腺苷受体A_1在肝脏疾病发病机制中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腺苷是生物体的自然代谢物,在众多的生理及病理过程扮演着重要的角色。胞外腺苷浓度受到许多生理病理条件的动态调控。腺苷一旦被释放到胞外,便可通过激活细胞膜表面的腺苷受体来调节细胞功能。腺苷受体与G蛋白偶联,通过改变第二信使系统活性来调节胞内蛋白激酶信号通路和调控下游靶基因表达。由于腺苷受体可介导胞内外信号传导,其作为疾病的潜在治疗靶点受到越来越多的关注。有越来越多的证据表明,腺苷受体有希望成为一系列疾病的治疗靶点,如大脑和心脏缺血性疾病,睡眠障碍,免疫和炎症性疾病,以及癌症。但是腺苷受体在肝脏疾病中的作用和临床价值还未受到充分揭示。本研究采用腺苷受体基因敲除动物作为模型,探索了腺苷—腺苷受体信号通路在肝脏重大代谢疾病中的作用,揭示了腺苷信号调节和传导机制。同时,评估了腺苷受体作为新型基因和药物靶点在治疗和预防肝脏疾病中的潜在价值。
     本研究发现腺苷受体A1基因参与调节肝纤维化的发展进程。证明腺苷受体A1基因在肝毒素四氯化碳(CC14)和胆管结扎(BDL)导致的肝纤维化过程中扮演了相反的角色。研究表明,在慢性CC14肝纤维化模型中,腺苷受体Al基因缺失延缓了肝纤维化进程,胶原的沉积和肝星状细胞的激活在腺苷受体A1基因敲除(A1AR-/-)小鼠中都削弱了。然而,在BDL肝纤维化模型中,腺苷受体A1基因缺失却加速了肝纤维化进程,胶原的合成和汇管区纤维母细胞的激活在A1AR-/-小鼠中都加重了。我们进一步研究了腺苷受体Al基因参与调节CCl4和BDL肝纤维化的不同分子机制。发现腺苷受体A1基因缺失减轻了单次CCl4注射产生的急性肝损伤。血清转氨酶活性和肝细胞坏死程度在A1AR-/-小鼠中都降低了,这很可能是通过下调肝脏CYP2E1和UCP2基因表达水平达到的。另外,在CCl4长期处理过程中,“致肝纤维化因子”的表达水平,包括:TGFβ2, TNFα, IL-1,和IL-6都在A1AR-/-小鼠中下调。而在BDL模型中,A1AR-/-小鼠血清胆汁酸浓度显著升高,由此加重了胆汁淤积性肝细胞梗死,并增加了胆管上皮细胞增生,最终导致了肝纤维化的恶化。我们的实验结果表明腺苷受体A1基因通过复杂的机制参与肝纤维化的进程,建议在运用腺苷及其受体作为抗肝纤维化策略时应加以仔细的评估。
     发现腺苷受体A1参与肝内胆汁淤积性肝损伤的发病过程,并且是潜在的治疗肝内胆汁淤积疾病的基因和药物靶点。在α-荼基异硫氰酸酯(ANIT)致肝内胆汁淤积小鼠模型中,肝内腺苷浓度显著升高并且腺苷受体A1呈高表达,这预示着腺苷-腺苷受体A1信号很可能参与了ANIT肝损伤的发病过程。接下来研究表明,小鼠腺苷受体A1基因缺失对ANIT诱导的肝损伤有保护作用,可降低血清转氨酶活性和肝细胞坏死程度。与野生型(WT)小鼠相比,A1AR-/-小鼠肝脏和血清中胆汁酸的淤积显著减轻,然而胆汁和尿液中胆汁酸的排泌却显著增强。在A1AR-/-小鼠肝脏中,胆汁酸转运体Bsep和Mdr2,以及胆汁酸羟化酶Cyp3α11的基因表达水平都显著上调。在肾脏中,腺苷受体A1基因缺失可防止ANIT造成肾小球过滤速率降低。另外,腺苷受体A1拮抗剂同样可以削弱ANIT对小鼠的肝毒性作用。我们的实验结果证实,小鼠腺苷受体A1基因缺失对肝内胆汁淤积性肝损伤有保护作用,这是通过增强具有毒性的胆汁成分从胆汁分泌途径和肾脏排泄途径排出来实现的,而且表明了腺苷受体A1作为治疗肝内胆汁淤积疾病治疗靶点的潜在价值。
     发现内源性腺苷受体Al激活可保护急性酒精肝损伤。与野生型小鼠相比,A1AR-/-小鼠对急性酒精导致的肝损害更加敏感,血清转氨酶活性升高,肝脏病理学改变更加严重。酒精会诱导血清和肝脏中脂质的累积,这种脂质累积在A1AR-/-小鼠中更加显著。通过对肝脏中脂质代谢相关基因表达分析发现,在A1AR-/-小鼠中肝脏脂质合成基因(包括:FAS, SCD1, ACC1, DGAT2, PPARy)表达水平都显著上调,由此加重了急性酒精性脂肪肝。另外,腺苷受体A1基因缺失加剧了酒精导致的肝脏脂质过氧化和抗氧化物的耗竭,由此加重了氧化压力。研究还发现,腺苷受体A1的药理阻断同样会加重急性酒精造成的肝损伤和早期脂肪变性。总的来讲,实验结果表明内源性腺苷受体A1激活可以削弱急性酒精诱导产生的氧化压力,并通过下调脂肪合成相关基因的表达降低肝脏脂质堆积,从而对抗急性酒精肝损伤。
     发现腺苷受体A1基因缺失会加重非酒精性脂肪肝和胰岛素抵抗的发生。通过建立"western diet"高脂小鼠模型,我们发现与WT小鼠相比,A1AR-/-小鼠在高脂饮食诱导后表现出一系列的代谢异常,如:体重和总脂肪含量增加,白色脂肪组织肥大,血清脂类物质增加,肝脏脂肪变性和胰岛素抵抗加重等。深入研究发现,高脂饮食诱导后,A1AR-/-小鼠肝脏中脂质合成相关基因(包括FAS, SCD1, ACC1, DGAT2,和PPARy)的表达水平都显著上调,由此加强了肝内脂肪合成过程。研究还发现,小鼠腺苷受体A1基因缺失加重了白色脂肪组织炎症反应和巨噬细胞浸润,并上调了F4/80, MCP-1,和TNFa基因表达水平。脂肪组织的炎症反应和巨噬细胞浸润是胰岛素抵抗发生的重要机制。另外,腺苷受体A1基因缺失加强了脂肪细胞分化的主要转录调控因子C/EBPα和PPARγ的表达,这导致了A1AR-/-小鼠脂肪细胞分化增加,促进了肥胖的产生。总的来讲,我们的实验结果表明,小鼠腺苷受体A1基因可通过抑制肝脏脂质合成,降低脂肪细胞分化,以及削弱脂肪组织的炎症反应,来改善高脂饮食引起的导致代谢紊乱。
Adenosine is a natural metabolite in organisms, which plays an important role in many physiological and pathological processes. Extracellular adenosine concentrations are dynamically regulated by a variety of pathophysiological conditions. Adenosine once released can activate cell-surface adenosine receptors which in turn regulate cellular function. Adenosine receptors are coupled to G proteins, though altering the activity of a second messenger system, can modulate protein kinase signaling pathways and regulate downstream target gene expression. Because adenosine receptors mediate extracellular and intracellular signal transduction, they attract more and more attentions as potential targets for disease. There is growing evidence that adenosine receptors could be promising therapeutic targets in a wide range of diseases, including cerebral and cardiac ischemic diseases, sleep disorders, immune and inflammatory disorders, and cancer. However, adenosine receptor's role and value in liver disease have not yet been fully revealed. In this study, by using adenosine receptor knockout animals, we examined the contribution of adenosine-adenosine receptor signaling pathway to liver metabolic disease, and demonstrated its regulation mechanism at the molecular level. We also evaluate the potential role of adenosine receptors as gene or drug targets in the prevention and treatment of liver disease.
