基于胆甾酸衍生物的超分子化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胆甾酸类化合物来源于生物体,以其鲜明的结构特征,活泼的化学反应性和低廉的价格成为超分子化学中的重要研究对象。本论文围绕胆甾酸衍生物这一主题,充分利用胆甾酸独特的分子结构,设计合成了一系列新型二聚胆甾酸衍生物和含有胆甾酸基团的共轭高分子,研究它们的生物活性构效关系,溶液中构象调控以及超分子组装行为,取得了以下研究结果:
     设计合成了9种氨基酸桥联的二聚胆甾酸衍生物,通过染料包裹实验研究了这类化合物在非极性溶剂中的空间构象。生物活性筛选显示部分化合物对乳腺癌细胞MCF-7具有细胞毒活性,其中带有较少取代基的疏水连接臂和含有羟基较多的二聚胆酸缀合物细胞毒效果更为显著。
     首次合成一系列新颖的偶氮苯桥联二聚胆甾酸衍生物。由于胆甾酸中羟基与溶剂分子之间的氢键作用,溶剂和化合物结构差异都对光异构化速率有显著影响。利用偶氮苯的光致顺反异构特性并结合体外抑制大肠杆菌的筛选实验,初步建立了这类二聚胆甾酸衍生物的生物活性构效关系。
     研究了偶氮苯和寡聚对苯撑乙炔两类共轭体系桥联二聚胆甾酸衍生物的超分子组装行为。发现在四氢呋喃和水的混合溶液中,对苯撑乙炔桥联二聚去氧胆酸依靠氢键,π-π堆积和疏水作用力形成了一种非常独特的手性条带状聚集体。组装条件和化合物结构的微小差异都会对超分子组装的形貌产生显著影响。
     首次合成带有面式双亲性胆甾基团的共轭高分子,研究了它们溶致变色和组装特性。发现含有胆酸侧基的聚对苯撑乙炔具有显著的溶致变色效应和良好的生物相容性;在胆甾基团诱导下,聚合物可以在不同极性溶剂中组装成实心微球和空心囊泡等纳米超分子结构,表明胆甾酸基团可以有效调控共轭体系的聚集状态。
     尝试用电化学方法合成含胆甾基团共轭高分子。利用“Click反应”修饰聚吡咯,实现了包括胆甾酸在内的多种生物分子在电极表面的固定。
Bile acid is a class of natural occurring compounds, with a rigid hydrophobic backbone, a curved profile and facially amphiphilic characteristic. Due to its unique structure, bile acid has been presented as one of the most important platforms for the construction of functional supramolecular system. In this dissertation, we focused on the design and synthesis of a series of novel dimeric bile acid derivatives and bile acid derived conjugated polymers. Their structures were identified by means of spectroscopic methods, the preliminary bioactivity was screened and their conformation in solvents as well as their self-assembly properties were studied. The major work is as follow:
     Nine dimeric bile acid conjugates linked by amino acid moieties have been synthesized in a facile way and their unique amphiphilic conformation was confirmed by dye extraction experiment. The compounds show modest antiproliferative activity against MCF-7 cancer. Dimeric cholic acid linked by a hydrophobic linker exhibits the more significant cytotoxic activity.
     A series of dimeric bile acids linked by 4, 4'-diaminoazobenzene were synthesized. The process of trans-cis photoisomerization, which was sensitive to the molecular structure and solvent used, was considerably slow due to the large and rigid skeleton of bile acid. Depending on the trans-cis photoisomerization of azobenzene moiety, the structure-activity relationship of these dimeric bile acid derivatives was preliminarily established. When these bile acid dimers adopt a cis configuration, a more significant antibacterial activity against E. coli DH5αcan be observed.
     The self-assembly behavior of bile acid dimers linked by conjugated moieties, including azobenzene and oligo(p-phenyleneethynylene), were studied. In the case of oligo(p-phenyleneethylene) bearing dimeric deoxycholic acid end groups, the addition of water to THF can lead to a highly interesting twist assemblies, which is the result from the combination of hydrogen bonding,π-πstacking and hydrophobic interaction. Varying the kinds of bile acid led to nanostructures with drastically different morphologies.
     A series of novel bile acid decorated poly(p-phenyleneethynylene) have been synthesized. The facially amphiphilic property of bile acid can increase the biocompatibility and endow remarkable solvatochromism to the conjugated system. Moreover, the cholate group can mediate the organization of PPE backbone and afford nano-scale assemblies with adjustable size and morphology.
