梳状共聚物对CDCA的修饰及对胆固醇结石的溶解作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胆石症是一种严重危害人类健康的常见病、多发病,其中80%以上为胆固醇结石。大多数胆固醇结石患者愿意接受保守治疗,其中,口服鹅去氧胆酸(CDCA)、熊去氧胆酸(UDCA)有一定疗效,但该法疗程较长、疗效不尽人意,副作用较大。为改善CDCA对胆固醇结石的溶解作用,合成水溶性聚羧酸型梳状共聚物和C_(60)-梳状共聚物,用该聚合物修饰CDCA,利用其梳状侧链的熵排斥效应来增强CDCA溶解胆固醇结石的能力,探讨其在磷酸盐缓冲液(PBS液)和模拟胆汁中,增强CDCA溶解胆固醇结石的能力,以及溶解动力学机制。
     利用高分子设计理论,以烯丙基聚氧乙烯基醚(PAO)、顺丁烯二酸酐(MAn)、C_(60)和CDCA为原料,以偶氮二异丁腈(AIBN)为引发剂,合成具有梳状侧链结构的梳状共聚物-CDCA结合物和C_(60)-梳状共聚物-CDCA结合物,以IR、TLC和TEM法表征共聚物的结构,并在pH7.4的PBS液和不同胆固醇饱和指数(CSI)的模拟胆汁中进行溶石效果的研究,探讨在PBS液和不同CSI的模拟胆汁中结合物溶解胆固醇结石的效果和溶解动力学机制。
     IR、TLC和TEM分析结果均表明有梳状共聚物-CDCA和C_(60)-梳状共聚物-CDCA结合物生成。载体CMP30、CMP20、CMP4、CMO10、CMO7、CMO4粒径大小分别为:180、110、120、210、190、190 nm。溶石实验表明,在PBS液和不同CSI的模拟胆汁中,梳状共聚物-CDCA和C_(60)-梳状共聚物-CDCA结合物的溶石能力均高于CDCA对照组。对于梳状共聚物-CDCA系列结合物,在pH7.4的PBS液中,CDCA、MP40-CDCA、MP30-CDCA、MP20-CDCA、MP10-CDCA、MP4-CDCA、MOP10-CDCA、MOP7-CDCA、MOP4-CDCA在7d时的溶石率分别为:32.33%、62.76%、55.01%、82.53%、48.36%、37.5%、73.86%、58.13%、45.1%。CDCA、MP40-CDCA、MP30-CDCA、MP20-CDCA、MP4-CDCA的溶解速率分别为:5.33、9.615、6.868、17.59、5.717×10-5mg.cm-2.s-1。在CSI=0.6、CSI=1.0和CSI=1.6的模拟胆汁中,CDCA、MP4-CDCA、MP20-CDCA、MOP4-CDCA和MOP10-CDCA在7d的溶石率分别为:(1)CSI=0.6:29.08%、46.63%、74.5%、53.6%、67.5%, (2)CSI=1.0:12.2%、15.77%、21.7%、16.9%、20.5%,(3)CSI=1.6:6.69%、8.17%、21.6%、11.7%、18.3%。CDCA、MP20-CDCA、MP4-CDCA的溶解速率在CSI=0.6的模拟胆汁中,分别为:5.34、21.0、8.53×10-8mg.cm-2.s-1,CSI=1.0时,分别为:4.63、7.18、6.17×10-8mg.cm-2.s-1,CSI=1.6时,分别为:1.57、4.13、3.10×10-8mg.cm-2.s-1。对于C_(60)-梳状共聚物-CDCA系列结合物,在pH7.4的PBS液中,CDCA、CMP30-CDCA、CMP20-CDCA、CMP4-CDCA、CMO10-CDCA、CMO7-CDCA、CMO4-CDCA在7d时的溶石率分别为:10.06%、24.88%、51.563%、15.76%、35.83%、27.33%、19.31%。CDCA、CMP4-CDCA、CMP10-CDCA、CMP20-CDCA、CMP30-CDCA、CMP40-CDCA的溶解速率分别为:2.27、2.51、2.66、3.48、2.92、3.28×10-5mg.cm-2.s-1。
     目标产物是CDCA和C_(60)的新的水溶性聚合物。合成梳状共聚物-CDCA结合物最佳反应条件为:以AIBN为引发剂,其用量为占单体总质量的0.1%~1.0%左右,共聚温度为80℃,共聚时间为4.5h,以甲苯为脱水剂,脱水时间为3.5h,CDCA与梳状共聚物的反应时间以1.5h为宜。合成C_(60)-梳状共聚物-CDCA结合物最佳反应条件为:以AIBN为引发剂,引发剂用量为占单体总质量的0.1%~1.0%左右,自由基共聚温度为80℃,C_(60)的用量为PAO总质量的1%左右为宜,共聚合的时间为4~7h,以甲苯为脱水剂,脱水时间为3.5h,CDCA与梳状共聚物的反应时间以1.5h为宜。
     在PBS液和模拟胆汁中,结合物均有良好的溶石效果,且溶石效果均强于CDCA (P <0.05),侧链长度和亲水亲油性对溶石效果均有影响。溶解动力学研究结果表明,在PBS液和CSI=0.6、1.0和1.6的模拟胆汁中,界面障碍是胆固醇结石溶解过程中的速率决定步骤,对胆固醇结石的溶解效果可以通过增加梳状共聚物侧链长度提高空间位阻能和选择适宜的亲水亲油平衡而得到改善。在PBS液中,MP20-CDCA、MOP10-CDCA、CMP20-CDCA和CMO10-CDCA的溶石效果最佳。在不同CSI的模拟胆汁中,MP20-CDCA和MOP10-CDCA的溶石效果最佳。
Gallstones (GS) are common in the general population, which remain a main cause of serious morbidity and mortality. Cholesterol gallstone is more than 80% in all GS. Most of the cholelithiasis patient would like to accept non-surgical therapy, which is an important option especially for gallstone patients unsuitable for surgery because of age or coexisting disease, and for some patients who prefer not to undergo surgical procedures. Chenodeoxycholic acid (CDCA) and ursodeoxycholic acid (UDCA) are effective agents in certain circumstances for the dissolution of cholesterol gallstones. Unfortunately, stone dissolution by oral agents requires months to years of therapy. Furthermore, CDCA often causes diarrhea and aminotransferas elevations, and UDCA may cause stone calcification. To improve the effect of CDCA on dissolving cholesterol gallstone, the water-soluble copolymers as polycarboxylic acid of comb-like copolymers (PCC) and C_(60)-PCC were synthesized, which being used for modification of CDCA and strengthening effects of CDCA on dissolving the cholesterol gallstones by their entropy-repelled properties of comb-shaped side chains in buffers of phosphate (PBS) and in model bile.