     In this study, we found that adenosine A1receptor (A1AR) involves in the development of liver fibrosis. A1AR plays a contradictory role in carbon tetrachloride-(CCl4) and bile duct ligation-(BDL) induced liver fibrosis. Our results demonstrated that, lack of A1AR attenuates hepatic fibrosis resulting from chronic CCl4exposure, with markedly decreased collagen deposition and reduced hepatic stellate cell activation in A1AR-/-mice. Whereas, hepatic fibrosis caused by BDL ligation was aggravated in A1AR-/-mice, with significantly increased collagen synthesis and induced fibroblasts activation in portal tracts. We further investigated the different molecular mechanisms through which A1AR gene regulates CCl4-and BDL-induced hepatic fibrosis. A1AR deficiency reduces acute reactivity to liver injury induced by a single CCl4injection. In A1AR-/-mice, serum transaminase levels were lower and the extent of hepatocyte damage was reduced, which was probably achieved by down-regulating hepatic CYP2E1and UCP2gene expression. Besides, the levels of "profibrotic mediators", including TGFβ2, TNFα, IL-1, and IL-6were decreased in A/AR-/-mice during chronic CCl4treatment. Whereas in the BDL model, enhanced biliary infarcts and cholangiocyte proliferation due to elevation of bile acid levels should be the primary causes leading to increased fibrosis in A1AR-/-mice. These results indicate that A/AR participates in the pathogenesis of hepatic fibrosis with a complex mechanism, and the effect of targeting adenosine and its receptors in the prevention of hepatic fibrosis should be cautiously evaluated.
     We found that A1AR involves in the pathogenesis of intrahepatic cholestatic liver injury, and is a potential gene and drug target for the treatment of intrahepatic cholestatsis. In the mouse model of a-naphthylisothiocyanate-(ANIT) induced intrahepatic cholestasis, hepatic adenosine levels and A1AR expression were markedly increased, which suggested that adenosine-A1AR signal may participate in the development of ANIT-induced liver injury. Our study revealed that mice lacking A1AR are protected from ANIT induced liver injury as evidenced by lower serum liver enzyme levels and reduced extent of histological necrosis. Bile acid accumulation in liver and serum was markedly diminished in A1AR-/-mice compared with wild-type (WT) mice, however, biliary and urinary outputs of bile acids were significantly enhanced in A1AR-/-mice. In the liver, mRNA expression of genes related to bile acid transport Bsep and Mdr2and hydroxylation Cyp3all was increased in A1AR-/-mice. In the kidney, A1AR deficiency prevented the decrease of glomerular filtration rate caused by ANIT. In addition, treatment of mice with A1AR antagonist also protected against ANIT hepatotoxicity. Our results indicated that lack of A1AR gene protects mice from ANIT-induced cholestasis by enhancing toxic biliary constituents efflux through biliary excretory route and renal elimination system and suggested a potential role of A1AR as therapeutic target for the treatment of intrahepatic cholestasis.
     We also found that endogenous A1AR activation protects against acute ethanol-induced liver injury. Mice lacking A1AR were more susceptible to acute ethanol-induced liver damage than WT mice, which was evidenced by elevated serum transaminase levels and increased extent of histopathological changes. Ethanol induced triglycerides accumulation in the serum and liver, and this accumulation was augmented in A1AR-/-mice. Analysis of gene expression in the liver revealed up-regulated mRNA levels of lipogenic genes (including:FAS, SCD1, ACC1, DGAT2, and PPARy) in A1AR-/-mice after ethanol treatment. In addition, lack of A1AR aggravated lipid peroxidation and worsened antioxidants depletion which was caused by ethanol exposure. A subsequent study revealed that pharmacological block of A1AR also exacerbated liver injury and steatosis induced by acute ethanol administration. In conclusion, these results indicated that endogenous A1AR protects mice against acute ethanol-induced liver injury by reducing oxidative stress and decreasing lipid accumulation though down-regulation of lipogenesis-related genes.
     In addition, we found that lack of A1AR exaggerates the development of nonalcoholic fatty liver and insulin resistance. Compared with WT mice,"western diet" induced a series of metabolic abnormalities in A1AR-/-mice, such as increased body weight and fat, adipose tissue hypertrophy, high blood lipids, deteriorated hepatic steatosis and insulin resistance. Further studies showed that increased lipogenesis due to up-regulated mRNA expression of lipogenic genes (including:FAS, SCD1, ACC1, DGAT2, and PPARy) in A1AR-/-mice after high-fat diet feeding. Besides, lack of A1AR exaggerated inflammation and macrophage infiltration into white adipose tissue, and increased mRNA expression of F4/80, MCP-1, and TNFa. Inflammation and macrophage infiltration into adipose tissue appear to participate in the pathogenesis of obesity-induced insulin resistance. Moreover, A1AR deficiency enhanced expression of C/EBPa and PPARy, the major transcriptional regulators of adipocyte differentiation, which should contribute to increased adipogenesis and obesity in A1AR-/-mice. Taken together, our results indicated that endogenous A1AR activation protects mice from high fat diet-induced metabolic disorders, though inhibiting hepatic lipogenesis, decreasing adipocyte differentiation, and alleviating inflammation in adipose tissue.
引文
[1]Lin HY, Fox IH, Spychala J. ATP degradation and depletion of adenine nucleotides. GB Zelenock (Ed.), Clinical Ischemic Syndromes, Mechanism and Consequences of Tissue Injury, The CV Mosby Company,1990,159-186.
    [2]Spychala J, Datta NS, Takabayashi K, Datta M, Fox IH, Gribbin T, Mitchell BS. Cloning of human adenosine kinase cDNA:sequence similarity to microbial ribokinases and fructokinases. Proc Natl Acad Sci USA,1996,93:1232-1237.
    [3]Snyder FF, Lukey T. Kinetic considerations for the regulation of adenosine and deoxyadenosine metabolism in mouse and human tissues based on a thymocyte model. Biochim Biophys Acta,1982,696:299-307.
    [4]Sala-Newby GB, Skladanowski AC, Newby AC. The mechanism of adenosine formation in cells. Cloning of cytosolic nucleotidase-I. J Biol Chem,1999,274:17789-17793.
    [5]Zimmermann H.59-Nucleotidase:molecular structure and functional aspects. Biochem J,1992,285:345-365.
    [6]Drury AN, Szent-Gyorgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol,1929,68(3):213-237.
    [7]Cusack NJ, Hourani SM. Subtypes of P2-purinoceptors. Studies using analogues of ATP. Ann N Y Acad Sci,1990,603:172-181.
    [8]Olsson RA, Pearson JD. Cardiovascular purinoceptors. Physiol Rev,1990,70(3): 761-845.
    [9]Barankiewicz J, Danks AM, Abushanab E, Makings L, Wieman T, Wallis RA, Pragnachayurulu PV, Fox A, Marangos PJ. Regulation of adenosine concentration and cytoprotective effects of novel reversible adenosine deaminase inhibitors. J Pharmacol Exp Ther,1997,283:1230-1238.
    [10]Rudolphi KA, Schubert P, Parkinson FE, Fredholm BB. Neuroprotective role of adenosine in cerebral ischaemia. Trends Pharmacol Sci,1992,13:439-445.
    [11]Corradetti R, Conte LG, Moroni F, Passani MB, Pepeu G. Adenosine decreases glutamate and aspartate release from rat hippocampal slices. Eur J Pharmacol,1984,104: 19-26.
    [12]Delaney SM, Geiger JD. Levels of endogenous adenosine in rat striatum. Ⅱ. Regulation of basal and N-methyl-D-aspartate-induced levels by inhibitors of adenosine transport and metabolism. J Pharmacol Exp Ther,1998,285:568-572.
    [13]Rathbone MP, Middlemis PJ, Kim JK, Gysbers JW, DeForge SP, Smith RW, Hughes DW. Adenosine and its nucleotides stimulate proliferation of chick astrocytes and human astrocytoma cells. Neurosci Res,1992,13:1-17.
    [14]Lelievre V, Muller JM, Falcon J. Adenosine modulates cell proliferation in human colonic adenocarcinoma. I. Possible involvement of adenosine A1 receptor subtypes in HT29 cells. Eur J Pharmacol,1998,341:289-297.
    [15]Lelievre V, Muller JM, Falcon J. Adenosine modulates cell proliferation in human colonic carcinoma. II. Differential behavior of HT29, DLD-1, Caco-2 and SW403 cell lines. Eur J Pharmacol,1998,341:299-308.
