小鼠高脂晚餐对肝脏生物钟和脂质生成基因表达影响以及蛇床子素干预作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察定时高脂晚餐是否会影响小鼠肝脏生物钟和PPARα介导脂质生成相关基因的表达量和节律性的改变;在此基础上进一步观察不同时间给予等量蛇床子素干预作用的差异。
     方法:选用ICR雄性小鼠,以晚上定时给予高脂饮食和严格控制明/暗条件(8:30-20:30/20:30-次日8:30)4周复制高脂性脂肪肝小鼠模型,然后分别在不同授时时相(6:00,12:00,18:00和24:00)或经不同时间(早给药组,晚给药和早晚给药组)等量蛇床子素(20mg/kg)治疗4周后处置,用比色法测定肝中总胆固醇(TC)、甘油三酯(TG)和游离脂肪酸(FFA)含量;用光镜检查肝脏的形态学变化;采用RT-PCR法检测小鼠肝脏生物钟基因Clock、Bmal1、Per1-2和Cry1-2,以及过氧化物酶体增殖物激活受体α (PPAR α)和PPARα介导的脂质生成基因包括胆固醇7α羟化酶(CYP7A1)、羟甲基戊二酰辅酶A还原酶(HMGCR)、低密度脂蛋白受体(LDLR)、脂蛋白酯酶(LPL)、二脂酰甘油酰基转移酶(DGAT)和脂肪酸合酶(FAS)mRNA表达的情况。
     结果:实验结果显示,晚上定时给予高脂饮食后,可致小鼠肝脏中TC和TG含量升高,特别是在6:00,18:00和24:00,而且与正常对照组相比,TC含量的峰值延迟了6h而TG含量的峰值提前了12h。同时伴有肝脏生物钟基因Clock、Bmal1、Per2和Cry2mRNA表达在节律或振幅上发生明显的变化,钟控基因PPARα以及它介导的靶基因CYP7A1、HMGCR、LDLR、LPL和DGAT mRNA表达在节律或振幅上亦发生明显的改变,尤其是CYP7A1和DGAT的基因表达改变更为明显。
     如以不同时间给予等量蛇床子素治疗高脂性脂肪肝4周后,则肝脏中的TC和TG含量可降低,但程度有所不同。蛇床子素晚给药组可显著下调肝脏钟基因Clock和Bmal1mRNA的表达,而早给药组则明显下调Per1mRNA的表达,不同时间给药组均能明显下调Cry2mRNA的表达。小鼠肝中的PPAR α mRNA在不同时间给药组均有不同程度的上调,尤以早晚给药组的最为明显,同时伴有各个给药组CYP7A1和早给药组LPL mRNA表达的上调;相反地,肝中的LDLR mRNA表达在各个给药组均下调,肝中的DGAT mRNA表达在晚给药组和早晚给药组也明显下调。
     结论:小鼠定时高脂晚餐会改变肝脏内部分生物钟基因的节律表达,以及影响PPARα介导脂质生成基因表达的节律性,从而导致肝脏脂质的增加及昼夜节律的改变。不同时间给予等量蛇床子素治疗高脂性脂肪肝后,肝脏的脂质含量降低程度会有所不同,这可能与不同时间给药对脂肪肝小鼠肝脏生物钟基因节律表达的影响不同有关,继而导致PPARα及它的靶基因表达不同而产生不同的治疗效果。
Aim: To investigate whether timed high-fat diet in the evening affects the hepaticcircadian clock and PPARα-mediated lipogenic gene expressions and their rhythms infatty liver mice. On this basis, we further observe the differences of the interventioneffects of equal osthole at different time administration.
     Methods: ICR male mice were used in the study. A mouse model withhyperlipidemic fatty liver was established by timed high-fat diet in the evening and a12-h light (8:30-20:30) and12-h dark (20:30-8:30) cycle for4weeks. Whereafter, micewere either sacrificed at the different time-points (6:00,12:00,18:00and24:00) orsacrificed after treatment with equal osthole at different time administration (morning-,evening-, and mixed morning and evening-treated groups) for4weeks. The totalcholesterol (TC), triglycerides (TG), and free fatty acids (FFA) contents in liver weremeasured with the colorimetric methods, and hepatic morphological changes wereexamined under a light microscope. The hepatic mRNA expressions of Clock, Bmal1,Per1-2, Cry1-2, peroxisome proliferator-activated receptor α (PPARα), andPPARα-mediated lipogenic genes expressions, including cholesterol7α-hydroxylase(CYP7A1),3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), low densitylipoprotein receptor (LDLR), lipoprotein lipase (LPL), diacylglycerol acyltransferase(DGAT), and fatty acid synthase (FAS) were determined by the RT-PCR methods.