     We have attempted to obtain bile acid functionalized conjugated polymers by electropolymerization.“Click”chemistry, specifically Huisgen 1, 3-dipolar cycloadditions, was used as a general methodology for the functionalization of the formed polypyrrole films on electrodes. Several bioactive compounds, including bile acid, nucleic acid and protein can be bound onto the electrode surfaces without the loss of their functionality and the electroactivity of the underlying conducting polymers.
引文
[1]张希,沈家骢.超分子科学:认识物质世界的新层面.科学通报, 2003, 48:1477-1478.
    [2] Lehn J M. Supramolecular Chemistry-Concept and Perspectives. Germany: VCH, 1995:1-9
    [3] Lehn J M. Supramolecular chemistry– scope and perspectives molecules, supramolecules, and molecular devices (Nobel lecture). Angew Chem Int Ed, 1988, 27:89-112.
    [4] Whitesides G M, Grzybowski B. Self-assembly at all scales. Science, 2002, 295: 2418-2421.
    [5] Dugas H. Bioorganic chemistry frontiers. Vol. 2. Berlin Heidelberg: Springer-Verlarg, 1991:117.
    [6] Virtanen E, Kolehmainen E. Use of bile acids in pharmacological and supramolecular applications. Eur J Org Chem, 2004:3385-3399.
    [7] Enhsen A, Kramer W, Wess G. Bile acid in drug discovery. Drug Discov Today, 1998, 3: 409-418.
    [8]周维善,庄治平.甾体化学进展.北京:科学出版社,2002:2.
    [9] Mukhopadhyay S, Maitra U. Chemistry and biology of bile acids. Curr Sci India, 2004, 87:1666-1683.
    [10] Nonappa, Maitra U. Unlocking the potential of bile acids in synthesis, supramolecular/materials chemistry and nanoscience. Org Biomol Chem, 2008, 6:657-669.
    [11]吴迪矛,巨勇.胆甾酸缀合物的生物及生理学功能.化学进展, 2007,19:544-556.
    [12] Roberts M S, Magnusson B M, Burczynski F J and Weiss M. Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin Pharmacokinet, 2002, 41:751-790.
    [13] Hagenbuch B, Dawson P. The sodium bile salt cotransport family SLC10. Pflugers Arch, 2004, 447:566-570.
    [14] Kramer W, Wess G, Schubert G, Bickel M, Girbig F, Grujahr U, Kowalewski S, Baringhaus K. H, Enhsen A, Glombik H, Mullner S, Neckermann G, Schulz S and Petzinger E. Liver-specific drug targeting by coupling to bile acids. J Biol Chem, 1992, 267:18598-18604.
    [15] Petzinger E, Wickboldt A, Pagels P, Starke D and Kramer W. Hepatobiliary transport of bile acid amino acid, bile acid peptide, and bile acid oligonucleotide conjugates in rats. Hepatology, 1999, 30:1257-1268.
    [16] Bosl G J, Motzer R J. Testicular germ-cell cancer. N Engl J Med, 1997, 337:242-253.
    [17] Briz O, Macias R I R, Vallejo M, Silva A, Serrano M A, Marin J J G. Usefulness of liposomes loaded with cytostatic bile acid derivatives to circumvent chemotherapy resistance of enterohepatic tumors. Mol Pharmacol, 2003, 63:742-750.
    [18] Criado J J, Fernandez E R, Manzano J L, Alonso A, Barrena S, Medarde M, Pelaez R, Tabernero M D, Orfao A. Intrinsically fluorescent cytotoxic cisplatin analogues as DNA marker molecules. Bioconjugate Chem, 2005, 16:275-282.
    [19] Paschke R, Kalbitz J, Paetz C. Novel spacer linked bile acid-cisplatin compounds as a model for specific drug delivery, synthesis and characterization. Inorg Chim Acta, 2000, 304:241-249.
    [20] Monte M J, Dominguez S, Palomero M F, Macias R I and Marin J J G. Further evidence of the usefulness of bile acids as molecules for shuttling cytostatic drugs toward liver tumors. J Hepatol, 1999, 31:521-528.
    [21] Vaara M. Agents that increase the permeability of the outer membrane. Microbiol Rev, 1992, 56:395-411.
    [22] Vaara M. Outer membrane permeability barrier to azithromycin, clarithromycin, and roxithromycin in gram-negative enteric bacteria. Antimicrob Agents Chemother, 1993, 37:354-356.