    [16]Belardinelli L, Linden J, Berne RM. The cardiac effects of adenosine. Prog Cardiovasc Dis,1989,32:73-97.
    [17]Anastassiou ED, Paliogianni F, Balow JP, Yamada H, Boumpas DT. Prostaglandin E2 and other cyclic AMP-elevating agents modulate IL-2 and IL-2R alpha gene expression at multiple levels. J Immunol,1992,148:2845-2852.
    [18]Birch RE, Polmar SH. Adenosine induced immunosuppression:the role of the adenosine receptor-adenylate cyclase interaction in the alteration of T-lymphocyte surface phenotype and immunoregulatory function. Int J Immunopharmacol,1986,8:329-337.
    [19]Mahan LC, McVittie LD, Smyk-Randall EM, Nakata H, Monsma FJ, Gerfen CR, Sibley DR. Cloning and expression of an A1 adenosine receptor from rat brain. Mol Pharmacol, 1991,40:1-7.
    [20]Libert F, Parmentier M, Lefort A, Dinsart C, Van Saude J, Maenhaut C, Simons MJ, Dumont JE, Vassart G. Selective amplification and cloning of four new members of the G protein-coupled receptor family. Science,1989,244:569-572.
    [21]Reppert SM, Weaver DR, Stehle JH, Rivkees SA. Molecular cloning and characterization of a rat Al-adenosine receptor that is widely expressed in brain and spinal cord. Mol Endocrinol,1991,5:1037-1048.
    [22]Stiles GL. Adenosine receptors:Physiological regulation and biochemical mechanisms. News Physiol Sci,1991,6:161-165.
    [23]Olsson RA, Pearson JD. Cardiovascular purinoceptors. Physiol Rev,1990,70(3): 761-845.
    [24]Kurtz A. Adenosine stimulates guanylate cyclase activity in vascular smooth muscle cells. J Biol Chem,1987,262:6296-6300.
    [25]Kull B, Svenningsson P, Fredholm BB. Adenosine A2A receptors are co-localized with and activate Golf in rat striatum. Mol Pharmacol,2000,58:771-777.
    [26]Fresco P, Diniz C, Goncalves J. Facilitation of noradrenaline release by activation of adenosine A2A receptors triggers both phospholipase C and adenylate cyclase pathways in rat tail artery. Cardiovasc Res,2004,63:739-746.
    [27]Gao Z, Chen T, Weber MJ, Linden J. A2B adenosine and P2Y2 receptors stimulate mitogen-activated protein kinase in human embryonic kidney-293 cells. Cross-talk between cyclic AMP and protein kinase C pathways. J Biol Chem,1999,274:5972-5980.
    [28]Linden J, Thai T, Figler H, Jin X, Robeva AS. Characterization of human A2B adenosine receptors:radioligand binding, western blotting, and coupling to Gq in human embryonic kidney 293 cells and HMC-1 mast cells. Mol Pharmacol,1999,56:705-713.
    [29]Tracey WR, Magee W, Masamune H, Oleynek JJ, Hill RJ. Selective activation of adenosine A3 receptors with N6-(3-chlorobenzyl)-5'-N-methylcarbox-amidoadenosine (CB-MECA) provides cardioprotection via KATP channel activation. Cardiovasc Res,1998, 40:138-145.
    [30]Mozzicato S, Joshi BV, Jacobson KA, Liang BT. Role of direct RhoA-phospholipase D1 interaction in mediating adenosine-induced protection from cardiac ischemia. FASEB J,2004, 18:406-408.
    [31]Fishman P, Madi L, Bar-Yehuda S, Barer F, Del Valle L, Khalili K. Evidence for involvement of Wnt signalling pathway in IB-MECA mediated suppression of melanoma cells. Oncogene,2002,21:4060-4064.
    [32]Zablocki JA, Wu L, Shryock J, Belardinelli L. Partial A1 adenosine receptor agonists from a molecular perspective and their potential use as chronic ventricular rate control agents during atrial fibrillation (AF). Curr Top Med Chem,2004,4:839-854.
    [33]Fredholm BB, Dzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev, 2001,53:527-552.
    [34]Auchampach JA, Rizvi A, Qiu Y, Tang XL, Maldonado C, Teschner S, Bolli R. Selective activation of A3 adenosine receptors with N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide protects against myocardial stunning and infarction without hemodynamic changes in conscious rabbits. Circ Res,1997,80:800-809.
    [35]Varani K, Portaluppi F, Gessi S, Merighi S, Ongini E, Belardinelli L, Borea PA. Dose and time effects of caffeine intake on human platelet adenosine A2A receptors:functional and biochemical aspects. Circulation,2000,102:285-289.
    [36]Giffin NJ, Kowacs F, Libri V, Williams P, Goadsby PJ, Kaube H. Effect of the adenosine Al receptor agonist GR79236 on trigeminal nociception with blink reflex recordings in healthy human subjects. Cephalalgia,2003,23:287-292.
    [37]Lee HT, Emala CW. Protective effects of renal ischemic preconditioning and adenosine pretreatment:role of A1 and A3 receptors. Am J Physiol Renal Physiol,2000,278:380-387.
    [38]Pingle SC, Mishra S, Marcuzzi A, Bhat SG, Sekino Y, Rybak LP, Ramkumar V. Osmotic diuretics induce adenosine A1 receptor expression and protect renal proximal tubular epithelial cells against cisplatin-mediated apoptosis. J Biol Chem,2004,279:43157-43167.
    [39]Lee HT, Ota-Setlik A, Xu H, D'Agati VD, Jacobson MA, Emala CW. Am J Physiol Renal Physiol,2003,284:267-273.
    [40]Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, Caldwell C, Ohta A, Thiel M. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol,2004, 22:657-682.
    [41]Erdmann AA, Gao ZG, Jung U, Foley J, Borenstein T, Jacobson KA, Fowler DH. Activation of Thl and Tel cell adenosine A2A receptors directly inhibits IL-2 secretion in vitro and IL-2 driven expansion in vivo. Blood,2005,105:4707-4714.
    [42]Salvatore CA, Tilley SL, Latour AM, Fletcher DS, Koller BH, Jacobson MA. Disruption of the A3 adenosine receptor gene in mice and its effect on stimulated inflammatory cells. J Biol Chem,2000,275:4429-4434.
    [43]Fishman P, Bar-Yehuda S, Madi L, Cohn I. A3 adenosine receptor as a target for cancer therapy. Anticancer Drugs,2002,13:437-443.
    [44]Madi L, Ochaion A, Rath-Wolfson L, Bar-Yehuda S, Erlanger A, Ohana G, Harish A, Merimski O, Barer F, Fishman P. The A3 adenosine receptor is highly expressed in tumor versus normal cells:potential target for tumor growth inhibition. Clin Cancer Res,2004,10: 4472-4479.
    [45]Friedman SL. Liver fibrosis—from bench to bedside. J Hepatol,2003,38:38-53.
    [46]Friedman SL, Rockey DC, McGuire RF, Maher JJ, Boyles JK,Yamasaki G. Isolated hepatic lipocytes and Kupffer cells from normal human liver:morphological and functional characteristics in primary culture. Hepatology,1992,15:234-243.
    [47]Pinzani M. Liver fibrosis. Springer Semin Immunopathol,1999,21:475-490.
    [48]Benyon RC, Iredale JP. Is liver fibrosis reversible? Gut,2000,46:443-446.
    [49]Arthur MJ. Fibrogenesis Ⅱ. Metalloproteinases and their inhibitors in liver fibrosis. Am J Physiol Gastrointest Liver Physiol,2000,279:245-249.
    [50]Gabele E, Brenner DA, Rippe RA. Liver fibrosis:signals leading to the amplification of the fibrogenic hepatic stellate cell. Front Biosci,2003,8:69-77.
    [51]Milani S, Herbst H, Schuppan D, Kim KY, Riecken EO, Stein H. Procollagen expression by nonparenchymal rat liver cells in experimental biliary fibrosis. Gastroenterology,1990, 98:175-184.