     The design theory of polymer was mainly employed to synthesis the conjugate of PCC-CDCA and C_(60)-PCC-CDCA by C_(60), polyoxyalkylene allylalkyldiether(PAO) and maleic anhydride(MAn), which were copolymerized with AIBN as initiator, and then PCC or C_(60)-PCC were reacted with CDCA. The structures of the copolymers and the conjugates of PCC-CDCA and C_(60)-PCC-CDCA were confirmed with IR, TLC and TEM. The dissolving effects and the dissolution kinetics mechanism of cholesterol gallstone was inverstigated in PBS and in model bile of different cholesterol saturated index (CSI) at pH7.4, including PCC-CDCA or C_(60)-PCC-CDCA.
     It was showed that the conjugates of PCC-CDCA and C_(60)-PCC-CDCA were synthesized by results of IR, TLC and TEM. The diameter of CMP30, CMP20, CMP4, CMO10, CMO7 and CMO4 as carriers was 180, 110, 120, 210, 190 and 190 nm, respectively. It was determined that conjugates of PCC-CDCA and C_(60)-PCC-CDCA were better than controlled group with the results of gallstone dissolution in PBS and in model bile. With the PCC-CDCAs, the ratio of dissolving gallstone of CDCA, MP40-CDCA, MP30-CDCA, MP20-CDCA, MP10-CDCA, MP4-CDCA, MOP10-CDCA, MOP7-CDCA, and MOP4-CDCA was 32.33%, 62.76%, 55.01%, 82.53%, 48.36%, 37.5%, 73.86%, 58.13%, and 45.1% at 7d in PBS at pH7.4, respectively. The dissolution rate of CDCA, MP40-CDCA, MP30-CDCA, MP20-CDCA, and MP10-CDCA was 5.33, 9.615, 6.868, 17.59, and 5.717×10-5mg.cm-2.s-1 in PBS at pH7.4, respectively. In model bile, the ratio of dissolving cholesterol gallstone of CDCA, MP4-CDCA, MP20-CDCA, MOP4-CDCA and MOP10-CDCA was (1) CSI=0.6: 29.08%, 46.63%, 74.5%, 53.6%, and 67.5%, (2) CSI=1.0: 12.2%, 15.77%, 21.7%, 16.9%, and 20.5%, (3) CSI=1.6: 6.69%, 8.17%, 21.6%, 11.7%, and 18.3% at 7d, respectively. The dissolution rate of CDCA, MP20-CDCA, and MP4-CDCA was (1) CSI=0.6: 5.34, 21.0, and 8.53×10-8mg.cm-2.s-1, (2) CSI=1.0: 4.63, 7.18, and 6.17×10-8mg.cm-2.s-1, (3) CSI=1.6: 1.57, 4.13, and 3.10×10-8 mg.cm-2.s-1 in model bile, respectively. With the C_(60)-PCC-CDCAs, the ratio of dissolving gallstone of CDCA, CMP30-CDCA, CMP20-CDCA, CMP4-CDCA, CMO10-CDCA, CMO7-CDCA, and CMO4-CDCA was 10.06%, 24.88%, 51.563%, 15.76%, 35.83%, 27.33%, and 19.31% at 7d in PBS at pH7.4, respectively. The dissolution rate of CDCA, CMP4-CDCA, CMP10-CDCA, CMP20-CDCA, CMP30-CDCA, and CMP40-CDCA was 2.27, 2.51, 2.66, 3.48, 2.92, and 3.28×10-5mg.cm-2.s-1 in PBS at pH7.4, respectively.
     These cojugates were novel water soluble copolymers of CDCA and C_(60). With PCC-CDCAs, the optimal conditions were obtained as follows: the concentration of initiator, AIBN, 0.1% - 1.0%, the copolymerization temperature 80℃, the reaction time 4.5h, the dehydration time, the reagent of dehydration is toluene, 3.5h, the reaction time of CDCA and comb-like copolymers 1.5h. With C_(60)-PCC-CDCAs, the optimal conditions were obtained as follows: the concentration of initiator, AIBN, 0.1% - 1.0%, the copolymerization temperature 80℃, the concentration of C_(60) 1%, the reaction time 4-7h, the dehydration time, the reagent of dehydration is toluene, 3.5h, the reaction time of CDCA and comb-like copolymers 1.5h.
     Cholesterol dissolving effects in all PCC-CDCAs and C_(60)-PCC-CDCAs were significantly larger than in CDCA (P<0.005) in PBS and in model bile. The abilities of dissolving cholesterol gallstones were affected by the length of side chain and the properties of hydrophilic-lipophilic of comb-like copolymers. The dissolution kinetics studies suggest that the interfacial resistance was the dominant rate-determining factor on dissolving cholesterol gallstones both in PBS and in model. The effects of dissolving cholesterol gallstones can be improved by increasing the steric interactive potential energy of side chains of PCC-CDCAs and C_(60)-PCC-CDCAs, and taking into account the properties of hydrophilic-lipophilic of them. The MP20-CDCA, MOP10-CDCA, CMP20-CDCA and CMO10-CDCA have the most excellent effect of dissolving and dispersing to the cholesterol gallstones in all products in PBS. The MP20-CDCA and MOP10-CDCA also have the most excellent effect of dissolving and dispersing to the cholesterol gallstones in all products in these three model bile.
引文
[1] Kelly E, Williams JD, Organ CH. A history of the dissolution of retained choledocholithiasis. Am J Surg, 2000, 180: 80-98.
    [2] Mendez-Sanchez N, Ponciano-Rodriguez G, Bermejo-Martinez L, et al. Low serum levels of ghrelin are associated with gallstone disease. World J Gastroenterol, 2006, 12(19): 3096-3100.
    [3] Silva MA, Wong T. Gallstones in Chronic Liver Disease. J Gastrointestinal Surg. 2005, 9: 739-746.
    [4] Gibney EJ. Asymptomatic gallstones. Br J Surg, 1990, 77: 368-372.
    [5] Godrey PJ, Bates T, Harrison M, et al. Gallstones and mortality: A study of all gallstone related deaths in a single health district. Gut 1984, 25: 1029-1033.
    [6] Barker DJ, Gardner MJ, Power C, et al. Prevalence of gall stones at necropsy in nine British towns: A collaborative study. Br Med J, 1979, 2(6202): 1389-1392.
    [7] Wang HH, Portincasa P, Wang DQ. Molecular pathophysiology and physical chemistry of cholesterol gallstones. Front Biosci, 2008, 13:401-423.
    [8] Wittenburg H, Lammert F.Genetic predisposition to gallbladder stones. Semin Liver Dis, 2007,27(1):109-121.
    [9]冉瑞图.下世纪胆囊结石症研究的新方向.中国普外基础与临床杂志,1999, 6(2): 108-110.
    [10] Petroni ML, Jazrawi RP, Pazzi P, et al. Ursodeoxycholic acid alone or with chenodeoxycholic acid for dissolution of cholesterol gallstones: a randomized multicentre trial. The British-Italian Gallstone Study group. Aliment Pharmacol Ther, 2001, 15(1): 123-128.
    [11] Liu CM, Tung TH, Chou P, et al. Clinical correlation of gallstone disease in a Chinese population in Taiwan: experience at Cheng Hsin General Hospital. World J Gastroenterol, 2006, 12(8): 1281-1286.
