤形成能力上没有明显差别,差异性没有统计学意义(P>0.05),而CD44+和CD133+细胞在形成克隆球、移植瘤形成能力上均明显强于相应的阴性亚群(P<0.05);流式进一步检测观察到CD44+CD133+细胞在原代肿瘤和GBC-SD细胞中的比例为2.53%和60.62%,且CD44+CD133+细胞较CD44+CD133-细胞具有更强的形成克隆球、耐受化疗和移植瘤形成能力;经流式分析和免疫组化检测CD44+CD133+细胞形成的移植瘤细胞中,既有CD44+和CD133+细胞,也含有CD44-和CD133-细胞。
     结论:人胆囊癌CD44+CD133+细胞具有肿瘤干细胞的特性,其中富集有肿瘤干细胞,CD44和CD133可用来分离胆囊干细胞。
     第三部分CD133特异siRNA对胆囊癌细胞生物学行为的影响及核转录因子Gli在胆囊癌细胞中的表达
     目的:通过运用RNAi干扰技术沉默胆囊癌细胞株GBC-SD的CD133的表达,研究其对GBC-SD细胞的生物学行为的影响,研究核转录因子Gli在胆囊癌细胞中的表达。方法:将CD133特异性siRNA转染胆囊癌细胞株GBC-SD,并运用Western blot和流式细胞术分析并优化转染的效率和效果;在无血清环境中检测其克隆球形成能力,运用MTT分析其体外增殖和对5-氟尿嘧啶的耐受性,以细胞划痕实验检测其细胞迁徙能力;运用实时定量RT-PCR检测核转录因子Gli1、Gli2、Gli3在胆囊癌不同亚群中的表达。
     结果:特异性siRNA转染后,经Western blot和流式细胞术分析,胆囊癌细胞株GBC-SD的CD133表达明显下调;转染CD133特异性siRNA组细胞较空白对照组和转染非特异性siRNA组细胞,其细胞克隆球形成能力、细胞增殖能力及细胞迁徙能力均明显下降(P<0.05),而对5-氟尿嘧啶的敏感性无明显差异(P>0.05);核转录因子Gli1在胆囊癌CD44+CD133+细胞中表达上调。
     结论:CD133与胆囊癌干细胞的增殖和细胞迁徙相关,可作为胆囊癌的治疗靶点之一;Glil可能参与胆囊癌干细胞生物学特性的调控。
Part I Culture of floating tumor spheres from human gallbladder carcinoma in serum-free media and study of the Biological characteristics
     Objective To culture and expand the floating tumor spheres from human gallbladder carcinoma cells in vitro and study the biological characteristics of the sphere forming cells, and to determine whether cancer stem cells were contained in the gallbladder carcinoma and filter the cell surface markers preliminary.
     Methods Human primary gallbladder carcinoma specimens and gallbladder cancer cell line GBC-SD were made into single cancer cells and cultured to grow into tumor spheres in serum-free DMEM/F12 media which contained some cell factors. The tumor spheres were passaged and expanded. Then differentiation analysis was performed by culturing in media containing serum and stem markers including Oct-4 and Nestin were detected using real time RT-PCR. MTT method was used to measure proliferation capacity and sensitivity to chemotherapeutic drugs, and tumorigenicity was measured by transplanted into the nude mice. Then the expression of CD24, CD44 and CD133 in spheres forming cells and adherent cells was tested using flow cytometry.
     Results Both primary human gallbladder cancer cells and GBC-SD cells were found to grow into spheres in the serum-free environment and the sphere forming cells could reform new spheres. The floating tumor spheres became adherent and cells migrated from the spheres, and the spheres became smaller and disappeared in the differentiating environment. The expression of Oct-4 and Nestin was down-regulated in the adherent cells. Compared with the adherent cells, sphere forming cells showed the higher proliferation capacity, chemoresistance to gemcitabine and 5-fluorouracil and higher tumorigenicity. CD133+cells showed a higher proportion in sphere forming cells than in adherent cells.
     Conclusion Human gllbladder carcinoma cells contain cancer stem cellst and the cancer stem cells could be expanded to some extent in stem cells environment, and CD 133 protein may be the cell surface marker of the cancer stem cells.
     Part II Isolation and identification of cancer stem cells in human gallbladder carcinoma
     Objective To isolate and identify the cancer stem cells in gallbladder carcinoma using CD24,CD44 and CD133 proteins.
     Methods Fresh tissue samples of human gallbladder carcinoma were cut into smaller pieces and were transplanted into nude mice to established tumor model. Gallbladder carcinoma tissue and gallbladder cancer cell line GBC-SD were made into single cells and labeled anti-human CD24-FITC, CD44-APC and CD133-PE antibody. The CD24+,CD44+ and CD133+subset cells were isolated and the biological characteristics was studied. Then the multiple-marker isolation was performed and the biological characteristics of subset cells including sphere formation, sensitivity to chemotherapeutic drugs, tumorigenicity, self-renewal and differentiation potential were studied.