    [52]Marra F. Hepatic stellate cells and the regulation of liver inflammation. J Hepatol,1999, 31:1120-1130.
    [53]Lindquist JN, Marzluff WF, Stefanovic B. Fibrogenesis. Ⅲ. Posttranscriptional regulation of type Ⅰ collagen. Am J Physiol Gastrointest Liver Physiol,2000,279:471-476.
    [54]Kinnman N, Housset C. Peribiliary myofibroblasts in biliary type liver fibrosis. Front Biosci,2002,7:496-503.
    [55]Magness ST, Bataller R, Yang L, Brenner DA. A dual reporter gene transgenic mouse demonstrates heterognity in hepatic fibrogenic cell populations. Hepatology,2004, 40:1151-1159.
    [56]Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, Belperio JA, Keane MP, Strieter RM. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest,2004,114:438-446.
    [57]Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest,2003,112:1776-1784.
    [58]Kmiec Z. Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol, 2001,161:1-151.
    [59]Higuchi H, Gores GJ. Mechanisms of liver injury, an overview. Curr Mol Med,2003, 3:483-490.
    [60]Canbay A, Friedman S, Gores GJ. Apoptosis:the nexus of liver injury and fibrosis. Hepatology,2004,39:273-278.
    [61]Casini A, Ceni E, Salzano R, Biondi P, Parola M, Galli A, Foschi M, Caligiuri A, Pinzani M, Surrenti C. Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells:role of nitric oxide. Hepatology,1997, 25:361-367.
    [62]Vinas O, Bataller R, Sancho-Bru P, Gines P, Berenguer C, Enrich C, Nicolas JM, Ercilla G, Gallart T, Vives J, Arroyo V, Rodes J. Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology,2003,38: 919-929.
    [63]Maher JJ. Interactions between hepatic stellate cells and the immune system. Semin Liver Dis,2001,21:417-426.
    [64]Naito M, Hasegawa G, Ebe Y, Yamamoto T. Differentiation and function of Kupffer cells. Med Electron Microsc,2004,37:16-28.
    [65]Thurman RG. Alcoholic liver injury involves activation of Kupffer cells by endotoxin. Am J Physiol,1998,275:605-611.
    [66]Gressner AM, Weiskirchen R, Breitkopf K, and Dooley S. Roles of TGF-beta in hepatic fibrosis. Front Biosci,2002,7:793-807.
    [67]Bataller R, and Brenner DA. Hepatic stellate cells as a target for the treatment of liver fibro-sis. Semin Liver Dis,2001,21:437-451.
    [68]Hammel P, Couvelard A, O'Toole D, Ratouis A, Sauvanet A, Flejou JF, Degott C, Belghiti J, Bernades P, Valla D, Ruszniewski P, Levy P. Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N Engl J Med,2001,344:418-423.
    [69]Arthur MJ. Reversibility of liver fibrosis and cirrhosis following treatment for hepatitis C. Gastroenterology,2002,122:1525-1528.
    [70]Myant NB, Mitropoulos KA. Cholesterol 7 alpha-hydroxylase. J Lipid Res,1977,18: 135-153.
    [71]Pikuleva IA, Babiker A, Waterman MR, Bjorkhem I. Activities of recombinant human cytochrome P450c27 (CYP27) which produce intermediates of alternative bile acid biosynthetic pathways. J Biol Chem,1998,273:18153-18160.
    [72]Arrese M, Trauner M. Molecular aspects of bile formation and cholestasis. Trends Mol Med,2003,9:558-564.
    [73]Trauner M, Boyer JL. Bile salt transporters:molecular characterization, function, and regulation. Physiol Re,2003,83:633-671.
    [74]Trauner M, Meier PJ, Boyer JL. Molecular pathogenesis of cholestasis. N Engl J Med, 1998,339:1217-1227.
    [75]Kullak-Ublick GA, Stieger B, Hagenbuch B, Meier PJ. Hepatic transport of bile salts. Semin Liver Dis,2000,20:273-292.
    [76]Keppler D, Cui Y, Konig J, Leier I, Nies A. Export pumps for anionic conjugates encoded by MRP genes. Adv Enzyme Regul,1999,39:237-246.
    [77]Keppler D, Konig J. Hepatic secretion of conjugated drugs and endogenous substances. Semin Liver Dis,2000,20:265-272.
    [78]Hirohashi T, Suzuki H, Sugiyama Y. Characterization of the transport properties of cloned rat multidrug resistance-associated protein 3 (MRP3). J Biol Chem,1999,274: 15181-15185.
    [79]Hofinann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med,1999,159:2647-2658.
    [80]Karpen SJ. Nuclear receptor regulation of hepatic function. J Hepatol,2002,36:832-850.
    [81]Handschin C, Meyer UA. Induction of drug metabolism:the role of nuclear receptors. Pharmacol Re,2003,55:649-673.
    [82]Kullak-Ublick GA, Stieger B, Meier PJ. Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology,2004,126:322-342.
    [83]Trauner M, Wagner M, Fickert P, Zollner G. Molecular regulation of hepatobiliary transport systems:clinical implications for understanding and treating cholestasis. J Clin Gastroenterol,2005,39:111-124.
    [84]Trauner M, Graziadei IW. Review article:mechanisms of action and therapeutic applications of ursodeoxycholic acid in chronic liver diseases. Aliment Pharmacol Ther,1999, 13:979-996.
    [85]Paumgartner G, Beuers U. Mechanisms of action and therapeutic efficacy of ursodeoxycholic acid in cholestatic liver disease. Clin Liver Dis,2004,8:67-81.
    [86]Paumgartner G, Beuers U. Ursodeoxycholic acid in cholestatic liver disease:mechanisms of action and therapeutic use revisited. Hepatology,2002,36:525-531.
    [87]Liu Y, Binz J, Numerick MJ, Dennis S, Luo G, Desai B, MacKenzie KI, Mansfield TA, Kliewer SA, Goodwin B, Jones SA. Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra-and extra-hepatic cholestasis. J Clin Invest,2003,112: 1678-1687.
    [88]Pellicciari R, Fiorucci S, Camaioni E, Clerici C, Costantino G, Maloney PR, Morelli A, Parks DJ, Willson TM.6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J Med Chem,2002,45: 3569-3572.
    [89]Mandayam S, Jamal MM, Morgan TR. Epidemiology of alcoholicliver disease. Semin Liver Dis,2004,24:217-232.
    [90]Lelbach WK. Cirrhosis in the alcoholic and its relation to the volume of alcohol abuse. Ann NY Acad Sci,1975,252:85-105.
    [91]Becker U, Deis A, Sorensen TI, Gronbaek M, Borch-Johnsen K, Miiller CF, Schnohr P, Jensen G. Prediction of risk of liver disease by alcohol intake, sex, and age:a prospective population study. Hepatology,1996,23:1025-1029.
    [92]Baptista A, Bianchi L, de Groote J. Alcoholic liver disease:morphological manifestations. Review by an international group. Lancet,1981,1:707-711.
    [93]McSween RNM, Burt AD. Histologic spectrum of alcoholic liver disease. Semin Liver Dis,1986,3:221-232.
    [94]Alexander JF, Lichner MW, Galambos JT. Natural history of alcoholic hepatitis. The long-term prognosis. Am J Gastroen-terol,1971,56:515-525.
    [95]Carithers RL Jr, Herlong HF, Diehl AM, Shaw EW, Combes B, Fallon HJ, Maddrey WC. Methylprednisolone therapy in patients with severe alcoholic hepatitis. A randomized multicenter trial. Ann Intern Med,1989,110:685-690.
    [96]Akriviadis E, Botla R, Briggs W, Han S, Reynolds T, Shakil O. Pentoxifylline improves short-term survival in severe acute alcoholic hepatitis:a double-blind, placebo controlled trial. Gastroenterology,2000,119:1637-1648.
    [97]Ishak KG, Zimmerman HJ, Ray MB. Alcoholic liver disease:Pathologic, pathogenic and clinical aspects. Alcohol Clin Exp Res,1991,15(1):45-66.
    [98]Lieber CS. Mechanism of alcohol induced hepatic injury. Pharmacology and Therapeutics,1990,46:1-17.
    [99]Lieber CS. Microsomal alcohol oxidizing system. Enzyme,1987,37:45-56.