    [12] Diehl AK. Epidemiology and natural history of gallstone disease. Gastroenterol Clin North Am, 1991,20(1): 1-19.
    [13] Zacks SL, Sandler RS, Rutledge R, et al. A population-based cohort study comparing laparoscopic cholecystectomy and open cholecystectomy . Am J Gastroenterol, 2002, 97(2): 334-340.
    [14] Gadacz T R. The effect of monooctanoin on retained common duct stones. Surgery, 1981, 89:527- 531.
    [15] Portincasa P, Moschetta A, Erpecum KJ, et al. Modulation of cholesterol crystallization in bile. Implications for non-surgical treatment of cholesterol gallstone disease . Curr Drug Targets Immune Endocr Metabol Disord, 2005, 5: 177-184.
    [16] Konikoff FM, Gilat T. Effects of fatty acid bile acid conjugates (FABACs) on biliary lithogenesis: Ppotential consequences for non-surgical treatment of gallstones . Curr Drug Targets Immune Endocr Metabol Disord, 2005, 5:171-175.
    [17]张延龄.内镜时代的胆总管结石处理.国外医学外科学分册, 1999, 26(1): 204-206.
    [18] Smidkova M, Spundova M, Marecek Z, et al. Effect of drugs on cholesterol crystallization in an artificial bile model and relation of this effect to drug binding to albumin . Fundam Clin Pharmacol, 2003, 17: 331-339.
    [19] Fischer S, Muller I, Zundt BZ, et al. Ursodeoxycholic acid decreases viscosity and sedimentable fractions of gallbladder bile in patients with cholesterol gallstones . Eur J Gastroenterol Hepatol, 2004, 16: 305-311.
    [20] Guarino MP, Carotti S, Sarzano M, et al. Short-term ursodeoxycholic acid treatment improves gallbladder bile turnover in gallstone patients: a randomized trial . Neurogastroenterol Motil, 2005, 17(5): 680-686.
    [21] Nobilis M, Pour M, Kunes J, et al. High-performance liquid chromatographic determination of ursodeoxycholic acid after solid phase extraction of blood serum and detection-oriented derivatization . J Pharm Biomed Ana, 2001,24(5-6): 937-946.
    [22]张圣道,韩天权.胆结石研究的展望.外科理论与实践,1999, 4(1): 5-6.
    [23] Nakeeb A, Comuzzie AG, Martin L, et al. Gallstones : genetics versus environment . Ann Surg, 2002, 235(6): 842 - 849.
    [24] Everhart JE, Yeh F, Lee ET, et al. Prevalence of gallbladder disease in AmericanIndian populations: findings from the Strong Heart Study . Hepatology, 2002, 35(6): 1507-1512.
    [25] Miquel JF, Covarrubias C, Villaroel L, et al. Genetic epidemiology of cholesterol cholelithiasis among Chilean Hispanics, Amerindians, and Maoris . Gastroenterology, 1998, 115(4): 937 - 946.
    [26] Katsika D, Grjibovski A, Einarsson C, et al. Genetic and environmental influences on symptomatic gallstone disease: a Swedish study of 43,141 twin pairs . Hepatology, 2005, 41(5):1138 - 1143.
    [27]杨松,谈永飞,喻荣彬,等.胆石病家族聚集性及遗传方式的研究.中华流行病学杂志,1999,20(5):293 - 295.
    [28]费健,韩天权,蒋兆彦,等.胆囊结石病家系遗传特征的初步研究.肝胆胰外科杂志, 2002, 14(1): 4 - 6.
    [29]张宇,牛振民,韩天权,等.胆囊结石病人线粒体高变区测序结果分析.中华肝胆外科杂志, 2005,11(9):580 - 582.
    [30]谈永飞,杨松,喻荣彬,等.胆石病环境病因的临床流行病学研究.中华流行病学杂志, 1999, 20(6): 381 - 384.
    [31] Carey MC , Paigen B. Epidemiology of the American Indians’burden and its likely genetic origins . Hepatology, 2002,36 (4 Pt 1):781-791.
    [32]陶太珍,沈靖,姚才良,等.胆石症家族聚集性的病因和流行病学研究.中国公共卫生,1999 ,15(2) :169 - 170.
    [33]方东生,李李,熊奇如.膳食因素与胆囊结石症关联的研究.疾病控制杂志, 2000, 4(4):337 - 339.
    [34] Khanuja B , Cheah YC , Hunt M, et al . Lith 1, a major gene affecting cholesterol gallstone formation among inbred strains of mice . Proc Natl Acad Sci USA, 1995, 92(17):7729 - 7733.
    [35]秦俭,韩天权,蒋兆彦,等. Lith基因和胆固醇结石病.国外医学·外科学分册, 2003,30(4):229 - 231.
    [36] Lammert F, Carey MC, Paigen B. Chromosomal organization of candidate genes involved in cholesterol gallstone formation: a murine gallstone map . Gastroenterology,2001, 120(1): 221 - 238.
    [37] Puppala S, Dodd GD, Fowler S, et al. A genomewide search finds major susceptibility loci for gallbladder disease on chromosome 1 in Mexican Americans. Am J Hum Genet, 2006, 78(3):377 - 392.
    [38]秦俭,韩天权,袁文涛,等.胆囊结石病致病基因的定位研究.中华外科杂志, 2006, 44(7):485 - 487.
    [39] Lammert F, Matern S. The genetic background of cholesterol gallstone formation: an inventory of human lithogenic genes . Curr Drug Targets Immune Endocr Metabol Disord, 2005, 5(2): 163 - 170.
    [40] Lammert F, Sauerbruch T. Mechanisms of disease: the genetic epidemiology of gallbladder stones . Nat Clin Pract Gastroenterol Hepatol, 2005, 2(9):423 - 433.
    [41]蒋兆彦,韩天权,所广军,等.胆固醇结石病人肝脏胆小管侧膜ATP基因表达差异的研究.外科理论与实践, 2005,10(1):61 - 65.
    [42]张宇,韩天权,张圣道.人类胆囊胆固醇结石易感基因的研究进展.中国现代普通外科进展,2004,7(5):257 - 259.
    [43] Schafmayer C, Tepel J, Franke A, et al. Investigation of the Lith1 candidate genes ABCB11 and LXRA in human gallstone disease . Hepatology, 2006, 44(3):650 - 657.
    [44]王勇,韩天权,张圣道. ABC转运体与脂质代谢关系的研究进展.中国现代普通外科进展, 2006, 9(2): 65 - 68.
    [45]韩天权,朱正纲,蒋兆彦,等.肝细胞胆小管侧膜胆汁酸盐输出泵的研究进展.国外医学·消化系疾病分册,2004,24(5):259 - 260.
    [46]秦俭,韩天权,张圣道.核受体LXR和FXR对脂类代谢的调节.国外医学·外科学分册, 2005,32(3):223 - 226.
    [47] Moschetta A , Bookout AL , Mangelsdorf DJ . Prevention of cholesterol gallstone disease by FXR agnists in a mouse model. Nat Med, 2004, 10 (12):1352 - 1358.