     Results A majority of mouse tumor models were successfully established.The proportion of CD24+,CD44+ and CD133+ subset cells were 20.83%~35.72% and 55.73%, 78.19%~93.36% and 96.78%,1.93%~3.43% and 61.28%, in primary gallbladder carcinoma and cell line GBC-SD respectively. For biological characteristics, CD24+ and CD24 cells showed no significant difference in spheroid formation capacity or in tumorigenicity (P>0.05).While CD44+ and CD133+ gallbladder carcinoma cells showed higher spheroid formation capacity and tumorigenicity than their crresponding negative subsets (P<0.05). The proportion of CD44+ CD133+ subset was 2.53% and 60.62% in primary gallbladder carcinoma and cell line GBC-SD respectively. Compared to CD44+ CD 133, CD44+ CD 133+ subset cells showed higher spheroid formation capacity, chemoresistance and tumorigenicity (P<0.05). Both flow cytometry and immunohistochemistry showed that the transplantable tumors derived from CD44+ CD133+ cells contained not only CD44+ CD133+ cells,but CD44-and CD133-subsets.
     Conclusion CD44+CD133cells exhibited cancer stem cells characteristics in human gallbladder carcinoma and the cancer stem cells were enriched in this subset cells.
     PartⅢInfluence of CD133-specific siRNA on the biological behaviors of gallbladder cancer cells and expression of transcription factor Glis in gallbladder cancer cells
     Objective To study the role of CD133 in gallbladder cancer cells by using CD133-specific siRNA to silence CD 133 expresion in GBC-SD.And to study the expression of of transcription factor Glis in gallbladder cancer cells.
     Methods CD133-specific siRNA was transfected into gallbladder cancer cell line GBC-SD, and Western blot and flow cytometry were used to analyze and optimize the efficiency and effectiveness of transfection. Then tumor sphere formation capacity was detected in serum-free environment, and proliferation capacity and sensitivity to 5-Fu were tested using MTT method. A cell wounding assay was performed to analyze cell migration. Expression of transcription factors Glil, Gli2, Gli3 in CD44+CD133+cell and others subsets was detected using real time RT-PCR.
     Results Expression of CD 133 was down-regulated after specific siRNA transfection. Compared with control cells, those transfected specific siRNA showed a lower tumor sphere formation, proliferation and cell migration capacity (P<0.05), while chemoresistance showed no significant change(P>0.05). Nuclear transcription factor Glil expression was upregulated in CD44+CD133+gallbladder cancer cells.
     Conclusion CD 133 was associated with proliferation and migration of CSCs in GBC and Glil may be involved in the regulation of biological characteristics of gallbladder cancer stem cells.
引文
1. Reid KM, Ramos-De la Medina A, Donohue JH. Diagnosis and surgical management of gallbladder cancer:a review. J Gastrointest Surg,2007,11(5):671-81.
    2. Levy AD, Murakata LA, Rohrmann CA, et al. Gallbladder carcinoma: radiologic-pathologic correlation. Radiographics,2001,21(2):295-314.
    3. Roa I, de Aretxabala X, Araya JC, et al. [Incipient gallbladder carcinoma. Clinical and pathological study and prognosis in 196 cases]. Rev Med Chil,2001,129(10): 1113-20.
    4. Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature,2001,414(6859):105-11.
    5. Scadden DT. Cancer stem cells refined. Nat Immunol,2004,5(7):701-3.
    6. Wicha MS, Liu S, Dontu G. Cancer stem cells:an old idea--a paradigm shift. Cancer Res,2006,66(4):1883-90.
    7. O'Brien CA, Kreso A, Dick JE. Cancer stem cells in solid tumors:an overview. Semin Radiat Oncol,2009,19(2):71-7.
    8. Milas L, Hittelman WN. Cancer stem cells and tumor response to therapy:current problems and future prospects. Semin Radiat Oncol,2009,19(2):96-105.
    9. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med,1997,3(7):730-7'.
    10. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res,2003,63(18):5821-8.
    11. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A,2003,100(7):3983-8.
    12. Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res,2005,65(23):10946-51.
    13. Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res,2007,67(3):1030-7.
    14. Zhang S, Balch C, Chan MW, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res,2008,68(11): 4311-20.
    15. Varnum-Finney B, Xu L, Brashem-Stein C, et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med, 2000,6(11):1278-81.