    [100]Cederbaum AI. Introduction serial review:alcohol, oxidative stress and cell injury. Free Radic Biol Med,2001,31:1524-1526.
    [101]Bondy SC. Ethanol toxicity and oxidative stress. Toxicol Lett,1992,63:231-242.
    [102]Nordman R, Riviere C, Rouach H. Implication of free radical mechanisms in ethanol-induced cellular injury. Free Radic Biol Me,1992,12:219-240.
    [103]Cederbaum AI, Lu Y, Wu D. Role of oxidative stress in alcohol-induced liver injury. Arch Toxicol,2009,83(6):519-548.
    [104]Eaton S, Record CO, Bartlett K. Multiple biochemical effects in the pathogenesis of alcoholic fatty liver. Eur J Clin Invest,1997,27:719-722.
    [105]Koteish A, Diehl AM. Animal models of steatosis. Semin Liver Dis,2001,21:89-104.
    [106]Salaspuro MP, Shaw S, Jayatilleke E, Ross WA, Lieber CS. Attenuation of the ethanol-induced hepatic redox change after chronic alcohol consumption in baboons:metabolic consequences in vivo and in vitro. Hepatology,1981,1:33-38.
    [107]Smith SA. Peroxisome proliferator-activated receptors and the regulation of mammalian lipid metabolism. Biochem Soc Trans,2002,30:1086-1090.
    [108]Adachi Y, Moore LE, Bradford BU, Gao W, Thurman RG. Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology,1995,108,218-224.
    [109]Adachi Y, Bradford BU, Gao W, Bojes HK, Thurman RG. Inactivation of Kupffer cells prevents early alcohol-induced liver injury. Hepatology,1994,20:453-460.
    [110]Iimuro Y, Gallucci RM, Luster MI, Kono H, Thurman RG Antibodies to tumor necrosis factor alpha attenuate hepatic necrosis and inflammation caused by chronic exposure to ethanol in the rat. Hepatology,1997,26:1530-1537.
    [111]Kono H, Rusyn I, Uesugi T, Yamashina S, Connor HD, Dikalova A, Mason RP, Thurman RG Diphenyleneiodonium sulfate, an NADPH oxidase inhibitor, prevents early alcohol-induced liver injury in the rat. Am J Physiol Gastrointest Liver Physiol,2001,280: 1005-1012.
    [112]Kono H, Rusyn I, Yin M, Ga" bele E, Yamashina S, Dikalova A, Kadiiska MB, Connor HD, Mason RP, Segal BH, Bradford BU, Holland SM, Thurman RG NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease. J Clin Invest,2000, 106:867-872.
    [113]Yin M, Wheeler MD, Kono H, Bradford BU, Galluci RM, Luster MI, Thurman RG. Essential role of TNFa in alcohol-induced liver injury in mice. Gastroenterology,1999, 117:942-952.
    [114]Uesugi T, Froh M, Arteel GE, Bradford BU, Ga" bele E, Wheeler MD, Thurman RG. Delivery of IkappaB superrepressor gene with adenovirus reduces early alcohol-induced liver injury in rats. Hepatology,2001,34:1149-1157.
    [115]Ludwig J, Viggiano TR, Mcgill DB, Oh BJ. Nonalcoholic steatohepatitis:Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc,1980,55:434-438.
    [116]Powell EE, Cooksley WG, Hanson R, Searle J, Halliday JW, Powell LW. The natural history of nonalcoholic steatohepatitis:a follow-up study of forty-two patients for up to 21 years. Hepatology,1990,11:74-80.
    [117]Wanless IR, Lentz JS. Fatty liver hepatitis (steatohepatitis) and obesity:an autopsy study with analysis of risk factors. Hepatology,1990,12:1106-1110.
    [118]Ratziu V, Giral P, Charlotte F, Bruckert E, Thibault V, Theodorou I, Khalil L, Turpin G, Opolon P, Poynard T. Liver fibrosis in overweight patients. Gastroenterology,2000,118: 1117-1123.
    [119]Sanyal AJ. AGA technical review on nonalcoholic fatty liver disease. Gastroenterology, 2002,123:1705-1725.
    [120]Marchesini G, Brizi M, Morselli-Labate AM, Bianchi G, Bugianesi E, McCullough AJ, Forlani G, Melchionda N. Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med,1999,107:450-455.
    [121]Day CP. Pathogensis of steatohepatitis. Best Pract Res Clin Gastroenterol,2002,16: 663-678.
    [122]Koteish A, Diehl AM. Animal models of steatosis. Semin Liver Dis,2001,21:89-104.
    [123]Bradbury MW, Berk PD. Lipid metabolism in hepatic steatosis. Clin Liver Dis,2004,8: 639-671.
    [124]Brunt EM. Nonalcoholic steatohepatitis. Semin Liver Dis,2004,24:3-20.
    [125]Shoelson SE, Lee J, Yuan M. Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity-and diet-induced insulin resistance. Int J Obes Relat Metab Disord,2003,27: 49-52.
    [126]Memon RA, Feingold KR, Moser AH, Fuller J, Grunfeld C. Regulation of fatty acid transport protein and fatty acid translocase mRNA levels by endotoxin and cytokines. Am J Physiol,1998,274:210-217.
    [127]Dentin R, Girard J, Postic C. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-lc (SREBP-lc):two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie,2005,87:81-86.
    [128]Carvalho E, Jansson PA, Nagaev I, Wenthzel AM, Smith U. Insulin resistance with low cellular IRS-1 expression is also associated with low GLUT4 expression and impaired insulin-stimulated glucose transport. FASEB J,2001,15:1101-1103.
    [129]Wetterau JR, Aggerbeck LP, Bouma ME, Eisenberg C, Munck A, Hermier M, Schmitz J, Gay G, Rader DJ, Gregg RE. Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science,1992,258:999-1001.
    [130]Berriot-Varoqueaux N, Aggerbeck LP, Samson-Bouma M,Wetterau JR. The role of the microsomal triglygeride transfer protein in abetalipoproteinemia. Annu Rev Nutr,2000,20: 663-697.
    [131]Reddy JK. Nonalcoholic steatosis and steatohepatitis. Ⅲ. Peroxisomal beta-oxidation, PPAR alpha, and steatohepatitis. Am J Physiol Gastrointest Liver Physiol,2001,281: 1333-1339.
    [132]Mcgarry JD. Banting lecture 2001:dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes,2002,51:7-18.
    [133]Mcgarry JD, Mannaerts GP, Foster DW. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest,1977,60:265-270.
    [134]Ibdah JA, Paul H, Zhao Y, Binford S, Salleng K, Cline M, Matern D, Bennett MJ, Rinaldo P, Strauss AW. Lack of mitochondrial trifunctional protein in mice causes neonatal hypoglycemia and sudden death. J Clin Invest,2001,107:1403-1409.
    [135]McClain CJ, Mokshagundam SP, Barve SS, Song Z, Hill DB, Chen T, Deaciuc I. Mechanisms of non-alcoholic steatohepatitis. Alcohol,2004,34:67-79.
    [136]Aoyama T, Peters JM, Iritani N, Nakajima T, Furihata K, Hashimoto T, Gonzalez FJ. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha. J Biol Chem,1998,273:5678-684.
    [137]Rao MS, Reddy JK. Peroxisomal beta-oxidation and steatohepatitis. Semin Liver Dis, 2001,21:43-55.
    [138]Pessayre D, Berson A, Fromenty B, Mansouri A. Mitochondria in steatohepatitis. Semin, Liver Dis,2001,21:57-69.
    [139]Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest,2004,114:147-152.
    [140]Pessayre D, Mansouri A, Fromenty B. Nonalcoholic steatosis and steatohepatitis. V. Mitochondrial dysfunction in steatohepatitis. Am J Physiol Gastrointest Liver Physiol,2002, 282:193-199.
    [141]George J, Pera N, Phung N, Leclercq I, Yun Hou J, Farrell G. Lipid peroxidation, stellate cell activation and hepatic fibrogenesis in a rat model of chronic steatohepatitis. J Hepatol,2003,39:756-764.
    [142]Tilg H, Diehl AM. Cytokines in alcoholic and nonalcoholic steatohepatitis. N Engl J Med,2000,343:1467-1476.