    [48]韩天权,蒋兆彦,张圣道.胆结石成因研究进展(附第三届国际胆石病学术会议介绍) .中国实用外科杂志, 2001, 21(2): 123 - 125.
    [49] Colecchia A, Mazzella G, Sandri L, et al. Ursodeoxycholic acid improves gastrointestinal motility defects in gallstone patients . World J Gastroenterol, 2006,12(33): 5336-5343.
    [50] Guarino MP, Cong P, Cicala M, et al. Ursodeoxycholic acid improves muscle contractility and inflammation in symptomatic gallbladders with cholesterol gallstones . Gut, 2007, 56(6):815-820.
    [51] Mas MR, Comert B, Mas N, et al. Effects of long term hydrophilic bile acid therapy on in vitro contraction of gallbladder muscle strips in patients with cholesterol gallstones . World J Gastroenterol, 2007, 13(32): 4336-4339.
    [52] Milan N, Milan P, JiíK, JiíK, Jaroslav K. High-performance liquid chromatographic determination of ursodeoxycholic acid after solid phase extraction of blood serum and detection-oriented derivatization . J Pharm Biomed Ana 2001; 24: 937-946.
    [53]陈建鹏.丙谷胺治疗胆结石.医学理论与实践, 2001, 14(3): 265-265.
    [54]韩元才.丙谷胺治疗胆囊小结石78例疗效观察.交通医学, 2000, 14(1):17-17.
    [55]刘一建.丙谷胺对肝内胆管泥沙样结石疗效观察.医药导报, 1997,16(6): 281-281.
    [56]黄跃.口服丙谷胺治疗胆结石248例疗效观察.新医学, 1994,25(3):133~130.
    [57]张捷.口服丙谷胺治疗胆结石和胆道蛔虫残留147例疗效观察.临床肝胆病杂志, 1991, (2):99~100.
    [68]傅德良.红霉素对胆囊收缩作用的探讨.中华外科杂志,1995,33(12):757~759.
    [59]刘玉元.丙谷胺于红霉素治疗胆囊结石40例报告.山东医药,1997,37(4):59-59.
    [60]闫培清.丙谷胺于红霉素治疗胆囊结60例疗效观察.临床荟萃, 1995,10(5): 207-207.
    [61]陈春金.大剂量黄体酮治疗胆结石18例.江西医药,1989,(1):11~12.
    [62]陈彭年.丙谷胺与黄体酮治疗胆结石22例.综合临床医学, 1997,13(5):475-475.
    [63]鲍松虎.丙谷胺与雄去氧胆酸治疗胆结石疗效比较.新药与临床, 1997,16(6):341~342.
    [64]田建伟.消炎痛在胆色素结石形成中作用的实验研究.河南医学研究, 1996, 5(4): 312~314.
    [65]傅贤波.西沙必利提高胆囊结石患者胆囊收缩功能的临床观察.中国临床药理学与治疗杂志, 1997,2(2):89~91.
    [66]李运秀. B超测定西沙比利短程疗法对胆囊结石患者胆囊排空功能的研究.临床肝胆病杂志,2000,16(2):115~116.
    [67]蒲永林.甲基叔丁醚(MTBE)溶解胆固醇结石的动物实验研究.中华放射学杂志, 1992, 26(2): 81~83.
    [68]汪涛.甲基叔丁醚溶解胆结石的影响因素.陕西医学杂志, 1994, 23(1): 43~45.
    [69]徐叔云主编.胆道药理学.第一版.合肥:安徽科技出版社, 1995. 241~245.
    [70]刘鹏飞.氧自由基与胆石形成的关系.华西医学, 1993,(2):246-248.
    [71]王树卿. DMSO复合液体外溶胆石及动物实验研究.黑龙江医药科学,1998, 21(5): 3~4.
    [72]张熙容.胆囊结石治疗进展.江苏医药, 1993,(8):439-441.
    [73]张定苹.中草药验方为主治疗胆结石36例疗效观察.中国民族民间医药杂志, 1999,(4):203~204.
    [74]周劲刚.中医药治疗胆石症近况.中医药信息, 1999,16(4): 13~15.
    [75]周大兴,将志炕,阮叶萍,等.金钱对唑合剂防治胆石症的实验研究.浙江中医药大学学报, 2006, 30(5): 530-532.
    [76]杨华,郭玉宁,易红,等.中药复方溶石剂对人体胆结石的直接溶解作用及其安全性评价.中国中药杂志, 2006, 31(10 ): 31-35.
    [77]苏云明,佟欣,赵法政,等.熊胆胶囊防治食饵性胆固醇类胆结石作用研究.中医药学报, 2005, 33( 5): 125-127.
    [78] Arbogast J W, Foote L S. Photophysical properties of C60. J Am Chem Soc, 1991, 113(23): 8886-8889.
    [79] Friedman S M, Decamp D L, Sijbesma R P, et al. Inhibition of HIV-1 protease by fullerene derivatives, model building studies and experimental verification. J Am Chem Soc, 1993, 115: 6506-6509.
    [80] Diederich F,Thilgen C. Covalent fullerene chemistry. Science, 1996, 271(5247): 317-323.
    [81] Wilson L J, Cagle D W, Thrash T P, et al. Metallofullerene drug design . Coordination Chemistry Reviews, 1999, 190-192: 199-207.
    [82] Tagmatarchis N. Shinohara H. Fullerenes in Medicinal Chemistry and theirBiological Applications. Mini Rev Med Chem, 2001, 1: 339- 348.
    [83]诸平,胡亮臣.早期金属巴基球结构推断.宝鸡文理学院学报(自然科学版), 1997, 17(2): 44-47.
    [84] Kratshmer W, Lame L D, Huffman D R, et al. Solid C60: a new form of carbon. Nature, 1990, 347:354-358.
    [85] Kroto HW, Heath JR, Obrien SC, et al. Buckminsterfullerene. Nature, 1985, 318:162-163.
    [86] Plotkin LI, Weinstein RS, Parfitt AM, et al. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest,1999,104(10):1363-1374.
    [87] Wei XW, Wu MF, Qi L, et al. Selective solution-phase generation and oxidation reactiong C60n-(n=1, 2) and formation of an aqueous colloidal solution of C60. J Chem Soc Perkin Trans 2, 1997, (7): 1389-1393.
    [88] Yamakoshi YN, Yagmi T, Sueyoshi S, et al. Acridine Adduct of [60] fullerene With Enhanced DNA-cleaving Activity . J Org Chem, 1996, 61:7236-7237
    [89] Boutorine A S, Tokuyama H, Takasugi M, et al. Fullerene digonucleotide conjugates: photoinduced sequence-specific DNA angew . Chem Int Ed Engl, 1994, 33 (23/24): 2462-2465.
    [90] An YZ, Chen CH, Anderson JL, et al. Sequence specific Deoxyoligonucleotide: Evidence for a Non-singlet Oxygen Mechanism . Tetrahehron, 1996, 52(14): 5179-5189.