    [23] Rehamn A, Li C H, Budge L P, Street S E, Savage P B. Preparation of amino acid-appended cholic acid derivatives as sensitizers of Gram-negative bacteria. Tetrahedron Lett, 1999, 40:1865-1868.
    [24] Li C H, Lewis M R, Gibert A B, Noel M D, Scoville D H, Allman G W, Savage P B. Antimicrobial activities of amine- and guanidine-functionalized cholic acid derivatives. Antimicrob Agents Chemother, 1999, 43:1347-1349.
    [25] Guan Q Y, Schmidt E J, Boswell S R, Li C H, Allman G W and Savage P B. Preparation and characterization of cholic acid-derived antimicrobial agents with controlled stabilities. Org Lett, 2000, 2:2837-2840.
    [26] Li C H, Budge L P, Driscoll, C D, Willardson B M, Allman G W, Savage P B. Incremental conversion of outer-membrane permeabilizers into potent antibiotics for Gram-negative bacteria. J Am Chem Soc, 1999, 121:931-940.
    [27] Moore K S, Wehrli S, Roder H, Rogers M, Forrest J N, McCrimmon D, Zasloff M. Squalamine: An aminosterol antibiotic from the shark. Proc Natl Acad Sci, 1993, 90:1354-1358.
    [28] Sadownik A, Deng G, Janout V, Regen S L. Rapid construction of a squalamine mimic. Amphotericin B mimics: A sterol-based ionophore. J Am Chem Soc, 1995, 117:6138-6139.
    [29] Kukuchi K, Bernard E M, Sadownik A, Regen S L, Armstrong D. Antimicrobial activities of squalamine mimics. Antimicrob Agents Chemother, 1997, 41:1433-1438.
    [30] Bandyopadhyay P, Janout V, Zhang L H, Sawko J A, Regen S L. An ion conductor derived from spermine and cholic acid. J Am Chem Soc, 2000, 122:12888-12889.
    [31] Bandyopadhyay P, Janout V, Zhang L H, Sawko J A and Regen S L. Ion conductors derived from cholic acid and spermine: Importance of facial hydrophilicity on Na+ transport and membrane selectivity. J Am Chem Soc, 2001, 123:7691-7696.
    [32] Zhang J B, Jing B W, Regen S L. Kinetic evidence for the existence and mechanism of formation of a barrel stave structure from pore-forming dendrimers. J Am Chem Soc, 2003, 125:13984-13987.
    [33] Salunke D B, Hazra B G, Pore V S, Bhat M K, Nahar, P B, Deshpande M V. New steroidal dimers with antifungal and antiproliferative activity. J Med Chem, 2004, 47:1591-1594.
    [34] Salunke D B, Hazra, B G, Pore V S. Bile acid-polyamine conjugates as synthetic ionophores. ARKIVOC, 2003, 4:115-125.
    [35] Kobuke Y, Nagatani T. Transmembrane ion channels constructed of cholic Acid derivatives. J Org Chem, 2001, 66:5094-5101.
    [36] Goto C, Yamamura M, Satake A, Kobuke Y. Artificial ion channels showing rectified current behavior. J Am Chem Soc, 2001, 123:12152-12159.
    [37] Yoshii M, Yamamura M, Satake A, Kobuke Y. Supramolecular ion channels from a transmembrane bischolic acid derivative showing two discrete conductances. Org Biomol Chem, 2004, 2:2619-2623.
    [38] Dugas H. Bioorganic chemistry frontiers. Vol. 2. Berlin Heidelberg: Springer-Verlarg, 1991:117.
    [39] Dugas H. Bioorganic chemistry: a chemical approach to enzyme action. 3rd ed. New York: Springer-Verlarg, 1996, Chapter 14.
    [40]薛翠花,牟其明,陈淑华.胆甾类人工受体的分子识别研究进展.有机化学, 2002, 22:853-861.
    [41] Bonar-Law R P, Davis A P, Dorgan B J. Cholic acid as an architectural component in biomimetic/molecular recognition chemistry; synthesis of "cholaphanes" with facial differentiation of functionality. Tetrahedron, 1993, 49:9855-9866.
    [42] Bonar-Law R P, Davis A P, Murray B A. Synthetic receptors for carbohydrates. Angew Chem Int Ed, 1990, 29, 1407-1408.
    [43] Bhattarai K M, Bonar-Law R P, Davis A P. Diastereo- and enantioselective binding of octyl glucosides by an artificial receptor. J Chem Soc, Chem Commun, 1992, 752-754.