    [143]Crespo, Cayon A, Fernandez-Gil P. Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology,2001, 34:1158-1163.
    [144]Kugelmas M, Hill DB, Vivian B, Marsano L, Mcclain CJ. Cytokines and Nash:a pilot study of the effects of lifestyle modification and vitamin E. Hepatology,2003,38:413-419.
    [145]Kim JY, van de Wall E, Laplante M, Azzara A, Trujillo ME, Hofinann SM, Schraw T, Durand JL, Li H, Li G, Jelicks LA, Mehler MF. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest,2007,117: 2621-2637.
    [1]Jacobson KA, Gao ZG Adenosine receptors as therapeutic targets. Nature Reviews Drug Discovery,2006,5:247-264.
    [2]Migchielsen AA, Breuer ML, van Roon MA, te Riele H, Zurcher C, Ossendorp F, Toutain S, Hershfield MS, Berns A, Valerio D. Adenosine deaminase deficient mice die perinatally and exhibit liver cell degeneration, atelectasis and small intestinal cell death. Nat Genet,1995,10:279-287.
    [3]Boison D, Scheurer L, Zumsteg V, Rulicke T, Litynski P, Fowler B, Brandner S, Mohler H. Neonatal hepatic steatosis by disruption of the adenosine kinase gene. Proc Natl Acad Sci USA,2002,99:6985-6990.
    [4]Peng Z, Fernandez P, Wilder T, Yee H, Chiriboga L, Chan ES, Cronstein BN. Ecto-5'-nucleotidase (CD73)-mediated extracellular adenosine production plays a critical role in hepatic fibrosis. FASEB J,2008,22:2263-2272.
    [5]Chan ES, Montesinos MC, Fernandez P, Desai A, Delano DL, Yee H, Reiss AB, Pillinger MH, Chen JF, Schwarzschild MA, Friedman SL, Cronstein BN. Adenosine A(2A) receptors play a role in the pathogenesis of hepatic cirrhosis. Br J Pharmacol,2006,148: 1144-1155.
    [6]Kim J, Kim M, Song JH, Lee HT. Endogenous A1 adenosine receptors protect against hepatic ischemia reperfusion injury in mice. Liver Transpl,2008,14:845-854.
    [7]Peng Z, Borea PA, Varani K, Wilder T, Yee H, Chiriboga L, Blackburn MR, Azzena G, Resta G, Cronstein BN. Adenosine signaling contributes to ethanol-induced fatty liver in mice. J Clin Invest,2009,119:582-594.
    [8]Miyoshi H, Rust C, Roberts PJ, Burgart LJ, Gores GJ. Hepatocyte apoptosis after bile duct ligation in the mouse involves Fas. Gastroenterology,1999,117:669-677.
    [9]Sun CX, Young HW, Molina JG, Volmer JB, Schnermann J, Blackburn MR. A protective role for the Al adenosine receptor in adenosine-dependent pulmonary injury. J Clin Invest, 2005,115:35-43.
    [10]Friedman SL. Liver fibrosis-from bench to bedside. J Hepatol,2003,38:38-53.
    [11]Bataller R, Brenner DA. Hepatic stellate cells as a target for the treatment of liver fibrosis. Semin Liver Dis,2001,21 (3):437-451.
    [12]Wong FW, Chan WY, Lee SS. Resistance to carbon tetrachloride-induced hepatotoxicity in mice which lack CYP2E1 expression. Toxicol Appl Pharmacol,1998,153:109-118.
    [13]Demori I, Burlando B, Gerdoni E, Lanni A, Fugassa E, Voci A. Uncoupling protein-2 induction in rat hepatocytes after acute carbon tetrachloride liver injury. J Cell Physiol,2008, 216:413-418.
    [14]Wang X, Chen YX, Xu CF, Zhao GN, Huang YX, Wang QL. Relationship between tumor necrosis factor-alpha and liver fibrosis. World J Gastroenterol,1998,4(1):12-18.
    [15]Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. Front Biosci,2002,7:793-807.
    [16]Luckey SW, Petersen DR. Activation of Kupffer cells during the course of carbon tetrachloride-induced liver injury and fibrosis in rats. Exp Mol Pathol,2001,71(3):226-240.
    [17]Yang C, Zeisberg M, Mosterman B, Sudhakar A, Yerramalla U, Holthaus K, Xu L, Eng F, Afdhal N, Kalluri R. Liver fibrosis:insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors. Gastroenterology,2003,124(1):147-159.
    [18]Borkham-Kamphorst E, van Roeyen CR, Ostendorf T, Floege J, Gressner AM, Weiskirchen R. Pro-fibrogenic potential of PDGF-D in liver fibrosis. J Hepatol,2007,46(6): 1064-1074.
    [19]Priester S, Wise C, Glaser SS. Involvement of cholangiocyte proliferation in biliary fibrosis. World J Gastrointest Pathophysiol,2010, 1(2):30-37.
    [20]Gabele E, Froh M, Arteel GE, Uesugi T, Hellerbrand C, Scholmerich J, Brenner DA, Thurman RG, Rippe RA. TNF alpha is required for cholestasis-induced liver fibrosis in the mouse. Biochem Biophys Res Commun,2009,378(3):348-353.
    [21]Arias M, Sauer-Lehnen S, Treptau J, Janoschek N, Theuerkauf I, Buettner R, Gressner AM, Weiskirchen R. Adenoviral expression of a transforming growth factor-β1 antisense mRNA is effective in preventing liver fibrosis in bile-duct ligated rats. BMC Gastroenterol, 2003,3:21-29.
    [22]MacLaughlin M, Martinez-Salgado C, Eleno N, Olivera A, Lopez-Novoa JM. Adenosine activates mesangial cell proliferation. Cell Signal,1997,9:59-63.
    [23]Fishman P, Bar-Yehuda S and Vagman L. Adenosine and other low molecular weight factors released by muscle cells inhibit tumor cell growth. Cancer Res,1998,58:3181-3187.
    [24]Merighi S, Mirandola P, Milani D, Varani K, Gessi S, Klotz KN, Leung E, Baraldi PG, Borea PA. Adenosine receptors as mediators of both cell proliferation and cell death of cultured human melanoma cells. J Invest Dermatol,2002,119:923-933.
    [25]Hashmi AZ, Hakim W, Kruglov EA, Watanabe A, Watkins W, Dranoff JA, Mehal WZ. Adenosine inhibits cytosolic calcium signals and chemotaxis in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol,2007,292:395-401.
    [26]Hernandez-Munoz R, Diaz-Munoz M, Lopez V, Lopez-Barrera F, Yaflez L, Vidrio S, Aranda-Fraustro A, Chagoya de Sanchez V. Balance between oxidative damage and proliferative potential in an experimental rat model of CC14-induced cirrhosis:protective role of adenosine administration. Hepatology,1997,26:1100-1110.
    [27]Andrade CM, Roesch GC, Wink MR, Guimaraes EL, Souza LF, Jardim FR, Guaragna RM, Bernard EA, Margis R, Borojevic R, Battastini AM, Guma FC. Activity and expression of ecto-5'-nucleotidase/CD73 are increased during phenotype conversion of a hepatic stellate cell line. Life Sci,2008,82:21-29.
    [28]Friedman SL. The cellular basis of hepatic fibrosis. Mechanisms and treament strategies. N Engl J Med,1993,328:1828-1835.
    [29]Edwards MJ, Keller BJ, Kauffman FC, Thurman RG. The involvement of Kupffer cells in carbon tetrachloride toxicity. Toxicol Appl Pharmacol,1993,119:22-27.
    [1]Trauner M, Meier PJ, Boyer JL. Molecular pathogenesis of cholestasis. N Engl J Med, 1998,339:1217-1227.
    [2]Cui YJ, Aleksunes LM, Tanaka Y, Goedken MJ, Klaassen CD. Compensatory induction of liver efflux transporters in response to ANIT-induced liver injury is impaired in FXR-null mice. Toxicol Sci,2009,110:47-60.
    [3]Carpenter-Deyo L, Marchand DH, Jean PA, Roth RA, Reed DJ. Involvement of glutathione in 1-naphthylisothiocyanate (ANIT) metabolism and toxicity to isolated hepatocytes. Biochem Pharmacol,1991,42:2171-2180.