    16. Stier S, Cheng T, Dombkowski D, et al. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood,2002,99(7):2369-78.
    17. Ohlstein B, Spradling A. Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science,2007,315(5814):988-92.
    18. Hitoshi S, Alexson T, Tropepe V, et al. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev,2002, 16(7):846-58.
    19. Hitoshi S, Seaberg R, Koscik C, et al. Primitive neural stem cells from the mammalian epiblast differentiate to defi nitive neural stem cells under the control of Notch signaling. Genes Dev,2004,18(15):1806-11.
    1. Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells. Nature,2001,414(6859):105-11.
    2. Scadden DT. Cancer stem cells refined. Nat Immunol,2004,5(7):701-3.
    3. Wicha MS, Liu S, Dontu G. Cancer stem cells:an old idea--a paradigm shift. Cancer Res,2006,66(4):1883-90.
    4. O'Brien CA, Kreso A, Dick JE. Cancer stem cells in solid tumors:an overview. Semin Radiat Oncol,2009,19(2):71-7.
    5. Milas L, Hittelman WN. Cancer stem cells and tumor response to therapy:current problems and future prospects. Semin Radiat Oncol,2009,19(2):96-105.
    6. Takaishi S, Okumura T, Tu S, et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells,2009,27(5):1006-20.
    7. Reid KM, Ramos-De la Medina A, Donohue JH. Diagnosis and surgical management of gallbladder cancer:a review. J Gastrointest Surg,2007,11(5):671-81.
    8. Levy AD, Murakata LA, Rohrmann CA, et al. Gallbladder carcinoma: radiologic-pathologic correlation. Radiographics 2001,21(2):295-314.
    9. Roa I, de Aretxabala X, Araya JC, et al. [Incipient gallbladder carcinoma. Clinical and pathological study and prognosis in 196 cases]. Rev Med Chil,2001,129(10): 1113-20.
    10. Wicha MS, Liu S, Dontu G. Cancer stem cells:an old idea—a paradigm shift. Cancer Res,2006,66(4):1883-90.
    11. Milas L, Hittelman WN. Cancer stem cells and tumor response to therapy:current problems and future prospects. Semin Radiat Oncol,2009,19(2):96-105.
    12. Martens DJ,Tropepe V,van Der Kooy D.Separate proliferation kinetics of fibroblast growth factor-responsive and epidermal growth factor-responsive neural stem cells within the embryonic forebrain germinal zone.J Neurosci,2000,20(3):1085-95
    13. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res,2003,63(18):5821-8.
    14. Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature,2007,445(7123):111-5
    15. Wilson H, Huelsmeyer M, Chun R, et al. Isolation andcharacterisation of cancer stem cells from canine osteosarcoma.Vet J,2008,175(1):69-75
    16. Eramo A, Lotti F, Sette G, et al.Identification and expansion of thetumorigenic lung cancer stem cell population.CellDeath Differ,2008,15(3):504-14
    17. Fang D, Nguyen TK, Leishear K, et al.A tumorigenic subpopulation with stem cell properties in melanomas.Cancer Res,2005,65(20):9328-37
    18. Toma JG, McKenzie IA,Bagli D, et al. Isolation and characterization of multipotent skin-derived precursors from human skin.Stem Cells,2005,23(6):727-37
    19.李锦军,顾健人.癌干细胞研究进展.生命科学杂志,2006,18(4):333-9.
    20. AI-HaiiM, ClarkeM F.Self-renewalan d solidtumor stem cells. Oncogene,2004, 23(43):7274-82.
    21. Loh YH, Wu Q, Chew JL, el al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet,2006,38(4):431-40.
    22. Wiese C, Rolletschek A, Kania G, el al. Nestin expression--a property of multi-lineage progenitor cells? Cell Mol Life Sci,2004,61(19-20):2510-22
    23. Yu F, Yao H, Zhu P, el al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell,2007,131(6):1109-2
    24. Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell,2007,1(3):313-23
    25. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A,2003,100(7):3983-8.
    26. Simon RA, di Sant'Agnese PA, Huang LS, et al.CD44 expressionis a feature of prostatic small cell carcinoma anddistinguishes it from its mimickers.Hum Pathol, 2009,40(2):252-8
    27. Yang ZF,Ho DW,Ng MN, et al.Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell,2008,13(2):153-66
    28. Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer.Cell Stem Cell,2007,1(3):313-23
    29. Zito G, Richiusa P, Bommarito A, et al.In vitro identification and characterization of CD133(pos) cancer stem-likecells in anaplastic thyroid carcinoma cell lines.PloS One, 2008,3(10):e3544
    30. Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res,2007,67(3):1030-7.
    31. Haha SA, Seymour AB, Hoque AT, et al. Allelotype of pancreatic adenocarcinoma using xenograft enrichment.Cancer Res,1995,55(20):4670-5.