     Results: The present experimental results showed that the hepatic TC and TGcontents were higher in the evening timed high-fat diet-fed mice at all time-points ascompared with matched normal control group, especially at6:00,18:00, and24:00. Andthe peak was present in a6-h delay for TC and a12-h advance for TG relative tomatched control mice. At the same time, the hepatic circadian clock genes Clock, Bmal1,Per2, and Cry2mRNA expressions in the high-fat diet-fed mice had significant changesin the rhythms and/or amplitudes. The clock-controlled gene PPARα and PPARα-mediated lipogenic genes such as CYP7A1, HMGCR, LDLR, LPL, and DGATmRNA expressions in liver had also significant changes in the rhythms and/oramplitudes, especially CYP7A1and DGAT mRNA expressions.
     After treatment with equal osthole at different time for4weeks, the hepatic TC andTG contents were decreased in varying degrees in the evening timed high-fat diet-fedmice. Meanwhile, the hepatic clock genes Clock and Bmal1mRNA expressions in theosthole evening-treated group were notablely reduced, and the hepatic Per1mRNAexpression in the osthole morning-treated group was obviously down-regulated as well.In the osthole-treated groups, the hepatic Cry2mRNA expression was all significantlydecreased, while the PPARα mRNA expression in liver was increased, especiallyosthole mixed morning and evening-treated group. The hepatic CYP7A1mRNAexpression in the osthole-treated groups and LPL mRNA expression in the ostholemorning-treated group were significantly increased. Reversely, the hepatic LDLRmRNA expression in the osthole-treated groups, and DGAT mRNA expression in theosthole evening-treated and mixed morning and evening-treated groups weresignificantly decreased.
     Conclusion: Timed high-fat diet in the evening could change the hepatic circadianrhythmic expressions of some clock genes and PPARα-mediated lipogenic genes, andled to the hepatic lipid accumulation and its diurnal rhythmic alteration. Afteradministration of equal osthole at different time, the reduced degree of the hepatic lipidaccumulation was significantly different, the results might were from the differenteffects of different time administration on the hepatic clock gene expressions inhyperlipidemic fatty liver mice, which subsequently regulated the different expressionsof clock-controlled gene PPARα and its target genes, and resulted in the differenttherapeutic effects.
引文
1. Panda S, Hogeresch JB, Kay SA. Circadian rhythms from flies to human. Nature,2002,417:329-35.
    2. Schmutz I, Albrecht U, Ripperger JA. The role of clock genes and rhythmicity in theliver. Mol Cell Endocrinol,2012,349:38-44.
    3. Froy O. Metabolism and circadian rhythms-implications for obesity, Endocr Rev,2010,31:1-24.
    4. Hirota T, Fukada Y. Resetting mechanism of central and peripheral circadian clocksin mammals. Zoolog Sci,2004,21:359-68.
    5. Balsalobre A. Clock genes in mammalian peripheral tissues. Cell Tissue Res,2002,309:193-9.
    6. Radzjuk JM. The suprachiasmatic nucleus, circadian clocks, and the liver. Diabetes,2013,62:1017-9.
    7. Westfall S, Aquilar-Valles A, Monqrain V, et al. Time-dependent effects of localizedinflammation on peripheral clock gene expression in rats. PLoS One,2013,8:e59808.
    8. Wu T, Fu O, Yao L, et al. Differential responses of peripheral circadian clocks to ashort-term feeding stimulus. Mol Biol Rep,2012,39:9783-9.
    9. Shirai H, Oishi K, Ishida N. Bidirectional CLOCK/BMAL1-dependent circadiangene regulation by retinoic acid in vitro. Biochem Biophys Res Commun,2006,351:387-91.
    10. Reddy AB, Karp NA, Maywood ES, et al. Circadian orchestration of the hepaticproteome. Curr Biol,2006,16:1107-15.
    11. Ha M, Park J. Shiftwork and metabolic risk factors of cardiovascular disease. JOccup Health,2005,47:89-95.
    12. Kennaway DJ, Owens JA, Voultsios A, et al. Metabolic homeostasis in mice withdisrupted clock gene expression in peripheral tissues. Am J Physiol,2007,293:R1528-37.