    [4]Dietrich CG, Ottenhoff R, de Waart DR, Oude Elferink RP. Role of MRP2 and GSH in intrahepatic cycling of toxins. Toxicology,2001,167:73-81.
    [5]Ogawa K, Suzuki H, Hirohashi T, Ishikawa T, Meier PJ, Hirose K. Characterization of inducible nature of MRP3 in rat liver. Am J Physiol Gastrointest Liver Physiol,2000,278: 438-446.
    [6]Zollner G, Marschall HU, Wagner M, Trauner M. Role of nuclear receptors in the adaptive response to bile acids and cholestasis:pathogenetic and therapeutic considerations. Mol Pharm,2006,3:231-251.
    [7]Marschall HU, Wagner M, Bodin K, Zollner G, Fickert P, Gumhold J. Fxr(-/-) mice adapt to biliary obstruction by enhanced phase I detoxification and renal elimination of bile acids. J Lipid Res,2006,47:582-592.
    [8]Lee J, Boyer JL. Molecular alterations in hepatocyte transport mechanisms in acquired cholestatic liver disorders. Semin Liver Dis,2000,20:373-384.
    [9]Trauner M, Meier PJ, Boyer JL. Molecular regulation of hepatocellular transport systems in cholestasis. J Hepatol,1999,31:165-178.
    [10]Trauner M, Wagner M, Fickert P, Zollner G. Molecular regulation of hepatobiliary transport systems:clinical implications for understanding and treating cholestasis. J Clin Gastroenterol,2005,39:111-124.
    [11]Berne, RM. Cardiac nucleotides in hypoxia:Possible role in regulation of coronary blood flow. Am J Physiol,1963,204:317-322.
    [12]Olsson RA, Pearson JD. Cardiovascular purinoceptors. Physiol Rev,1990,70:761-845.
    [13]Sun CX, Young HW, Molina JG, Volmer JB, Schnermann J, Blackburn MR. A protective role for the A1 adenosine receptor in adenosine-dependent pulmonary injury. J Clin Invest, 2005,115:35-43.
    [14]Smit JJ, Schinkel AH, Oude Elferink RP, Groen AK, Wagenaar E, van Deemter L. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell,1993,75:451-462.
    [15]Chen X, Zhang C, Wang H, Xu J, Duan ZH, Zhang Y. Altered integrity and decreased expression of hepatocyte tight junctions in rifampicin-induced cholestasis in mice. Toxicol Appl Pharmacol,2009,240:26-36.
    [16]Kodali P, Wu P, Lahiji PA, Brown EJ, Maher JJ. ANIT toxicity toward mouse hepatocytes in vivo is mediated primarily by neutrophils via CD 18. Am J Physiol Gastrointest Liver Physiol,2006,291(2):355-363.
    [17]Dahm LJ, Schultze AE, Roth RA. An antibody to neutrophils attenuates naphthyliso-thiocyanate-induced liver injury. J Pharmacol Exp Ther,1991,256:412-420.
    [18]Waters NJ, Holmes E, Williams A, Waterfield CJ, Farrant RD, Nicholson JK. NMR and pattern recognition studies on the time-related metabolic effects of alpha-naphthylisothiocya-nate on liver, urine, and plasma in the rat:an integrative metabonomic approach. Chem Res Toxicol,2001,14(10):1401-1412.
    [19]Cui YJ, Aleksunes LM, Tanaka Y, Goedken MJ, Klaassen CD. Compensatory induction of liver efflux transporters in response to ANIT-induced liver injury is impaired in FXR-null mice. Toxicol Sci,2009,110:47-60.
    [20]Tanaka Y, Aleksunes LM, Cui YJ, Klaassen CD. ANIT-induced intrahepatic cholestasis alters hepatobiliary transporter expression via Nrf2-dependent and independent signaling. Toxicol Sci,2009,108:247-257.
    [21]Song S, Meyer M, Turk TR, Wilde B, Feldkamp T, Assert R, Wu K, Kribben A, and Witzke O. Serum cystatin c in mouse models:A reliable and precise marker for renal function and superior to serum creatinine. Nephrol Dial Transplant,2009,24:1157-1161.
    [22]Stiles GL. Adenosine receptors. J Biol Chem,1992,267:6451-6454.
    [23]Boison D, Scheurer L, Zumsteg V, Rulicke T, Litynski P, Fowler B, Brandner S, Mohler H. Neonatal hepatic steatosis by disruption of the adenosine kinase gene. Proc Natl Acad Sci U S A,2002,99:6985-6990.
    [24]Migchielsen AA, Breuer ML, van Roon MA, te Riele H, Zurcher C, Ossendorp F, Toutain S, Hershfield MS, Berns A, Valerio D. Adenosine-deaminase-deficient mice die perinatally and exhibit liver-cell degeneration, atelectasis and small intestinal celldeath. Nat Genet,1995,10:279-287.
    [25]Kim J, Kim M, Song JH, Lee HT. Endogenous A1 adenosine receptors protect against hepatic ischemia reperfusion injury in mice. Liver Transpl,2008,14:845-854.
    [26]Peng Z, Borea PA, Varani K, Wilder T, Yee H, Chiriboga L, Blackburn MR, Azzena G, Resta G, Cronstein BN. Adenosine signaling contributes to ethanol-induced fatty liver in mice. J Clin Invest,2009,119:582-594.
    [27]Paumgartner G, Beuers U. Ursodeoxycholic acid in cholestatic liver disease:mechanisms of action and therapeutic use revisited. Hepatology,2002,36:525-531.
    [28]Ando M. Effects of urso-deoxycholic acid (UDCA) on alpha-naphthyl-isothiocyanate (ANIT) induced intrahepatic cholestasis in rats. Nihon Shokakibyo Gakkai Zasshi,1992, 89:2586-2593.
    [29]Hocher, B. Adenosine A1 receptor antagonists in clinical research and development. Kidney Int,2010,78:438-445.
    [1]Maddrey WC. Alcohol-induced liver disease. Clin Liver Dis,2000,4:115-131.
    [2]Kim SJ, Jung YS, Kwon doY, Kim YC. Alleviation of acute ethanol-induced liver injury and impaired metabolomics of S-containing substances by betaine supplementation. Biochem Biophys Res Commun,2008,368:893-898.
    [3]Lv X, Chen Z, Li J, Zhang L, Liu H, Huang C, Zhu P. Caffeine protects against alcoholic liver injury by attenuating inflammatory response and oxidative stress. Inflamm Res,2010, 59:635-645.
    [4]Caro AA, Cederbaum AI. Oxidative stress, toxicology, and pharmacology of CYP2E1. Annu Rev Pharmacol Toxicol,2004,44:27-42.
    [5]Xu Y, Leo MA, Lieber CS. Lycopene attenuates alcoholic apoptosis in HepG2 cells expressing CYP2E1. Biochem Biophys Res Commun,2003,308:614-618.
    [6]Nordmann R. Alcohol and antioxidant systems. Alcohol Alcohol,1994,29:513-522.
    [7]Masini A, Ceccarelli D, Gallesi D, Giovannini F, Trenti T. Lipid hydroperoxide induced mitochondrial dysfunction following acute ethanol intoxication in rats:The critical role for mitochondrial reduced glutathione. Biochem Pharmacol,1994,47:217-224.
    [8]Shaw S, Rubin KP, Lieber CS. Depressed hepatic glutathione and increased diene conjugates in alcoholic liver disease. Evidence of lipid peroxidation. Dig Dis Sci,1983,28: 585-589.
    [9]Song Z, Zhou Z, Chen T, Hill D, Kang J, Barve S, McClain C. S-adenosylmethionine (SAMe) protects against acute alcohol induced hepatotoxicity in mice small star, filled. J Nutr Biochem,2003,14:591-597.
    [10]Nagy LE. Molecular aspects of alcohol metabolism:transcription factors involved in early ethanol-induced liver injury. Annu Rev Nutr,2004,24:55-78.
    [11]Zeng T, Xie KQ. Ethanol and liver:recent advances in the mechanisms of ethanol-induced hepatosteatosis. Arch Toxicol,2009,83:1075-1081.