    32. Goodell MA, Brose K, Paradis G, et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med,1996, 183(4):1797-806.
    33. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med,1997,3(7):730-7.
    34. Yin S, Li J, Hu C, et al. CD 133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer,2007,120(7):1444-50.
    35. Suetsuge A, Nagaki M, Aoki H, et al. Characterization of CD133+hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun, 2006,351 (4):820-4
    36. Singh SK,Hawkins C,Clarke ID. Identifcation of human brain tumour initiating cells. Nature,2004.432(7015):396-401
    37. Collins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenie prostate cancer stem cells. Cancer Research,2005,65(23):10946-51.
    38. Zhang S, Balch C, Chan MW, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Research,2008, 68(11):4311-20.
    39.孙冰,吴世凯,宋三泰.NOD/SCID小鼠平台上的肿瘤实验研究进展.中华肿瘤防治杂志,2008,15(4):307-10
    40. Budak-Alpdogan T, Banerjee D, Bertino JR. Hematopoietistem cell gene therapy with drug resistance genes:an update. Cancer Gene Ther,2005,12(11):849-63
    41. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer, 2005,5(4):275-84
    42. Donnenberg VS, Donnenberg AD. Multiple drug resistance in can cer revisited:the cancer stem cell hypothesis. J Clin Pharmacol,2005,45(8):872-7
    43. Gerson SL. Drug resistance gene transfer:Stem cell protection and therapeutic efficacy. Exp Hematol,2000,28(12):1315-24
    44. Richardson C, Bank A. Preselection of transduced murine hematopo ietic stem cell populations leads to increased long-term stability and expression of the human multiple drug resistance gene. Blood,1995,86(7):2579-89
    45. Staud F, Pavek P. Breast cancer resistance protein(BCRP/ABCG2). Int J Biochem Cell Biol,2005,37(4):720-5
    46. Phillips TM, McBride WH, Pajonk F. The response of CD24(-/low)/CD44+breast cancer-initiating cells to radiation. J Natl Cancer Inst,2006,98(24):1777-85
    47. Yin AH, Miraglia S, Zanjani ED, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood,1997,90(12):5002-12.
    48. Weigmann A, Corbeil D, Hell wig A, et al. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci USA,1997, 94(23):12425-30.
    49. Gallacher L, Murdoch B, Wu DM, et al. Isolation and characterization of human CD34(-)Lin(-) and CD34(+)Lin(-) hematopoietic stem cells using cell surface markers AC 133 and CD7. Blood,2000,95(9):2813-20.
    50. Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC 133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood,2000,95(3):952-8.
    51. Uchida N, Buck DW, He D, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA,2000,97(26):14720-5.
    52. Corbeil D, Roper K, Hellwig A, et al. The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem,2000,275(8):5512-20.
    53. Richardson GD, Robson CN, Lang SH, et al. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci,2004,117(Pt 16):3539-45.
    54. Torrente Y, Belicchi M, Sampaolesi M, et al. Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest,2004,114(2):182-95.
    55. Cohnheim J. Congenitales, quergestreiftes Muskelsarkon der Nireren. Virchows Arch, 1875,65:64-9
    56. Olempska M, Eisenach PA, Ammerpohl O, et al. Detection of tumor stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat Dis Int,2007,6(1):92-7.
    57. O'Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature,2007,445 (7123):106-10.
    58. Suetsugu A, Nagaki M, Aoki H, et al. Characterization of CD133+hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun,2006, 351(4):820-4.
    59. Bruno S, Bussolati B, Grange C, et al. CD133+renal progenitor cells contribute to tumor angiogenesis. Am J Pathol,2006,169(6):2223-35.
    60. Suva ML, Riggi N, Stehle JC, et al. Identification of cancer stem cells in Ewing's sarcoma.Cancer Res,2009,69 (5):1776-81.
    61. Ferrandina G, Bonanno G, Pierelli L, et al. Expression of CD133-1 and CD133-2 in ovarian cancer. Int J Gynecol Cancer,2008,18(3):506-14.
    62. Corbeil D, Roper K, Fargeas CA, et al. Prominin:a story of cholesterol, plasma membrane protrusions and human pathology. Traffic,2001,2(2):82-91.
    63. Rappa G, Fodstad O, Lorico A. The stem cell-associated antigen CD133 (Prominin-1) is a molecular therapeutic target for metastatic melanoma. Stem Cells,2008, 26(12):3008-17
    64. Elsaba TM, Martinez-Pomares L, Robins AR, et al. The stem cell marker CD 133 associates with enhanced colony formation and cell motility in colorectal cancer. PLoS One,2010,5(5):el0714
    65. ElbashirSM, HarborthJ, LendeckelW, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature,2001,411(6836):494-8.
    66. Zamore PD, Tuschl T, Sharp PA, et al. RNAi:doublestranded RNA directs the ATP-dependent cleavage of mRNA at 21-23 nucleotide intervals. Cell,2000, 101(1):25-33.