    [44] Davis A P, Gilmer J F, Perry J J. A steroid-based cryptand for halide anions. Angew Chem Int Ed, 1996, 35:1312-1315.
    [45] Ghosh S, Choudhury A R, Guru Row T N, Maitra U. Selective and unusual fluoride ion complexation by a steroidal receptor using OH...F- and CH...F- interactions: a new motif for anion coordination? Org Lett, 2005, 7:1441-1444.
    [46] Mckenna J, Mckenna J M, Thornthwaite D W. Bis-steroids as potential enzyme models: perylene solubilization and dye spectral changes with aqueous solutions of some derivatives of conessine and cholic acid. J Chem Soc, Chem Commun, 1977, 809-811.
    [47] Borrows C J, Saute R A. Synthesis and conformational studies of a new host system based on cholic acid. J Inclusion Phenom, 1987, 5:117-121.
    [48] Segura M, Alcazar V, Prados P, et al. Synthetic receptors for uronic acid salts based on bicyclic guanidinium and deoxycholic acid subunits. Tetrahedron, 1997, 53:13119-13128.
    [49] Ahera N G, Pore V S, Patil S P. Design, synthesis, and micellar properties of bile acid dimmers and oligomers linked with a 1,2,3-triazole ring. Tetrahedron, 2007, 24:12927-12934.
    [50] Zhang Z, Ju Y, Zhao Y F. Synthesis of 1,2,3-triazole-containing bile acid dimers and properties of inverse micellar mimic. Chem Lett, 2007, 36:1450-1451.
    [51] Joachimiak R, Paryzek Z. Synthesis and alkaline metal ion binding ability of new steroid dimers derived from cholic and lithocholic acids. J Inclusion Phenom, 2004, 49:4600-4606.
    [52] Maitra U, D’Souza L J. Bile acid based semi-rigid molecular tweezers. J Chem Soc, Chem Commun, 1994, 2793-2795.
    [53] Maitra U, Rao P, Vijay Kumar P, et al. Solvent effect in molecular recognition: determining binding constants in different solvents following an extraction based protocol. Tetrahedron Lett, 1998, 39:3255-3258.
    [54] Chahar M, Upreti S, Pandey P S. Anion recognition by bisimidazolium and bisbenzimidazolium cholapods. Tetrahedron, 2007, 63:171-176.
    [55] Zhao Y, Zhong Z. Oligomeric cholates: amphiphilic foldamers with nanometer-sized hydrophilic cavities J Am Chem Soc, 2005, 127:17894-17901
    [56] Ryu E, Zhao Y. Environmentally responsive molecular baskets: unimolecular mimics of both micelles and reversed micelles. Org Lett, 2004, 6:3187-3189.
    [57] Zhou Y, Ryu E, Zhao Y, Woo L K. Solvent-responsive metalloporphyrins: binding and catalysis. Organometallics, 2007, 26:358-364.
    [58] Rich A, Blow D M. Formation of a helical steroid complex. Nature, 1958, 182:423-426.
    [59] Jiang L, Wang K, Deng M, Wang Y, Huang J. Bile salt-induced vesicle-to-micelle transition in catanionic surfactant systems: steric and electrostatic interactions. Langmuir, 2008, 24: 4600-4606.
    [60] Watabe T, Kobayashi K, Hisaki I, Tohnai N, Miyata M. Guest-induced supramolecular isomerism and chirality of brucine inclusion crystals with aliphatic alcohols: a hierarchicalinterpretation. Bull Chem Soc Jpn, 2007, 80:464-475.
    [61] Miyata M, Tohnai N, Hisaki I. Supramolecular chirality in crystalline assemblies of bile acids and their derivatives; Three-Axial, tilt, helical, and bundle chirality. Molecules, 2007, 12:1973-2000.
    [62] Tellini V, Jover A, Meijide F, Tato J, Galantini L, Pavel N. Supramolecular structures generated by a p-tert-Butylphenylamide derivative of cholic acid: from vesicles to molecular tubes. Adv Mater, 2007, 19:1752-1756.
    [63] Dukh M, Saman D, Kroul?k J, Cerny I, Pouzar V, Kral V, Drasar P. Metal coordination as a tool for controlling the self-assembling and gelation properties of novel type cholic amide– phenanthroline gelating agent. Tetrahedron, 2003, 59:4069-4076.
    [64] Wang X, Lu Y, Duan Y, Meng L, Li C. Helical crystals with a sixfold screw Axis. Adv Mater, 2008, 20:462-465.