    [91] Friedman SH., DeCamp DL, Sijbesma RP, et al. Inhibition of the HIV-1 Protease by Fullerene Derivatives: Model Building Studies and Experimental Verification . J Am Chem Soc, 1993, 115: 6506-6509.
    [92] Sijbesma R., Srdanov G, Wudl F, et al. Synthesis of a Fullerene Derivative for inhibition of HIV Enzymes . J Am Chem Sac, 1993, 115:6510-6512.
    [93] David IS, Stephen RW, Raymond FS. Anti-human immunodeficiency virus activity and cytotoxicity of derivatized buckminsterfullerenes . Bioorg&Med Chem Lett, 1996, 6(11): 1253-1256.
    [94] Zhu Zhongwei, David L S. Molecular Dynamics Study of the Connection between Flap Closing and Binding of Fullerene-Based Inhibitors of the HIV 1 Protease .Biochem, 2003, 42:1326-1333.
    [95] Marcorin GL, Ros TD, Castellano S, et al. Design and Synthesis of Novel [60] Fullerene Derivatives as Potential HIV Aspartic Protease Inhibitors. Orga Lett, 2000, 2: 3955一3958.
    [96] Bosi S, Ros TD. Synthesis and Anti-HIV Properties of New Water-Soluble Bis-functionalized [60] fullerene Derivatives . Bioorg Med Chem Lett, 2003, 13: 4437- 4440.
    [97] Toniolo C, Bianco A, Maggini M. A bioactive Fullerene Peptide . J Med Chem, 1994, 37: 4558-4562.
    [98] Prato M, Bianco A, Maggini M. Synthesis and Characterization of the First Fullerene-peptide . J Org Chem, 1993, 58: 5578-5580.
    [99] Da Ros T, Prato M, Novelle, F, et al. Easy Access to Water-Soluble Fullerene Derivatives via 1, 3-Dipolar Cycoloadditions of Azomethine Ylides to C60. J Org Chem, 1996, 61(25): 9070-9072.
    [100] Mashino T, Okuda K, Hirata T, et al. Inhibition of E, coli growth by fullerene derivatives and inhibition mechanism. Bioorg. Med Chem Lett, 1999, 9 (20): 2959-2962.
    [101] Bosi S, Da Ros T, Castellano S, et al. Antimycobacterial activity of ionic fullerene derivatives. Bioorg Med Chem Lett, 2000, 10(10): 1043-1045.
    [102] Tsao N. Tien YL, Chou CK, et al. In vitro action of carboxyfullerene . J Anti Chem, 2002, 49:641-649.
    [103] Tsao N, Puthuparampil P K, Tien YL, et al. Inhibition of Escherichia coli-induced Meningitis by Carboxyfullerence. Anti Agen Chem, 1999; 43 (9): 2273-2277.
    [104] Tadahiko M, Noriko U, Kensuke O, et al. Respiration Chain Inhibition by Fullerene Derivatives: Hydrogen Peroxide Production Caused by Fullerene Derivatives and a Respiration Chain System . Bioorga&Med Chem, 2003,11:1433-1438.
    [105] Bianco A, Ros TD, Prato M. Fullerene-based amino acidsand peptides . J Pept Sci, 2001, 7: 208一219.
    [106] Pantarotto D, Biance A, Pellarini F, et al. Solid-Phase Synthesis ofFullerene-peptides . J Am Chem Soc, 2002, 124 (42): 12543-12549.
    [107] Bosi S, Ros TD, Spalluto G. Fullerene derivatives: an attractive tool for biological applications . Eur J Med Chem, 2003, 38: 913一923.
    [108] Mashino T, Usui N, Okuda K, et al. Respiratory Chain Inhibition by Fullerene Derivatives: Hydrogen Peroxide Production Caused by Fullerene Derivatives and a Respiratory Chain System . Bioorga & Med Chem, 2003, 11: 1433-1438.
    [109] Arbogast JW, Foote CS. Photophysical properties of Cu . J Am Chem Soc, 1991, 113 (23): 8886-8889.
    [110] Tokuyama H, Yamago S, Nakamura E, et al. Photoinduced biochemical activity of fullerene carboxylic acid . J Am Chem Son,1993,115:7918-7919.
    [111]黄文栋,钱凯光,张欣欣,等. C60的癌细胞杀伤效应研究.1994年秋季中国材料研讨会论文集.第I卷北京:化学工业出版社,1995:497.
    [112] Nakajima N, Nishi C, Li F.M, et al. Photo-induced cytotoxicity of water-soluble fullerene. Fullerene Sci Teehnol, 1996, 4:1-19.
    [113]陈滇宝,陈红蕾,刘青,等.一种制备富勒烯的新方法[P].中国专利:01109496. 6, 2003-07-30.
    [114] Kamat GP, Devasagayam TP, Priyadarsini KI. Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications . Toxicology, 2000,155(1-3): 55-61.
    [115] Berlett BS, Stadtman ER. Protein Oxidation in Aging, Disease, and Oxidative Stress . J Biol Chem, 1997, 272: 20313-20316.
    [116] Kontos HA, Polivshock JT. Oxygen radicals in brain injury CNS . Trauma, 1986, 45: 3257-3263.
    [117] Lu LH, Lee YT, Chen HW, et al. The possible mechanisms of the antiproliferative effects of fullerenol, poly-hydroxylated C60, on vascular smooth muscle cells . Br J Phamacol, 1998, 123(6):1097-1102.
    [118] Chiang LY, Lu FJ, Lin JT. Free radical scavenging effect of water-soluble [60] fullerenols in whole blood associated with gastric cancer . Pro Electrochem Soc, 1995, 95(10): 699-706.
    [119] Chiang LY, Lu FJ, Lin JT. Free radical scavenging activity of water-soluble fullerenols. J Chem Soc Chem Common, 1995, (12): 1283-1284.
    [120]孙大勇,刘子阳,郭兴华,等. C60与功能材料.化学世界,1996, (4): 171.
    [121] Wang C, Tai LA, Lee DD, et al. C60 and Water-Soluble Fullerene Derivatives as Antioxidants Against Radical-initiated Lipid Peroxidation 1. J Med Chem, 1999, 42: 4614-4620.
    [122] Dugan LL, Gabrielsen JK, Yu SP, et al. Buckminsterfullerenol free radical scavengers reduc excitotoxic and apoptotic death of cultered cortical neurons . Neurobiol Disease, 1996, 3: 129-135.
    [123] Jin H, Chen WQ, Tang XW et al. Polyhydroxylated C(60), fullerenols, as glutamte receptor antagonists and neuroprotective agents . J Neutosci Res, 2000,62(4):600-607.
    [124] Cugan LL, Turetsky DM, Du C, et al. Carboxyfullerenes as neuroprotective agents . Proc Natl Acad Sci USA, 1997, 94(17): 9434-9439.
    [125] Lin MY, Chyi BY, Wang SD, et al. Carboxyfullerene Prevents Iron-Induced Oxidative Stress in Rat Brain . J Neurochem, 1999, 72(4): 1634-1640.