    67. Parrish S, Fleenor J, Xu S, et al. Functional anatomy of a dsRNA trigger:differential requirement for the two trigger strands in RNA interference. Mol Cell,2000, 6(5):1077-87.
    68. Hambardzumyan D, Squatrito M, Holland EC. Radiation resistance and stem-like cells in brain tumors. Cancer Cell,2006,10(6):454-6.
    69. Georgia S, Soliz R, Li M, et al. p57 and Hesl coordinate cell cycle exit with self-renewal of pancreatic progenitors. Dev Biol,2006,298(1):22-31.
    70. Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer,2006,5:67.
    71. Altaba AR, Sanchez P, Dahmane N. Gli and hedgehog in cancer:Tumours, embryos and stem cells. Nature Reviews Cancer,2002,2(5):361-72
    72. Zhao C, Chen A, Jamieson CH, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature,2009,458(7239):776-9
    73. Jiang J, Hui C. Hedgehog Signaling in Development and Cancer. Developmental Cell, 2008,15(6):801-12
    74. Fernandez-Zapico ME. Primers on molecular pathways GLI:More than just Hedgehog?. Pancreatology,2008,8(3):227-9
    75. Reid KM, Ramos-De la Medina A, Donohue JH. Diagnosis and surgical management of gallbladder cancer:a review. J Gastrointest Surg,2007,11(5):671-81.
    76. Levy AD, Murakata LA, Rohrmann CA, et al. Gallbladder carcinoma: radiologic-pathologic correlation. Radiographics,2001,21(2):295-314.
    77. Roa I, de Aretxabala X, Araya JC, et al. [Incipient gallbladder carcinoma. Clinical and pathological study and prognosis in 196 cases]. Rev Med Chil,2001,129(10):1113-20.
    78. Valle JW, Wasan HS, Palmer DD, et al. Gemcitabine with or without cisplatin in patients (pts) with advanced or metastatic biliary tract cancer (ABC):Results of a multicenter, randomized phase Ⅲ trial (the UK ABC-02 trial). J Clin Oncol,2009, 27(15 suppl):4503.
    79. Zhu AX, Hong TS, Hezel AF, et al. Current management of gallbladder carcinoma. Oncologist,2010,15(2):168-81.
    80. Kiran RP, Pokala N, Dudrick SJ. Incidence pattern and survival for gallbladder cancer over three decades--an analysis of 10301 patients. Ann Surg Oncol,2007, 14(2):827-32.
    81. Shih SP, Schulick RD, Cameron JL, et al. Gallbladder cancer:The role of laparoscopy and radical resection. Ann Surg,2007;245(6):893-901.
    82. Yokomizo H, Yamane T, Hirata T, et al. Surgical treatment of pT2 gallbladder carcinoma:A reevaluation of the therapeutic effect of hepatectomy and extrahepatic bile duct resection based on the long-term outcome. Ann Surg Oncol,2007, 14(4):1366-73.
    83. Jarnagin WR, Gonen M, Fong Y, et al. Improvement in perioperative outcome after hepatic resection:Analysis of 1,803 consecutive cases over the past decade. Ann Surg, 2002,236(4):397-406
    84. Dixon E, Vollmer CM Jr, Sahajpal A, et al. An aggressive surgical approach leads to improved survival in patients with gallbladder cancer:A 12-year study at a North American Center. Ann Surg,2005,241(3):385-94.
    85. Shirai Y, Yoshida K, Tsukada K, et al. Radical surgery for gallbladder carcinoma. Long-term results. Ann Surg,1992,216(5):565-8.
    86. Fong Y, Wagman L, Gonen M, et al. Evidence-based gallbladder cancer staging: Changing cancer staging by analysis of data from the National Cancer Database. Ann Surg,2006,243(6):767-71.
    87. Sun CD, Zhang BY,WuLQ, et al. Laparoscopic cholecystectomy for treatment of unexpected early-stage gallbladder cancer. J Surg Oncol,2005,91(4):253-7.
    88. Misra S, Chaturvedi A, MisraNC, et al. Carcinoma of the gallbladder. Lancet Oncol, 2003,4(3):167-76.
    89. Sikora SS, Singh RK. Surgical strategies in patients with gallbladder cancer:Nihilism to optimism. J Surg Oncol,2006,93(8):670-81.