    [65] Ahlheim M, Hallensleben, M L, Wurm H. Bile acids bound to polymers. Polym. Bull, 1986, 15:497-501.
    [66] Zhu X X, Nichifor M. Polymeric materials containing bile acids. Acc Chem Res, 2002, 35: 539-546.
    [67] Zhu X X, Moskova M, Denike J K. Preparation and characterization of copolymers of new monomers from bile acid derivatives with methacrylic monomers and selective hydrolysis of homopolymers. Polymer 1996, 37:493-498.
    [68] Gautrot J E, Zhu X X. Main-chain bile acid based degradable elastomers synthesized by entropy-driven ring-opening metathesis polymerization. Angew Chem Int Ed, 2006, 45: 6872-6874.
    [69] Ghosh S, Maitra U. Adaptive dendron: a bile acid oligomer behaving as both normal and inverse micellar mimic. Org Lett, 2006, 8:399-402.
    [70] Vijayalakshmi N, Maitra U. A Simple construction of a bile acid based dendritic light harvesting system. Org Lett, 2005, 7:2727-2730.
    [71] Sangeetha N M, Maitra U. Hydroxyl-terminated dendritic oligomers from bile acids: synthesis and properties. J Org Chem, 2006, 71:768-774.
    [72] Cortese F, Bauman L. A synthesis of conjugated bile acids. I. Glycocholic acid. J Am Chem Soc, 1935, 57:1393-1395.
    [73] Yamaguchi Y, Itami S, Nishida K, et al. Taurin-conjugated ursodeoxycholic acid has a reversible inhibitory effect on human keratinocyte growth. J Dermatol Sci, 1998, 18:35-42.
    [74] Rust C, Karnitz L M, Gores G J, et al. The bile acid taurochenodeoxycholate activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade. J Biol Chem, 2000, 275:20210-20216
    [75] Roda A, CerrèC, Manetta A C, et al. Synthesis and physicochemical, biological, andpharmacological properties of new vile acids amidated with cyclic amino acids. J Med Chem, 1996, 39:2270-2276
    [76] Kagedahl M, Swaan P W, ?ie S, et al. Use of the intestinal bile acid transporter for the uptake of cholic acid conjugates with HIV-1 protease inhibitory activity. Pharm. Res, 1997, 14:176-180.
    [77] Raju U, Katz J, Levitz M. Effect of bile acids and estradiol on thymidine incorporation into DNA in MCF-7 and MCF-10A breast cell lines. Steroids, 1997, 62:643-646.
    [78] Aher N G, Pore V S. Synthesis of bile acid dimers linked with 1,2,3-triazole ring at C-3, C-11, and C-24 positions. Synlett, 2005, 2155-2158.
    [79] Mukhopadhyay S, Ira, Krishnamoorthy G, Maitra U. Dynamics of bound dyes in a nonpolymeric aqueous gel derived from a tripodal bile salt. J Phys Chem B, 2003, 107:2189-2192.
    [80] Kumar G S, Neckers D C. Photochemistry of azobenzene-containing polymers. 1989, 89:1915-1925.
    [81] Loudwig S, Bayley H. Photoisomerization of an individual azobenzene molecule in water: an on-off switch triggered by light at a fixed wavelength. J Am Chem Soc, 2006, 128:12404-12405.
    [82] Naito T, Horie K, Mita I. Photochemistry in polymer solids II. The effect s of the size of reaction groups and the mode of photoisomerization on photochromic reactions in polycarbonate film. Macromolecules, 1991, 24:2907-2911.
    [83] Chattopadhyay P, Pandey P S. Synthesis and binding ability of bile acid-based receptors for recognition of flavin analogues. Tetrahedron, 2006, 62:8620-8624.
    [84] Uda M, Momotake A, Arai T, Mayuko U, Atsuya M, Tatsuo A. Synthesis and isomerization of azobenzene dendrimers. Photochem Photobiol Sci, 2003, 2:845-847.
    [85] Koivukorpi J, Kolehmainen E. Design, synthesis and spectral studies of novel bile acid-arene conjugates: Trans to cis isomerization of azobenzene core controlled by bile acid hydrophobicity. J Mol Struct, 2008, 875:63-67.
    [86] Vatmurge N S, Hazra B G, Pore V S, et al. Synthesis and biological evaluation of bile acid dimers linked with 1,2,3-triazole and bis-β-lactam. Org Biomol Chem, 2008, 6:3823-3830.