    [126] Chueh SC, Lai MK, Chen SC, et al. Fullerenols in canine renal preservation preliminary report . Transplant Proc, 1997, 29(182): 13132-13151.
    [127]金亚旭,黄晓东.水溶性C60衍生物对小鼠胸腺细胞的牛长影响研究.华东交通大学学报,2004, 21(1): 143-146.
    [128]赵群芳,李宇国,刘瑞丽,等.富勒醇对r射线辐照贻贝棘尾虫保护作用的研究.辐射研究与辐射工艺学报,2004, 22(3):148-152.
    [129]李宇国,韩玲,赵群芳,等.紫外照射下富勒醇刘细胞的防护作用.辐射研究与辐射工艺学报,2004,22(26):340-356.
    [130] Huang YL, Shen CK, Luh TY, et al. Blockage of apoptotic signaling of transforming growth factor-beta in human hepatoma cells by carboxyfullerene . Eur J Biochem, 1998, 254(1): 38-43.
    [131] Straface E, Natalini B, Monti D, et al. C3-fullero-tris-methanodicarboxylic acid protects epithelial cells from radiation-induced anoikia by influencing cell adhesion ability . REBS Letters, 1999, 454(3): 335-340.
    [132] Chien C-T, Lee P-H, Chen C-F, et al. De Novo Demonstration and Co-localization of Free-Radical Production . J Am Soc Nephrol, 2001, 12: 973-982.
    [133] Bisaglia M, Natalini B, Pellicciari R, et al. C3-fullero-tris-methanodicarboxylic acid protects Cerebellar Granule Cells from Apoptosis . J Neurochem, 2000, 74(3): 1197-1204.
    [134] Monti D, Moretti L, Salvioli S, Straface E, et al. C60 carboxyfullerene exerts a protective activity against oxidative stress-induced apoptosis in human peripheral blood mononuclear cells. Biochem Biophys Res Commun, 2000, 277(3): 711-717.
    [135] Dugan LL, Lovet EG, Quick KL, et al. Fullerene-based antioxidants and neuro degenerative disorders . Parkinsonism Relat Disord, 2001, 7(3): 243-246.
    [136] Gonzalez KA, Wilson LJ, Wu WJ, et al. Synthesis and In vitro characterization of a tissue-Selective fullerene: vectoring C60(OH), 6AMBP to mineralized bone . Bioorga& Med Chem, 2002,10(6): 1991-1997.
    [137] Wharton T, Wilson LJ. Highly-Iodinated Fullerene as a Contrast Agent For X-ray Imaging. Bioorg & Med Chem, 2002, 10 (11): 3545-3554.
    [138] Chen B-X, Wilson SR, Das M, et al. Immunology Antigenicity of fullerenes: Antibodies specific for fullerenes and their characteristics . Proc Natl. Acad. Sci. USA, 1998, 95: 10809-10813.
    [139] Braden BC, Goldbaum FA, Chen BX, et al. X-ray crystal structure of an anti-Buchminsterfullerene antibody Fab fragment: Biomolecular recognition of C60 . Proc Natl Acad Sci USA, 2000, 97 (22): 12193-12197.
    [140] Prato M. [60]Fullerene chemistry for materials science applications . J Mater Chem, 1997, 7:1097–1099.
    [141] Sanders G, Kingsnorth AN. Gallstones. BMJ, 2007, 335(7614):295-299.
    [142] Marschall HU, Einarsson C. Gallstone disease . J Intern Med, 2007, 261(6):529-42.
    [143] Luo X, Li W, Bird N, Chin SB, Hill NA, Johnson AG. On the mechanical behavior of the human biliary system . World J Gastroenterol, 2007,13(9):1384-1392.
    [144] Zehetner J, Shamiyeh A, Wayand W. Lost gallstones in laparoscopic cholecystectomy: all possible complications. Am J Surg, 2007,193(1):73-78.
    [145] van Erpecum KJ. Gallstone disease. Complications of bile-duct stones: Acute cholangitis and pancreatitis . Best Pract Res Clin Gastroenterol, 2006, 20(6): 1139-1152.
    [146] Wang DQ-H, Carey MC. Complete mapping of crystallization pathways during cholesterol precipitation from model bile: influence of physical-chemical variables of pathophysiologic relevance and identification of a stable liquid crystalline state in cold, dilute and hydrophilic bile salt-containing systems. J Lipid Res, 1996,37:606-630.
    [147] Portincasa P, Venneman NG, Moschetta A, et al. Quantitation of cholesterol crystallization from supersaturated model bile. J Lipid Res, 2002,43:604-610.
    [148]公瑞煜,李建蓉,肖传健,等.聚羧酸型梳状共聚物超分散剂的构性关系.化工学报,2002,53(11):1143~1147.
    [149]公瑞煜,李建蓉,张化锋,等.聚羧酸型梳状共聚物的合成和超分散性能研究.功能材料,2004, 35(3):379~382.
    [150]公瑞煜,李建蓉,乔学亮,等.水溶性梳状聚合物超分散剂的结构与其对水泥浆分散性能关系的研究.精细石油化工,2003,(1):50~54.
    [151] Catherine PW, Peter JS, Franz G, et al. PAA/PEO comb polymer effects on rheological properties and interparticle forces in aqueous silica suspensions. J Colloid Interf Sci, 2003, 262:274–281.
    [152]王春晓,刘文忠,李杰,等.聚合物分散剂的性能评价和分散机理的研究方法.河北化工,2004,(4):12-16.
    [153] Jannasch P. Preparation and characterisation of aggregating comblike poly(propylene oide). Polymer, 2000, 41:6701-6707.
    [154] Ding LM, Shi J, Yang CZ. Ion -conducting polymers based on modified alternating maleic anhydride copolymer with oligo(oxyethylene) side chains. Syn Meta, 1997, 87:157-163.
    [155] Nierengarten J-F, Guttierez-Nava M, Zhang S, et al. Fullerene-containing macromolecules for materials science applications. Carbon, 2004, 42: 1077–1083.
    [156] Peng H, Leung FSM, Andrew X, et al. Using Buckyballs To Cut of Light! Novel Fullerene Materials with Unique Optical Transmission Characteristics. Chem Mater, 2004, 16(23): 4790-4798.
    [157] Hebard AF, Rosseinsky M J, Haddon R C, et al. Superconductivity at 18K in potassium-doped C60. Nature, 1991, 350: 600-601.
    [158] Tjeng LH, Hesper R, Heeres A, et al. Superconductivity in K3C60 and Rb3C60 surfaces. AIP Conference Proceedings, 2001, 591(1): 122-126.
    [159]孙大勇.稀土富勒烯电子结构的XPS研究.分析测试学报,1998,17(4): 5-7.
    [160] Arbogast JW, Fonte CS. Photophysical properties of C70. J Am Chem Soc, 1991, 113(23): 8886-8889.
    [161] Krusic PJ, Wasserman E, Keizer PN, et al. Radical reaction of C60 . Science, 1991, 254:1183-1185.