    90. Wagholikar GD, Behari A, Krishnani N, et al. Early gallbladder cancer. J Am Coll Surg, 2002,194(2):137-41.
    91. Pawlik TM, Gleisner AL, Vigano L,. et al. Incidence of finding residual disease for incidental gallbladder carcinoma:Implications for re-resection. J Gastrointest Surg, 2007, 11(11):1478-86.
    92. Benson AB 3rd, Abrams TA, Ben-Josef E, et al. NCCN clinical practice guidelines in oncology:Hepatobiliary cancers. J Natl Compr Cane Netw,2009,7(4):350-91.
    93. Shirai Y, Yoshida K, Tsukada K, et al. Inapparent carcinoma of the gallbladder. An appraisal of a radical second operation after simple cholecystectomy. Ann Surg,1992, 215(4):326-31.
    94. Chijiiwa K, Nakano K, Ueda J, et al. Surgical treatment of patients with T2 gallbladder carcinoma invading the subserosal layer. J Am Coll Surg,2001,192(5):600-7.
    95. Foster JM, Hoshi H, Gibbs JF, et al. Gallbladder cancer:Defining the indications for primary radical resection and radical re-resection. Ann Surg Oncol,2007, 14(2):833-40.
    96. Suzuki S, Yokoi Y, Kurachi K, et al. Appraisal of surgical treatment for pT2 gallbladder carcinomas. World J Surg,2004,28(2):160-5.
    97. Wakai T, Shirai Y, Hatakeyama K. Radical second resection provides survival benefit for patients with T2 gallbladder carcinoma first discovered after laparoscopic cholecystectomy. World J Surg,2002,26(7):867-71.
    98. Wise PE, Shi YY, Washington MK, et al. Radical resection improves survival for patients with pT2 gallbladder carcinoma. Am Surg,2001,67(11):1041-7.
    99. Miyazaki M, Itoh H, Ambiru S, et al. Radical surgery for advanced gallbladder carcinoma. Br J Surg,1996,83(4):478-81.
    100.Cubertafond P, Gainant A, Cucchiaro G. Surgical treatment of 724 carcinomas of the gallbladder. Results of the French Surgical Association Survey. Ann Surg,1994, 219(3):275-80.
    101.Onoyama H, Yamamoto M, Tseng A, et al. Extended cholecystectomy for carcinoma of the gallbladder. World J Surg,1995,19(5):758-63.
    102.Balachandran P, Agarwal S, Krishnani N, et al. Predictors of long-term survival in patients with gallbladder cancer. J Gastrointest Surg,2006,10(6):848-54.
    103.Donohue JH, Nagorney DM, Grant CS et al. Carcinoma of the gallbladder. Does radical resection improve outcome? Arch Surg,1990,125(2):237-41.
    104.Fong Y, Jarnagin W, Blumgart LH. Gallbladder cancer:Comparison of patients presenting initially for definitive operation with those presenting after prior noncurative intervention. Ann Surg,2000,232(4):557-69.
    105.Weber SM, DeMatteo RP, Fong Y et al. Staging laparoscopy in patients with extrahepatic biliary carcinoma. Analysis of 100 patients. Ann Surg,2002, 235(3):392-9.
    106.Schirmer B. Using resources wisely:Determining the indication for staging laparoscopy. Ann Surg,2002,235(1):8-9.
    107.Goere D, Wagholikar GD, Pessaux P, et al. Utility of staging laparoscopy in subsets of biliary cancers:Laparoscopy is a powerful diagnostic tool in patients with intrahepatic and gallbladder carcinoma. Surg Endosc,2006,20(5):721-5.
    108.Endo I, Shimada H, TanabeM,et al. Prognostic significance of the number of positive lymph nodes in gallbladder cancer. J Gastrointest Surg,2006,10(7):999-1007.
    109.Frena A, La Guardia G, Martin F. Outcome of radical surgery for carcinoma of the gallbladder according to the tumor node metastasis and Japanese Society of Biliary Surgery stages. J Gastrointest Surg,2004,8(5):580-90.
    110.Nakata T, Kobayashi A, Miwa S, et al. Impact of tumor spread to the cystic duct on the prognosis of patients with gallbladder carcinoma. World J Surg,2007,31(1):155-61.
    111.Eckel F, Schmid RM. Chemotherapy in advanced biliary tract carcinoma:A pooled analysis of clinical trials. Br J Cancer,2007,96(6):896-902.
    112.Yonemoto N, Furuse J, Okusaka T, et al.Amulti-center retrospective analysis of survival benefits of chemotherapy for unresectable biliary tract cancer. Jpn J Clin Oncol,2007,37(11):843-51.
    113.Gallardo J, Rubio B, Villanueva L, et al. Gallbladder cancer, a different disease that needs individual trials. J Clin Oncol,2005,23(30):7753-4.