    [87] Schenning A P H J, Meijer E W. Supramolecular electronics: nanowires from self-assembled -conjugated systems. Chem Commun, 2005, 3245-3258.
    [88] Meijer E W, Schenning A P H J. Chemistry: Material marriage in electronics. Nature, 2002, 419:353-354.
    [89] Fuhrhop J H, David H H, Mathieu J, Liman U, Winter H J, Boekema E. Bolaamphiphiles and monolayer lipid membranes made from 1,6,19,24-tetraoxa-3,21- cyclohexatriacontadiene-2,5,20,23-tetrone. J Am Chem Soc, 1986, 108:1785-1791.
    [90] Xue P, Lu R, Novel CuS nanofibers using organogel as template: Controlled by binding sites. Langmuir, 2004, 20:11234-11239.
    [91] Xue P, Lu R, Jin M, Su L, Zhou Y. Synthesis of CdS nanorods with chiral template. Chem J Chinese Univ, 2003, 24:1172-1174.
    [92] Ikeda A, Gelation of ionic liquids with a low molecular-weight gelator ahowing Tgel above 100°C. Chem Lett, 2001, 1154-1155.
    [93] Kawano S, Fujita N, Shinkai S. Quater-, quinque-, and sexithiophene organogelators: unique thermochromism and heating-free sol–gel phase transition. Chem Eur J, 2005, 11: 4735-4742.
    [94] Ajayaghosh A, Vijayakumar C, Varghese R G, Subi J. Cholesterol-aided supramolecular control over chromophore packing: Twisted and coiled helices with distinct optical, chiroptical, and morphological features. Angew Chem Int Ed, 2006, 45:456-460.
    [95] Xue P, Lu R, Li D, Jin M, Bao C, Zhao Y, Wang Z, Chem Mater, 2004, 16:3702-3707.
    [96] Neralagatta M S, Maitra U. Supramolecular gels: functions and uses. Chem Soc Rev, 2005, 34:821-836.
    [97] Shibakami M, Tamura M, Sekiya A. Topological and nontopological rearrangement in Crystal Lattice of Cholic Acid Inclusion Complex Induced by Guest Exchange. J Am Chem Soc, 1995, 117:4499- 4505.
    [98] Plater M J, Sinclair J P, Aiken S, Gelbrichb T, Hursthouseb M B. The CA.M lattice revisited. Gel formation from a linear bis-isocyanuric acid and 2-amino-4,6-bis- (4-tert-butylphenylamino)-1,3,5-triazine. Tetrahedron, 2004, 60:6385–6394.
    [99] Ajayaghosh A, Varghese R, Mahesh S, Praveen V K. From vesicles to helical nanotubes: a sergeantand-soldiers effect in the self-assembly of oligo(p-phenyleneethynylene)s. Angew Chem Int Ed, 2006, 118:7893-7896.
    [100] Kumar C V, Buranaprapuk A. Tuning the selectivity of protein photocleavage: spectroscopic and photochemical studies. J Am Chem Soc, 1999, 121:4262-4270.
    [101] Buranaprapu A, Kumar C V, Jockusch S, et al. Photochemical protein scissors: role of aromatic residues on the binding affinity and photocleavage efficiency of pyrenyl peptides. Tetrahedron, 2000, 56:7019-7025.
    [102] Brustolin F, Goldoni F, Meijer E W, Sommerdijk N A J M, Highly ordered structures of amphiphilic polythiophenes in aqueous media. Macromolecules 2002, 35:1054-1059.
    [103] Iwaura R, F. Hoeben J M, Masuda M, Schenning A P H J, Meijer E W, Shimizu T. Molecular-Level helical stack of a nucleotide-appended oligo(p-phenylenevinylene) directed by supramolecular self-Assembly with a complementary oligonucleotide as a template. J. Am. Chem. Soc. 2006, 128:13298-13304.
    [104] Gong X, Milic T, Xu C, Batteas J D, Drain C M. Preparation and characterization ofPorphyrin Nanoparticles. J Am Chem Soc, 2002, 124:14290-14291.
    [105] Liu T, Ruan W, Man J. CD Spectroscopic study on the molecular recognition of chiral salen-metal complexes. Chinese J Chem, 2003, 21:751-755.
    [106] Li L, Jiang H, Messmore B W, Bull S R, Stupp S I. A torsional strain mechanism to tune pitch in supramolecular helices. Angew Chem Int Ed, 2007, 46:5873-5876.