    [162]杨卫海,陈滇宝,王秀美.富勒烯和富勒醇的生物学和生物医学应用研究.药学进展, 2004, 28(6): 243-246.
    [163] Korobov MV, Smith AL. Solubility of the fullerenes. In Fullerenes: Chemistry, physics, and technology. Kadish K M, Ruof R S, Eds. Wiley: New York, 2000, 53-89.
    [164]余伯承,黄祖恩,蔡瑞芳. C60羟基化合物的合成与应用.化学通报,1997, 5: 25-29.
    [165]李添宝,黄克雄,李新海,等. C60(OH)xOy的快速制备及其水解形成C60(OH)n .化学通报,1999,4:30-32.
    [166] Da RT, Prato M, Novello F, et al. Water-Soluble Fullerene Derivatives via 1,3-Dipolar Cycloadditions of Azomethine Ylides to C60. Org Chem, 1996, 61(25): 9070-9072.
    [167] Panagiota S, Yiannis E, Eugenia P-P, et al. Synthesis of a proline-rich [60] fullerene peptide with potential biological activity. Tetrahedeon, 2004, 60: 2823-2828.
    [168] Gan L, Zhou D, Luo C, et al. Synthesis of Fullerene Amino Acid Derivatives by Direct Interaction of Amino Acid Ester with C60. J Org Chem, 1996, 61(6): 1954-196.
    [169]杨新林,任丽亚,朱鹤孙.适用于生物学研究的富勒烯类物质的制备.材料导报,1998, 3: 1-3.
    [170] Tokuyama H, Yamago S, Nakamura E, et al. Photoinduced biochemical activity of fullerene carboxylic acid. J Am Chem Son,1993,115:7918-7919.
    [171] Feng M, Zhao J, Petek H. Atomlike, hollow-core-bound molecular orbitals of C60.Science. 2008,320(5874):359-362.
    [172] Tatiana DR, Maurizio P. Medicinal chemistry with fullerenes and fullerene derivatives . Chem. Commun, 1999,2: 663-669.
    [173] Yang XL, Fan CH, Zhu HS. Photo-induced cytoxicity of malonic acid [C60] fullerene derivatives and its machenism . Toxicology in Vitro, 2002, 16: 41-46.
    [174] Anderson T, Nilsson K, Sundahl M, et al. C. embeded in y-cyclodextrin: a water-soluble fullerene . J Chem. Soc Chem. Commun, 1992, 8: 604-606.
    [175] Hungerbuehler H, Guldi DM, Asmus KD. Incorporation of C60 into artificial lipid membranes . J Am Chem Soc, 1993, 115(8): 3386-3387.
    [176] Deguchi S, Alargova RG, Tsujii K. Stable Dispersions of Fullerenes, C60 and C70, in Water: Preparation and Characteration . Langmuir, 2001, 17: 6013-6017.
    [177] Moussa F, Trivin E, Ceolin R, et al. Early effects of C60 administration in swiss mice: a preliminary account for in-vivo C60 toxicity . Fullerene Sci Technol, 1996, 4(1): 21-29.
    [178]公瑞煜,王洛礼,刘景民.茚-马来酸酐共聚物的合成.精细化工,1999,16(6):21-24.
    [179] Colombani D. Chain-growth control in free radical polymerization . Prog Polymer Sci, 1997, 22(8):1649-1720.
    [180] Hartmann J, Quint RM, Getoff N. Products resulting by free radical attack on aqueous genistein . Radia Phy Chem, 2008, 77(5):612-616.
    [181]钟琦,郑春铭.胆石症的药物治疗.广东药学, 2003,13(2):57-59.
    [182]平其能.药剂学实验与指导.北京:中国医药科技出版社,1994: 66-76.
    [183] Sato T, Ruch R. Surfactant series 9, Stabilization of colloidal dispersions by polymer adsorption. Marcel Dekker Inc, NY, 1980.
    [184]杨慧芬,张强.草分枝杆菌与赤铁矿和石英间的作用力分析.金属矿山, 2006,(4):15-18.
    [185]石少波.类DLVO理论与胆固醇单水结晶形成过程.河北理工学院学报,2005,27(2):102-104,108.
    [186] Ma X, Benson CH, McKenzie D, et al. Adsorption of pathogenic prion protein toquartz sand. Environ Sci Technol, 2007, 41(7):2324-2330.
    [187] Kalsin AM, Grzybowski BA. Controlling the growth of "ionic" nanoparticle supracrystals. Nano Lett, 2007,7(4):1018-1021.
    [188] Viota JL, Gonzalez-Caballero F, Duran JD,et al. Study of the colloidal stability of concentrated bimodal magnetic fluids. J Colloid Interface Sci, 2007,309(1):135-139.
    [189] Javid N, Vogtt K, Krywka C, et al. Protein-Protein Interactions in Complex Cosolvent Solutions. Chemphyschem, 2007,8(5):679-689.
    [190] Chang YI, Liao KY. Effect of particle size distribution on the collection efficiency of Brownian particles . J Colloid Interface Sci, 2007, 309(2):236-244.
    [191] Phenrat T, Saleh N, Sirk K, et al. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol, 2007,41(1):284-290.
    [192] Chen KL, Elimelech M. Aggregation and deposition kinetics of fullerene (C60) nanoparticles.Langmuir, 2006,22(26):10994-11001.
    [193] Ott LS, Hornstein BJ, Finke RG. A test of the transition-metal nanocluster formation and stabilization ability of the most common polymeric stabilizer, poly(vinylpyrrolidone), as well as four other polymeric protectants . Langmuir, 2006,22(22):9357-9367.
    [194] Roosjen A, Busscher HJ, Norde W, et al. Bacterial factors influencing adhesion of Pseudomonas aeruginosa strains to a poly(ethylene oxide) brush. Microbiology, 2006, 152(Pt 9):2673-2682.
    [195] Yoshioka K, Sakai E, Daimon M, et al. Role of steric hindrance in the performance of superplasticizers for concrete. J Am Ceram Soc, 1997, 80(10):2667-2671.
    [196] Furusawa K. Polymer adsorption and its effect on the colloid stability. Kobunshi, 1991,40(12):786-789.
    [197] Kitahara A, Furusawa K. Colloid chemistry. Kokyo, Japan: Kodan-Sha, 1990.
    [198]沈钟,王果庭.胶体与表面化学.第二版.北京:化学工业出版社,1997:85-87.
    [199] Okamura Y, Handa M, Suzuki H, et al. New strategy of platelet substitutes for enhancing platelet aggregation at high shear rates: cooperative effects of a mixed system of fibrinogen gamma-chain dodecapeptide- or glycoprotein Ibalpha-conjugatedlatex beads under flow conditions. J Artif Organs, 2006,9(4):251-258.
    [200] Pashkovskaya AA, Lukashev EP, Antonov PE, et al. Grafting of polylysine with polyethylenoxide prevents demixing of O-pyromellitylgramicidin in lipid membranes. Biochim Biophys Acta, 2006,1758(10):1685-1695.