    114.Gallardo JO, Rubio B, Fodor M, et al. A phase Ⅱ study of gemcitabine in gallbladder carcinoma. Ann Oncol,2001,12(10):1403-6.
    115.Reyes-Vidal J, Gallardo J, Yanez E, et al. Gemcitabine:Gemcitabine and cisplatin in the treatment of patients with unresectable or metastatic gallbladder cancer:Results of the phase Ⅱ GOCCHI study 2000-13 [abstract 1095]. Proc Am Soc Clin Oncol 2003;22:273.
    116.Doval DC, Sekhon JS, Gupta SK, et al.Aphase Ⅱ study of gemcitabine and cisplatin in chemotherapy-naive, unresectable gall bladder cancer. Br J Cancer,2004, 90(8):1516-20.
    117.Choi CW, Choi IK, Seo JH, et al. Effects of 5-fluorouracil and leucovorinin the treatment of pancreatic-biliary tract adenocarcinomas. Am J Clin Oncol,2000, 23(4):425-8.
    118.Ducreux M, Rougier P, Fandi A, et al. Effective treatment of advanced biliary tract carcinoma using 5-fluorouracil continuous infusion with cisplatin. Ann Oncol,1998, 9(6):653-6.
    119.Ellis PA, Norman A, Hill A, et al. Epirubicin, cisplatin and infusional 5-fluorouracil (5-FU) (ECF) in hepatobiliary tumours. Eur J Cancer,1995,31 A(10):1594-8.
    120.Lee MA, Woo IS, Kang JH, et al. Epirubicin, cisplatin, and protracted infusion of 5-FU (ECF) in advanced intrahepatic cholangiocarcinoma. J Cancer Res Clin Oncol,2004, 130(6):346-50.
    121.Combination of folinic acid,5-fluorouracil bolus and infusion, and cisplatin (LV5FU2-P regimen) in patients with advanced gastric or gastroesophageal junction carcinoma. Ann Oncol,2004,15(5):765-9.
    122.Takada T, Kato H, Matsushiro T, et al. Comparison of 5-fluorouracil, doxorubicin and mitomycin C with 5-fluorouracil alone in the treatment of pancreatic-biliary carcinomas. Oncology,1994,51(5):396-400.
    123.Glimelius B, Hoffman K, Sjoden PO, et al. Chemotherapy improves survival and quality of life in advanced pancreatic and biliary cancer. Ann Oncol,1996, 7(6):593-600.
    124.Feisthammel J, Schoppmeyer K, Mossner J, et al. Irinotecan with 5-FU/FA in advanced biliary tract adenocarcinomas:A multicenter phase Ⅱ trial. Am J Clin Oncol, 2007,30(3):319-24.
    125.Hong YS, Lee J, Lee SC, et al. Phase Ⅱ study of capecitabine and cisplatin in previously untreated advanced biliary tract cancer. Cancer Chemother Pharmacol,2007, 60(3):321-8.
    126.Kim TW, Chang HM, Kang HJ, et al. Phase Ⅱ study of capecitabine plus cisplatin as first-line chemotherapy in advanced biliary cancer. Ann Oncol,2003,14(7):1115-20.
    127.Park SH, Park YH, Lee JN, et al. Phase Ⅱ study of epirubicin, cisplatin, and capecitabine for advanced biliary tract adenocarcinoma. Cancer,2006,106(2):361-5.
    128.Kim EK, Lee SK, Kim WW. Does laparoscopic surgery have a role in the treatment of gallbladder cancer?. J Hepatobiliary Pancreat Surg,2002,9(5):559-63
    129.Fuss M, Salter BJ, Cavanaugh SX, et al. Daily ultrasound-based image guided targeting for radiotherapy of upper abdominal malignan cies. Int J Radiat Oncol Biol Phys,2004,59 (4):1245-56.
    130.Aretxabala X, Losada H, Mora J, et al. Neoadjuvant chemora-diotherapy in gallbladder can cer. Rev Med Chil,2004,132 (1):51-7.
    131.Lai EC, Lau WY. Aggressive surgical resection for carcinoma of gallbladder. ANZ J Surg,2005,75(6):441-5
    132.Shi C, Tian R, Wang M, et al. CD44+CD133+ population exhibits cancer stem cell-like characteristics in human gallbladder carcinoma. Cancer Biol Ther,2010, 10(11):1182-90.
    133.Makino S. The role of tumor stem cells in regrowth of the tumor following drastic applications. Acta Uniolnt Contra Cancrum,1959,15(1):196-8.
    134.Hamburger AW,Salmon SE.Primary bioassay of human tumor stem cells.Science, 1977,197(4302):461-3.
    135.Trott KR. Tumour stem cells:the biological concept and its application in cancer treatment. Radiother Oncol,1994,30(1):1-5.