    13. Neuschwander-Tetri BA. Fatty liver and the metabolic syndrome. Curr OpinGastroenterol,2007,23:193-8.
    14. Yang X, Downes M, Yu RT, et al. Nuclear receptor expression links the circadianclock to metabolism. Cell,2006,126:801-10.
    15. Kohsaka A, Laposky AD, Ramsey KM, et al. High-fat diet disrupts behavioral andmolecular circadian rhythms in mice. Cell Metab,2007,6:414-21.
    16. Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissuecircadian clock. Proc Natl Acad Sci USA,2008,105:15172-7.
    17. Hsieh MC, Yanq SC, Tsenq HL, et al. Abnormal expressions of circadian-clock andcircadian clock-controlled genes in the livers and kidneys of long-term,high-fat-diet-treated mice. Int J Obes,2010,34:227-39.
    18. Barnea M, Madar Z, Froy O. High-fat diet delays and fasting advances the circadianexpression of adiponectin signaling components in mouse liver. Endocrinology,2009,150:161-8.
    19. Ando H, Takamura T, Matsuzawa-Nagata N, et al. The hepatic circadian clock ispreserved in a lipid-induced mouse model of non-alcoholic steatohepatitis.Biochem Biophys Res Commun,2009,380:684-8.
    20. Ito M, Yamanashi Y, Toyoda Y, et al. Disruption of Stard10gene alters thePPARα-mediated bile acid homeostasis. Biochem Biophys Acta,2013,1831:459-68.
    21. Donqiovanni P, Valenti L. Peroxisome proliferator-activated receptor geneticpolymorphisms and nonalcoholic fatty liver disease: any role in diseasesusceptibility? PPAR Res,2013, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575610.
    22. Braissant O, Foufelle F, Scotto C, et al. Differential expression of peroxisomeproliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha,-beta,and-gamma in the adult rat. Endocrinology,1996,137:354-66.
    23. Martin G, Schoonjans K, Lefebvre AM, et al. Coordinate regulation of theexpression of the fatty acid transport protein and acyl-CoA synthetase genes byPPARalpha and PPARgamma activators. J Biol Chem,1997,272:28210-7.
    24. Vosper H, Khoudoli GA, Graham TL, et al. Peroxisome proliferator-activatedreceptor agonists, hyperlipidaemia, and atherosclerosis. Pharmacol Ther,2002,95:47-62.
    25. Canaple L, Rambaud J, Dkhissi-Benyahya O, et al. Reciprocal regulation of brainand muscle Arnt-like protein1and peroxisome proliferator-activated receptor alphadefines a novel positive feedback loop in the rodent liver circadian clock. MolEndocrinol,2006,20:1715-27.
    26. Inoue I, Shinoda Y, Ikeda M, et al. CLOCK/BMAL1is involved in lipid metabolismvia transactivation of the peroxisome proliferator-activated receptor (PPAR)response element. J Atheroscler Thromb,2005,12:169-74.
    27.刘建新,连其深.蛇床子素的药理学研究进展.时珍国医国药,2006,12:1235-7.
    28.陈蓉,谢梅林,周佳.蛇床子素抑制血栓形成和血小板聚集的实验研究.中国药理学通报,2005,21(4):440-3.
    29. Liang HJ, Suk FM, Wang CK, et al. Osthole, a potential antidiabetic agent,alleviates hyperglycemia in db/db mice. Chem Biol Interact,2009,181:309-15.
    30.刘建新,张文平,周俐.蛇床子素对大鼠的抗炎作用和机制.中药材,2005,28(11):1002-6.
    31. Li Yao, Ping Lu, Yumei Li, et al. Osthole relaxes pulmonary arteries throughendothelial phosphatidylinositol3-kinase/Akt-eNOS-NO signaling pathway in rats.Eur J Pharmacol,2013,699:23-32.
    32. Okamoto T, Kawasaki T, Hino O. Osthole prevents anti-Fas antibody-inducedhepatitis in mice by affecting the caspase-3-mediated apoptotic pathway. BiochemPharmacol,2003,65:677-81.
    33. Du R, Xue J, Wang HB, et al. Osthol ameliorates fat milk-induced fatty liver in miceby regulation of hepatic sterol regulatory element-binding protein-1c/2-mediatedtarget gene expression. Eur J Pharmacol,2011,666:183-8.