    [107] Seo S H, Chang J Y, Tew G N. Self-Assembled vesicles from an amphiphilic ortho-phenylene ethynylene macrocycle. Angew Chem Int Ed, 2006, 45:7526-7530.
    [108] Kaneko T, Ichikawa A, Gong J P, Osada Y. Formation of giant needle-like polycation-bile acid complexes. Macromol Rapid Commun 2003, 24:789-792.
    [109] Wang Y, Erdogan B, Wilson J N, Bunz U H F. Grafted conjugated polymers: synthesis and characterization of a polyester side chain substituted poly(para-phenyleneethynylene). Chem Commun, 2003, 1624-1625.
    [110] Shen H, Eisenberg A. Block length dependence of morphological phase diagrams of the ternary system of PS-b-PAA/dioxane/H2O. Macromolecules, 2000, 33:2561-2572.
    [111] Kim K H, Huh J, Jo W H. Wirelike micelle formed by a T-shaped graft copolymer with a rigid backbone. Macromolecues, 2004, 37:676-679.
    [112] Duan H, Kuang M, Wang J, et al. Self-assembly of rigid and coil polymers into hollow spheres in their common solvent. J Phys Chem B, 2004, 108:550-555.
    [113] Jehekhe S A, Chen X L. Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes. Science, 1998, 279:1903-1907.
    [114] Chen X L, Jenkhe S A. Supramolecular self-assembly of three-dimensional nanostructures and microstructures: microcapsules from electroactive and photoactive rod-coil-rod triblock copolymers. Macromolecules, 2000, 33:4610-4612.
    [115] Partay L B, Sega M, Jedlovszky P. Molecular dynamics simulations of mixed micelles modeling human bile. Langmuir, 2008, 24:10729-10736.
    [116] Ramanathan N, Currie A L, Colvin J R. Formation of helical microfibrils from a steroid acid complex. Nature, 1961, 190:779-781.
    [117] Bhata S, Maitra U. Low molecular mass cationic gelators derived from deoxycholic acid: remarkable gelation of aqueous solvents. Tetrahedron, 2007, 63:7309-7320.
    [118]石高全,李春,梁映秋.高性能导电高分子材料.大学化学,1998, 1:1-5
    [119]朱道本,王佛松.有机固体.上海:上海科学技术出版社. 1999, 89-136, 274-296.
    [120] Schopf G, Koβmehl G. Polythiophenes-electrically conductive polymers. Springer-Verlag Berlin Heidelberg New York. 1997.
    [121] Stenger-Smith J D. Intrinsically electrically conducting polymers. Synthesis, characterization, and their applications. Prog Polym Sci, 1998, 23:57-79.
    [122] Jerome D, Bechgaard K. Superconducting plastic. Nature, 2001, 410:162-163.
    [123] Ho H, Leclerc M. Optical sensors based on hybrid aptamer/conjugated polymer complexes. J Am Chem Soc, 2004, 126:1384-1387.
    [124] Bernier S, Garreau S, Bera-Aberem M, Gravel C, Leclerc M. A versatile approach to affinity chromic polythiophenes. J Am Chem Soc, 2002, 124:12463-12468.
    [125] Dufresne G, Bouchard J, Belletete M, Durocher G, Leclerc M, Thermochromic and solvatochromic conjugated polymers by design. Macromolecules, 2000, 33:8252-8257.
    [126] Bertinelli F, Della Casa C. Poly[3-(10-hydroxydecyl)thiophene]: a spectrokinetic study of the conformational transition. Polymer, 1996, 37:5469-5475.
    [127] Jiang Y, Perahia D, Wang Y, Bunz U H F. Side chain vs. main chain. Who dominates? A polyester-grafted poly(p-phenyleneethynylene) with two different morphologies. Macromolecules, 2006, 39:4941-4944.
    [128] Chen S A, Tsai C C. Structure/properties of conjugated conductive polymers 2. 3-ether-substituted polythiophenes and poly(4-methylthiophenes). Macromolecules, 1993, 26:2234-2239
    [129] Ofer D, Crooks R M, Wrighton M S. Potential dependence of the conductivity of highly oxidized polythiophenes, polypyrroles, and polyaniline: finite windows of high conductivity. J Am Chem Soc, 1990,112:7869-7879.
    [130] Onoda M, Nakayama H, Morita S, Yoshino K. Electrochemical doping properties and electronic states of poly(3-phenylthiophene). J Appl Phys, 1993, 73:2859-2865
    [131] Rudge A, Raistrick I, Gottesfeld S, Ferraris J P. A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors. Electrochim Acta, 1994, 39:273-287.