    136.Lapidot T, Sirard C,Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature,1994,367(6464):645-8.
    137.Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells-perspectives on current status and future directions:AACR Workshop on Cancer Stem Cells. Cancer Res,2006, 66(19):9339-44.
    138.Singla DK, Schneider DJ, LeWinter MM, Sobel BE. wnt3a but not wnt11 supports self-renewal of embryonic stem cells. Biochem Biophys Res Commun,2006, 345(2):789-95.
    139.Xiao L, Yuan X, Sharkis SJ. Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells,2006,24(6):1476-86.
    140.Das AV, Mallya KB, Zhao X, et al. Neural stem cell properties of Muller glia in the mammalian retina:regulation by Notch and Wnt signaling. Dev Biol,2006, 299(1):283-302.
    141.Ahn S, Joyner AL. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature,2005,437(7060):894-7.
    142.Zhang P, Zhang Y, Mao L, et al. Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes.Cancer Lett,2009; 277(2):227-34.
    143.Takaishi S, Okumura T, Wang TC. Gastric cancer stem cells. J Clin Oncol.2008, 26(17):2876-82.
    144.Fukuda K, Saikawa Y, Ohashi M, et al. Tumor initiating potontial of side population cells in human gastric cancer. Int J Oncol,2009,34(5):2101-7.
    145.Rupesh IB,Michael DB,Claire AH,et al. Novel method for the isolation and characterisation of the putative prostatic stem cell. Cytometry,2003,54A(2):89-99.
    146.Gavin DR, Craig NR, Shona HL, et al. CD133,a novel marker for human prostatic epithelial stem cells. J Cell Sci,2004,117(16):3539-45.
    147.Liu AY, True LD, La Tray L, et al. Analysis and sorting of prostate cancer cell types by flow cytometry. Prostate,1999,40(3):192-9.
    148.Shmelkov SV, Butler JM, Hooper AT, et al.CD133 expression is not restricted to stem cells, and both CD133+ and CD 133- metastatic colon cancer cells initiate tumors. J Clin Invest,2008,118(6):2111-20.
    149.Dalerba P, Dylla S J, Park IK, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci US A,2007,104(24):10158-63.
    150.Yamashita T, Ji J, Budhu A, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology,2009, 136(3):1012-24.
    151.Chiba T, Kita K, Zheng YW, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology,2006,44 (1): 240-51.
    152.Wang M, Xiao J, Shen M, et al. Isolation and characterization of tumorigenic extrahepatic cholangiocarcinoma cells with stem cell-like properties. Int J Cancer, 2011,128(1):72-81.
    153.Guan Y, Gerhard B, Hogge DE. Detection isolation and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia(AML). Blood,2003,101(8):3142-9.
    154.Varnum-Finney B, Xu L, Brashem-Stein C, et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med, 2000,6(11):1278-81.
    155.Stier S, Cheng T, Dombkowski D, et al. Notchl activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood,2002,99(7):2369-78.
    156.Ohlstein B, Spradling A. Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science,2007,315(5814):988-92.
    157.Dontu G, Jackson K, McNicholas E, et al. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res,2004, 6(6):R605-15.
    158.Phillips T, Kim K, Vlashi E, et al. Effects of recombinant erythropoietin on breast cancer-initiating cells. Neoplasia,2007,9(12):1122-9.
    159.Farnie G, Clarke R. Mammary stem cells and breast cancer-role of Notch signalling. Stem Cell Rev,2007,3(2):169-75.
    160. Nakamura Y, Sakakibara S, Miyata T, et al. The bHLH gene hesl as a repressor of the neuronal commitment of CNS stem cells. J Neurosci,2000,20(1):283-93.
    161.Hitoshi S, Alexson T, Tropepe V, et al. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev,2002, 16(7):846-58.
    162.Hitoshi S, Seaberg R, Koscik C, et al. Primitive neural stem cells from the mammalian epiblast differentiate to defi nitive neural stem cells under the control of Notch signaling. Genes Dev,2004,18(15):1806-11.
    163.Mellodew K, Suhr R, Uwanogho D, et al. Nestin expression is lost in a neural stem cell line through a mechanism involving the proteasome and Notch signalling. Dev Brain Res,2004,151(1-2):13-23.
    164.Yamashita Y M,Fuller M T,Jones D L.Signaling in stem cell niches:lessons from the Drosophila germline. J Cell Sci,2005,118(Pt 4):665-72.
    165.Niemann C.Controlling the stem cell niche:right time,fight place,right strength. Bioessays,2006,28(1):1-5.
    166.Kucia M, Reca R, Miekus K, et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms:pivotal role of the SDF-1-CXCR4 axis. Stem Cells,2005,23(7):879-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700