    34. Zhang Y, Xie ML, Xue J, et al. Osthole regulates enzyme protein expression ofCYP7A1and DGAT2via activation of PPAR alpha/gamma in fat milk-inducedfatty liver rats. J Asian Nat Prod Res,2008,10:807-12.
    35. Reznick J, Preston E, Wilks DL, et al. Altered feeding differentially regulatescircadian rhythms and energy metabolism in liver and muscle of rats. BiochimBiophys Acta,2013,1832:228-38.
    36. Funes-Huacca M, Regitano LC, Mueller O, et al. Semiquantitative determination ofalicyclobacillus acidoterrestris in orange juice by reverse-transcriptase polymerasechain reaction and capillary electrophoresis--laser induced fluorescence usingmicrochip technology. Electrophoresis,2004,25:3860-4.
    37. Kovac J, Husse J, Oster H. A time to fast, a time to feast: the crosstalk betweenmetabolism and the circadian clock. Mol Cells,2009,28:75-80.
    38. Maury E, Ramsey KM, Bass J. Circadian rhythms and metabolic syndrome: fromexperimental genetics to human disease. Circ Res,2010,106:447-62.
    39. Martino TA, Tata N, Belsham DD, et al. Disturbed diurnal rhythm alters geneexpression and exacerbates cardiovascular disease by resynchronization.Hypertension,2007,49:1104-13.
    40. Desvergne B, Wahli W. Peroxisome proliferator activated receptors: nuclear controlof metabolism. Endocr Rev1999,20:649-88.
    41. Mitsuhide N, Emiko U, Takeshi K, et a1. Multiple mechanisms regulate circadianexpression of the gene for cholesterol7a-hydroxylase (Cyp7a), a key enzyme inhepatic bile acid biosynthesis. J Biol Rhythms,2007,22:299-311.
    42. Brown MS, Goldstein JL. Multivalentfeedbackregulationof HMG CoA reductase, acontrol mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res,1980,21:505-17.
    43. Hamprecht B, Nussler C, Lynen F. Rhythmic changes of hydroxymethylglutarylcoenzyme a reductase activity in livers of fed and fasted rats. Febs Lett,1969,4:117-21.
    44. Zhang P, Hu Y, Yang J, et al. The orphan nuclear receptor Nur77regulates hepaticcholesterol metabolism through the suppression of LDLR and HMGCR expression.Mol Med Rep,2012,5:1541-7.
    45. Buhman KK, Chen HC, Farese RV. The enzymes of neutral lipid synthesis. J BiolChem,2001,276:40369-72.
    46. Wung SF, Kulkarni MV, Pullinger CR, et al. The lipoprotein lipase gene incombined hyperlipidemia: evidence of a protective allele depletion. Lipids HealthDis,2006,5:19.
    47. Oishi K, Shirai H, Ishida N. CLOCK is involved in the circadian transactivation ofperoxisome-proliferator-activated receptor alpha (PPAR alpha) in mice. Biochem J,2005,386:575-81.
    [1] Panda S, Hogeresch JB, Kay SA. Circadian rhythms from flies to human. Nature,2002,417:329-35.
    [2] Schmutz I, Albrecht U, Ripperger JA. The role of clock genes and rhythmicity in theliver. Mol Cell Endocrinol,2012,349:38-44.
    [3] Froy O. Metabolism and circadian rhythms-implications for obesity, Endocr Rev,2010,31:1-24.
    [4] Hirota T, Fukada Y. Resetting mechanism of central and peripheral circadian clocksin mammals. Zoolog Sci,2004,21:359-68.
    [5] Balsalobre A. Clock genes in mamalian peripheral tissues. Cell Tissue Res,2002,309:193-9.
    [6] Damiola F, Le Minh N, Preitner N, et al. Restricted feeding uncouples circadianoscillators in peripheral tissues from the central pacemaker in the suprachiasmaticnucleus. Genes Dev,2000,14:2950-61.
    [7] Oishi K. Clock genes and clock-controlled genes in mammals. Nihon Rinsho,2012,70:1109-14.
    [8] Wu T, Fu O, Yao L, et al. Differential responses of peripheral circadian clocks to ashort-term feeding stimulus. Mol Biol Rep,2012,39:9783-9.
    [9] Grundy SM. Metabolic syndrome: connecting and reconciling cardiovascular anddiabetes worlds. J Am Coll Cardiol,2006,47:1093-100.