    [201] Hoiberg-Nielsen R, Fuglsang CC, Arleth L, et al. Interrelationships of glycosylation and aggregation kinetics for Peniophora lycii phytase. Biochemistry, 2006,45(15):5057-5066.
    [202] Rajan RS, Li T, Aras M, et al. Modulation of protein aggregation by polyethylene glycol conjugation: GCSF as a case study . Protein Sci, 2006, 15(5):1063-1075.
    [203] Dautel OJ, Wantz G, Almairac R, et al. Nanostructuration of phenylenevinylenediimide-bridged silsesquioxane: from electroluminescent molecular J-aggregates to photoresponsive polymeric H-aggregates. J Am Chem Soc, 2006,128(14):4892-4901.
    [204] Yoshida M, Sakuragi N, Kondo K, et al. Cleavage with phospholipase of the lipid anchor in the cell adhesion molecule, csA, from Dictyostelium discoideum . Comp Biochem Physiol B Biochem Mol Biol, 2006, 143(2):138-144.
    [205] Colsenet R, Mariette F, Cambert M. NMR relaxation and water self-diffusion studies in whey protein solutions and gels. J Agric Food Chem, 2005,53(17):6784-4790.
    [206] Li D, Huang Y, Li J. Influence of configuration of carboxylic acid capping ligands on the salt-induced aggregation of gold clusters. J Colloid Interface Sci, 2005,283(2):440-445.
    [207] Yan P, Jin C, Wang C,et al. Effect of surfactant head group size on polyelectrolyte-surfactant interactions: steady-state and time-resolved fluorescence study. J Colloid Interface Sci, 2005,282(1):188-192.
    [208] Napper D H. Polymeric stabilization of colloidal dispersion . NY: Academic Press, 1993.
    [209] Chan AP, Kloc M, Larabell CA, et al. The maternally localized RNA fatvg is required for cortical rotation and germ cell formation . Mech Dev,2007,124(5):350-363.
    [210] Liu Y, Tseng M, Perdreau SA, et al. Histone H2AX is a mediator of gastrointestinal stromal tumor cell apoptosis following treatment with imatinib mesylate . Cancer Res, 2007,67(6):2685-2692.
    [211] Tulpar A, Tilton RD, Walz JY. Synergistic effects of polymers and surfactants on depletion forces . Langmuir, 2007,23(8):4351-4357.
    [212] Stone D, Liu Y, Shayakhmetov D, et al. Adenovirus-platelet interaction in blood causes virus sequestration to the reticuloendothelial system of the liver . J Virol, 2007,81(9):4866-4871.
    [213] Goodchild I, Collier L, Millar SL, et al. Structural studies of the phase, aggregation and surface behaviour of 1-alkyl-3-methylimidazolium halide + water mixtures. J Colloid Interface Sci, 2007, 307(2):455-468.
    [214] Pribush A, Zilberman-Kravits D, Meyerstein N. The mechanism of the dextran-induced red blood cell aggregation . Eur Biophys J, 2007, 36(2):85-94.
    [215] Calamai M, Kumita JR, Mifsud J, et al. Nature and significance of the interactions between amyloid fibrils and biological polyelectrolytes . Biochemistry, 2006, 45(42): 12806-12815.
    [216] Beugin S, Edwards K, Karlsson G, et al. New sterically stabilized vesicles based on nonionic surfactant, cholesterol, and poly(ethylene glycol)-cholesterol conjugates. Biophy J, 1998,74: 3198-3210.
    [217] Sharma P, Mao X, Payne AS. Beyond steric hindrance: the role of adhesion signaling pathways in the pathogenesis of pemphigus. J Dermatol Sci, 2007, 48(1):1-14.
    [218] Laarz E, Kauppi A, Andersson K M, Kjeldsen A M, Bergstr?m L. Dispersing Multi-Component and Unstable Powders in Aqueous Media Using Comb-Type Anionic Polymers. J Am Ceram Soc, 2006,89: 1847-1852.
    [219] Carey M C, Small DM. The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man. J Clin Invest, 1978,61 :998-1026.
    [220] Grunhage F, Lammert F. Gallstone disease. Pathogenesis of gallstones: A geneticperspective. Best Pract Res Clin Gastroenterol,2006,20(6): 997-1015.
    [221] Lee KT, Liu TS. Mucin gene expression in gallbladder epithelium. J Formos Med ASSOC, 2002,101:762-768.
    [222] Berthoud A. The theorie de la formation des faces d’un cristal. J Chem Phys, 1912,10: 624-635.
    [223] Nernst W. The theorie der reaktionsgeschwindigkeit in heterogenen Systemen. Z Physikal Chem, 1904,47: 52-55.
    [224] Tao J C, Cussler E L, Evans D F. Accelerating gallstone dissolution. Proc Natl Acad Sci U S A, 1974,71: 3917-3921.
    [225] Carey MC. Criteal tables for calculating the cholesterol saturation of native bile. J Lipid Res . 1978 .19 (8):945-955.
    [226] Kibe A, Dudley MA, Halpen L, et .al. Factors affecting cholesterol monohydrate crystal nucleartion time in model system of supersaturated bile . J Lipid Res, 1985,26 (19): 1102—1111.
    [227]刘军,鄢斌,王植雄.不同检测系统总胆固醇测定结果的偏倚分析.实用医学杂志, 2006, 22(1): 88-90.
    [228] Bartelett GK. Phosphorous assay in colum chromatography. J Biol Chem, 1959,23:466-468.
    [229]王林等.复方卵磷脂--多种维生素胶丸的含量测定.药学进展, 2003, 27(1):44-47.
    [230]孙劲文,蔡端,马保金,张延龄.综合模拟胆汁体系中未结合胆红素与胆固醇的溶解方式.肝胆胰外科杂志, 2004,16 (1):23-25.
    [231]李哲夫,陈孝平.胆固醇胆石成因的研究进展.中国普通外科杂志, 2007, 16(2):170-172.
    [232] Moschetta A, vanBerge-Henegouwen GP, Portincasa P, et al. Hydrophilic bile salts enhance differential distribution of sphingomyelin and phosphatidylcholine between micellar and vesicular phases: potential implications for their effects in vivo. J Hepatol, 2001,34(4):492-499.
    [233] Pope J L. Crystallization of sodium taurocholate. J Lipid Res, 1967,8: 146-147
    [234] Beugin S, Edwards K, Karlsson G, Ollivon M, Lesieur S. New sterically stabilized vesicles based on nonionic surfactant, cholesterol, and poly(ethylene glycol)-cholesterol conjugates. Biophy J, 1998,74: 3198-3210.
    [235] Harris JM, Martin NE, et al. Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet, 2001, 40(7):539-551.
    [236] Laarz E, Kauppi A, Andersson K M, Kjeldsen A M, Bergstr?m L. Dispersing Multi-Component and Unstable Powders in Aqueous Media Using Comb-Type Anionic Polymers. J Am Ceram Soc, 2006,89: 1847-1852.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700