    [12]Carmichael FJ, Saldivia V, Varghese GA, Israel Y, Orrego H. Ethanol-induced increase in portal blood flow:role of acetate and A1-and A2-adenosine receptors. Am J Physiol,1998, 255:417-423.
    [13]Orrego H, Carmichael FJ, Saldivia V, Giles HG, Sandrin S, Israel Y. Ethanol-induced increase in portal blood flow:role of adenosine. Am J Physiol,1988,254:495-501.
    [14]Peng Z, Borea PA, Varani K, Wilder T, Yee H, Chiriboga L, Blackburn MR, Azzena G, Resta G, Cronstein BN. Adenosine signaling contributes to ethanol-induced fatty liver in mice. J Clin Invest,2009,119:582-594.
    [15]Wu KC, Liu J, Klaassen CD. Role of Nrf2 in preventing ethanol-induced oxidative stress and lipid accumulation. Toxicol Appl Pharmacol,2012,262:321-329.
    [16]Haug A, Hostmark AT. Lipoprotein lipases, lipoproteins and tissue lipids in rats fed fish oil or coconut oil. J Nutr,1987,117:1011-1017.
    [17]Wechsler H, Dowdall GW, Davenport A, Castillo S. Correlates of college student binge drinking. Am J Public Health,1995,85(7):921-926.
    [18]Polkinghorne H, Gill T. "Riding the Tiger":lessons from a health promotion activity aimed at reducing the use of alcohol by youth. Drug Alcohol Rev,1995,14(4):405-409.
    [19]Orrego H, Carmichael FJ, Saldivia V, Giles HG, Sandrin S, Israel Y. Ethanol-induced increase in portal blood flow:role of adenosine. Am J Physiol,1988,254:495-501.
    [20]Proctor WR, Dunwiddie TV. Behavioral sensitivity to purinergic drugs parallels ethanol sensitivity in selectively bred mice.Behavioral sensitivity to purinergic drugs parallels ethanol sensitivity in selectively bred mice. Science,1984,224(4648):519-521.
    [21]Dar MS, Mustafa SJ, Wooles WR. Possible role of adenosine in the CNS effects of ethanol. Life Sci,1983,33(14):1363-1374.
    [22]Jimenez-Lopez JM, Cederbaum AI. CYP2E1-dependent oxidative stress and toxicity: role in ethanol-induced liver injury. Expert Opin Drug Metab Toxicol,2005,1:671-685.
    [23]De Minicis S, Brenner DA. Oxidative stress in alcoholic liver disease:role of NADPH oxidase complex. J Gastroenterol Hepatol,2008,23:S98-S103.
    [24]Wu D, Cederbaum AI. Oxidative stress and alcoholic liver disease. Semin Liver Dis, 2009,29:141-154.
    [25]Hu S, Shen G, Zhao W, Wang F, Jiang X, Huang D. Paeonol, the main active principles of Paeonia moutan, ameliorates alcoholic steatohepatitis in mice. J Ethnopharmacol,2010,128: 100-106.
    [1]Angulo P. Nonalcoholic fatty liver disease. N Engl J Med,2002,346:1221-1231.
    [2]Angulo P. GI epidemiology:nonalcoholic fatty liver disease. Aliment Pharmacol Ther, 2007,25:883-889.
    [3]Inoue M, Ohtake T, Motomura W. Increased expression of PPAR-gamma in high fat diet-induced liver steatosis in mice. Biochem Biophys Res Commun,2005,336:215-222.
    [4]Lin J, Yang R, Tarr PT. Hyperlipidemic effects of dietary saturated fats mediated through PGC-lbeta coactivation of SREBP. Cell,2005,120:261-273.
    [5]Powell EE, Cooksley WG, Hanson R, Searle J, Halliday JW, Powell LW. The natural history of nonalcoholic steatohepatitis:a follow-up study of forty-two patients for up to 21 years. Hepatology,1990,11:74-80.
    [6]Sanyal AJ. AGA technical review on nonalcoholic fatty liver disease. Gastroenterology, 2002,123:1705-1725.
    [7]Dentin R, Benhamed F, Hainault I, Fauveau V, Foufelle F, Dyck JR, Girard J, Postic C. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes,2006,55:2159-2170.
    [8]Neschen S, Morino K, Hammond LE, Zhang D, Liu ZX, Romanelli AJ, Cline GW, Pongratz RL, Zhang XM, Choi CS, Coleman RA, Shulman GI. Prevention of hepatic steatosis and hepatic insulin resistance in mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 knockout mice. Cell Metab,2005,2:55-65.
    [9]Haug A, Hostmark AT. Lipoprotein lipases, lipoproteins and tissue lipids in rats fed fish oil or coconut oil. J Nutr,1987,117:1011-1017.
    [10]Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance:lessons from genetically engineered mice. J Clin Invest,2008,118(3): 829-838.
    [11]Lewis GF, Carpentier A, Adeli K, Giacca A. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev,2002,23:201-229.
    [12]Voshol PJ, Haemmerle G, Ouwens DM, Zimmermann R, Zechner R, Teusink B, Maassen JA, Havekes LM, Romijn JA. Increased hepatic insulin sensitivity together with decreased hepatic triglyceride stores in hormone-sensitive lipase-deficient mice. Endocrinology,2003, 144:3456-3462.
    [13]Park SY, Kim HJ, Wang S, Higashimori T, Dong J, Kim YJ, Cline G, Li H, Prentki M, Shulman GI, Mitchell GA, Kim JK. Hormone-sensitive lipase knockout mice have increased hepatic insulin sensitivity and are protected from short-term diet-induced insulin resistance in skeletal muscle and heart. Am J Physiol Endocrinol Metab,2005,289(1):30-39.
    [14]Kuroda M, Honnor RC, Cushman SW, Londos C, Simpson IA. Regulation of insulin-stimulated glucose transport in the isolated rat adipocyte:cAMP-independent effects of lipolytic and antilipolytic agents. J Biol Chem,1987,262:245-253.
    [15]Martin SE, Bockman EL. Adenosine regulates blood flow and glucose uptake in adipose tissue of dogs. Am J Physiol,1986,250:1127-1135.
    [16]Heseltine L, Webster JM, Taylor R. Adenosine effects upon insulin action on lipolysis and glucose transport in human adipocytes. Mol Cell Biochem,1995,144:147-151.
    [17]Hoffman BB, Chang H, Dall'Aglio E, Reaven GM. Desensitization of adenosine receptor-mediated inhibition of lipolysis:the mechanism involves the development of enhanced cyclic adenosine monophosphate accumulation in tolerant adipocytes. J Clin Invest, 1986,78:185-190.
    [18]Fredholm BB. Effect of adenosine, adenosine analogues and drugs inhibiting adenosine inactivation on lipolysis in rat fat cells. Acta Physiol Scand,1978,102:191-198.
    [19]Wieser PB, Pendleton TS. Effects of an N6-disubstituted adenosine derivative (BM 11.189) on fat cell metabolism. Biochem Pharmacol,1979,28:693-694.
    [20]Dhalla AK, Wong MY, Voshol PJ, Belardinelli L, Reaven GM. Al adenosine receptor partial agonist lowers plasma FFA and improves insulin resistance induced by high-fat diet in rodents. Am J Physiol Endocrinol Metab,2007,292:1358-1363.
    [21]Faulhaber-Walter R, Jou W, Mizel D, Li L, Zhang J, Kim SM, Huang Y, Chen M, Briggs JP, Gavrilova O, Schnermann JB. Impaired Glucose Tolerance in the Absence of Adenosine A1 Receptor Signaling. Diabetes,2011,60(10):2578-2587.
    [22]Dhalla AK, Chisholm JW, Reaven GM, Belardinelli L. A1 adenosine receptor:role in diabetes and obesity. Handb Exp Pharmacol,2009,193:271-295.
    [23]Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest,2003,112: 1796-1808.
    [24]Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest,2003,112:1821-1830.
    [25]Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest,2006,116(6): 1494-1505.
    [26]Rangwala SM, Lazar MA. Transcriptional control of adipogenesis. Annu Rev Nutr,2000, 20:535-559.
    [27]Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol,2000,16:145-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700