    [10] Turek FW, Joshu C, Kohsaka A, et al. Obesity and metabolic syndrome in circadianClock mutant mice. Science,2005,308:1043-5.
    [11] Reddy AB, Karp NA, Maywood ES, et al. Circadian orchestration of the hepaticproteome. Curr Biol,2007,16:1107-15.
    [12] Hou LK, Lu C, Huang Y, et al. Effect of hyperlipidemia on the expression ofcircadian genes in apolipoprotein E knock-out atherosclerotic mice. Lipids HealthDis,2009,8:60.
    [13] Oishi K, Atsumi G, Sugiyama S, et al. Disrupted fat absorption attenuates obesityinduced by a high-fat diet in Clock mutant mice. FEBS Lett,2006,580:127-30.
    [14] Turek FW, Joshu C, Kohsaka A, et al. Obesity and metabolic syndrome in circadianClock mutant mice. Science,2005,308:1043-5.
    [15] Shimba S, Ogawa T, Hitosugi S, et al. Deficient of a clock gene, brain and muscleArnt-like protein-1(BMAL1), induces dyslipidemia and ectopic fat formation.PloS one,2011,6: e25231.
    [16] Shirai H, Oishi K, Ishida N. Bidirectional CLOCK/BMAL1-dependent circadiangene regulation by retinoic acid in vitro. Biochem Biophys Res Commun,2006,351:387-391.
    [17] Wang Z, Wu Y, Li L, et al. Intermolecular recognition revealed by the complexstructure of human CLOCK-BMAL1basic helix-loop-helix domains with E-boxDNA. Cell Res,2013,23:213-24.
    [18] Rudic RD, McNamara P, Curtis AM, et al. BMAL1and CLOCK, two essentialcomponents of the circadian clock, are involved in glucose homeostasis. PLoS Biol,2004,2:1893-9.
    [19] Camacho F, Cilio M, Guo Y, et al. Human casein kinase I delta phosphorylation ofhuman circadian clock proteins period1and2. FEBS Lett,2001,489:159-65.
    [20] Smadja Storz S, Tovin A, Mracek P, et al. Casein kinase1δ activity: a key elementin the zebrafish circadian timing system. PLoS One,2013,8: e54189.
    [21] Um JH, Yang S, Yamazaki S, et al. Activation of5-AMP-activated kinase withdiabetes drug metformin induces casein kinase Iε (CKIε)-dependent degradation ofclock protein mPER2. J Biolchem2007,282:20794-8.
    [22] Lowrey PL, Shimomura K, Antoch MP, et al. Positional syntenic cloning andfunctional characterization of the mammalian circadian mutation tau. Science,2000,288:483-91.
    [23] Xu Y, Padiath QS, Shapiro RE, et al. Functional consequences of a CKI deltamutation causing familial advanced phase syndrome. Nature,2005,434:640-4.
    [24] Chen R, Schirmer A, Lee Y, et al. Rhythmic PER abundance defines a critical nodalpoint for negative feedback within the circadian clock mechanism. Mol Cell,2009,36:417-30.
    [25] Nagano M, Adachi A, Masumoto K, et al. rPer1and rPer2induction during phasesof the circadian cycle critical for light resetting of the circadian clock. Brain Res,2009,1289:37-48.
    [26] Grimaldi B, Bellet MM, Katada S, et al. PER2controls lipid metabolism by directregulation of PPAR gamma. Cell Metab,2010,12:509-20.
    [27] Costa MJ, Alex Y, Kaasik K, et al. Circadian rhythm gene period3is an inhibitorof the adipocyte cell fate. J Biol Chem,2011,286:9063-70.
    [28] Lamia KA, Sachdeva UM, DiTacchio L, et al. AMPK regulates the circadian clockby cryptochrome phosphorylation and degradation. Science,2009,326:437-40.
    [29] Busino L, Bassermann F, Maiolica A, et al. SCFFbxl3controls the oscillation of thecircadian clock by directing the degradation of cryptochrome proteins. Science,2007,316:900-4.
    [30] Siepka SM, Yoo SH, Park J, et al. Circadian mutant overtime reveals F-box proteinFBXL3regulation of cryptochrome and period gene expression. Cell,2007,129:1011-23.
    [31] Harada Y, Sakai M, Kurabayashi N, et al. Ser-557-phosphorylated mCRY2isdegraded upon synergistic phosphorylation by glycogen synthase kinase-3beta. JBiol Chem,2005,280:31714-21.
    [32] Kurabayashi N, Hirota T, Sakai M, et al. DYRK1A and glycogen synthase kinase3beta, a dual-kinase mechanism directing proteasomal degradation of CRY2forcircadian timekeeping. Mol Cell Biol,2010,30:1757-68.
    [34] Vollmers C, Gill S, DiTacchio L, et al. Time of feeding and the intrinsic circadianclock drive rhythms in hepatic gene expression. Proc Natl Acad Sci USA,2009,106:21453-8.
    [35] Otway DT, Mantele S, Bretschneider S, et al. Rhythmic diurnal gene expression inhuman adipose tissue from individuals who are lean, overweight, and type2diabetic. Diabetes,2011,60:1577-81.
    [36] Hsieh MC, Yang SC, Tseng HL, et al. Abnormal expressions of circadian-clock andcircadian clock-controlled genes in the livers and kidneys of long-term, high-fat-diet-treated mice. Int J Obes,2010,34:227-39.
    [37] Sherman H, Genzer Y, Cohen R, et al. Timed high-fat diet resets circadianmetabolism and prevents obesity. FASEB J,2012,26:3493-502.
    [38] Preitner N, Damiola F, Molina LL, et al. The orphan nuclear receptor, REV-ERBalpha controls circadian transcription within the positive limb of the mammaliancircadian oscillator. Cell,2002,110:251-60.
    [39] Raspe E, Duez H, Mansen A, et al. Identification of Rev-erb alpha as aphysiological repressor of apoC-III gene transcription. J Lipid Res,2002,43:2172-9.
    [40] Fontaine C, Dubois G, Duguay Y, et al. The orphan nuclear receptor Rev-Erb alphais a peroxisome proliferator-activated receptor (PPAR) gamma target gene andpromotes PPAR gamma-induced adipocyte differentiation. J Biol Chem,2003,278:37672-80.
    [41] Kornmann B, Schaad O, Bujard H, et al. System-driven and oscillator-dependentcircadian transcription in mice with a conditionally active liver clock. PLoS Biol,2007,5:179-89.
    [42] Duez HM, Mansen A, Fruchart JC, et al. Rev-erb alpha: A nuclear receptor with arole in lipoprotein metabolism. Circulation,1998,98:449-50.
    [43] Delezje J, Dumont S, Dardente H, et al. The nuclear receptor REV-ERBα isrequired for the daily balance of carbohydrate and lipid metabolism. FASEB J,2012,26:3321-35.
    [44] VuDac N, Gervois P, Grotzinger T, et al. Transcriptional regulation ofapolipoprotein A-I gene expression by the nuclear receptor ROR alpha. J BiolChem,1997,272:22401-4.
    [45] Raspe E, Duez H, Gervois P, et al. Transcriptional regulation of apolipoproteinC-III gene expression by the orphan nuclear receptor ROR alpha. J Biol Chem,2001,276:2865-71.
    [46] Canaple L, Rambaud J, Dkhissi-Benyahya O, et al. Reciprocal regulation of brainand muscle arnt-like protein1and peroxisome proliferator-activated receptor alphadefines a novel positive feedback loop in the rodent liver circadian clock. MolEndocrinol,2006,20:1715-27.
    [47] Inoue I, Shinoda Y, Ikeda M, et al. CLOCK/BMAL1is involved in lipidmetabolism via transactivation of the peroxisome proliferator-activated receptor(PPAR) response element. J Atheroscler Thromb,2005,12:169-74.
    [48] Liu C, Li S, Liu T, et al. Transcriptional coactivator PGC-1a integrates themammalian clock and energy metabolism. Nature,2007,447:477-U4.
    [49] Reischl S, Kramer A. Kinases and phosphatases in the mammalian circadian clock.Science,2011,585:1393-1399.
    [50] Green CB, Takahashi JS, Bass J. The meter of metabolism. Cell,2008, l34:728-42.
    [51] Takahashi JS, Hong HK, Ko CH, et al. The genetics of mammalian circadian orderand disorder: implications for physiology and disease. Nat Rev Genet,2008,9:764-75.
    [52] Levi F, Schibler U. Circadian rhythms: mechanisms and therapeutic implications.Annu Rev Pharmacol Toxicol,2007,47:593-628.
    [53] Ramsey KM, Marcheva B, Kohsaka A, et al. The clockwork of metabolism. AnnuRev Nutr,2007,27:219-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700