    [132] Bunz U H F. Poly(aryleneethynylene)s: syntheses, properties, structures, and applications. Chem Rev, 2000, 100:1605-1644.
    [133] Kim I B, Phillips R, Bunz U H F. Forced agglutination as a tool to improve the sensory response of a carboxylated poly(p-phenyleneethynylene). Macromolecules, 2007, 40:814-817.
    [134] Bakbak S, Leech P J, Carson B E, Saxena S, King W P, Bunz U H F. 1,3-dipolar cycloaddition for the generation of nanostructured semiconductors by heated probe tips. Macromolecules, 2006, 39:6793-6795.
    [135] Disher D E, Eisenberg A. Polymer vesicles. Science, 2002, 297:967-973.
    [136] Burke S, Shen H, Eisenberg A. Multiple vesicular morphologies from block copolymers in solution. Macromol Symp, 2001, 175:273-283.
    [137] Bunz U H F, Wilson J N, Bangcuyo C G. Chromicity in poly(aryleneethynylene)s. In chromogenic polymers (Eds. Jenekhe, S.; Kiserow, D.), ACS Ser. 2005, 888:147-160.
    [138] Wang Y, Zappas II A J, Wilson J N, Kim I, Solntsev K M, Tolbert L M, Bunz U H F. Optical spectroscopy of grafted poly(p-phenyleneethynylene)s in water and water-DMF mixtures. Macromolecules 2008, 41:1112-1117.
    [139] Soo P L, Eisenberg A. Preparation of block copolymer vesicles in solution. J Polym Sci Part B: Poly Phys, 2004, 42:923–938.
    [140] Wahle M C, Byrn S R. 3 ,7 ,12 -Trihydroxy-5 -cholan-24-oic Acid methyl ester ethanolate (methyl cholate ethanolate). Acta Cryst, 1996. C52:2500-2502.
    [141] Cotts P M, Swager T M, Zhou Q. Equilibrium flexibility of a rigid linear conjugated polymer. Macromolecules, 1996, 29:7323-7328.
    [142] J. W. Y. Lam, B. Z. Tang. Functional polyacetylenes. Acc Chem Res, 2005, 38:745-754.
    [143] Llaudet E, Botting N P, Crayston J A, Dale N. A three-enzyme microelectrode sensor for detecting purine release. Biosensors and Bioelectronics, 2003, 18:43-52.
    [144] Bidan G. Electroconducting conjugated polymers: new sensitive matrixes to build up chemical or electrochemical sensors. A review. Sens Actuators B: Chemical, 1992, 6:45-56.
    [145] Roncali J, Synthetic principles for bandgap control in linearπ-conjugated systems. Chem. Rev, 1997, 97:173-205.
    [146] Konry T, Novoa A, Shemer-Avni Y, Hanuka N, Cosnier S, Lepellec A, Marks R S, Optical fiber immunosensor based on a poly(pyrrole-benzophenone) film for the detection of antibodies to viral antigen. Anal Chem, 2005, 77:1771-1779.
    [147] Li G T, Bhosale S, Tao S Y, Bhosale S, Fuhrhop J. Conducting polythiophenes with a broad spectrum of reactive groups. J Polym Sci Part A: Polym Chem, 2005, 43:4547-4558.
    [148] Kolb H C, Finn M G, Sharpless K B. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed, 2001, 40:2004-2021.
    [149] Demko Z P, Sharpless K B. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-sulfonyl tetrazoles from azides and sulfonyl cyanides. Angew Chem Int Ed, 2002, 41:2110-2113.
    [150] Demko Z P, Sharpless K B. Click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed, 2002, 41:2113-2116.
    [151] Tornoe C W, Christensen C, Meldal M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem, 2002, 67:3057-3064.
    [152] Koradin C, Polborn K, Knochel P. Enantioselective synthesis of propargylamines by copper-catalyzed addition of alkynes to enamines. Angew Chem Int Ed, 2002, 41:2535-2538.
    [153] Koradin C, Gommermann N, Polborn K, et al. Synthesis of enantiomerically enriched propargylamines by copper-catalyzed addition of alkynes to enamines. Chem Eur J, 2003, 9:2797-2811.
    [154] Zhang J, Wie C, Li C J. Cuprous bromide mediated coupling of alkynes with N-acylimin and N-acyliminium ions in water. Tetrahedron Lett, 2002, 43:5731-5733.
    [155] Knopfel T F, Carreira E M. The first conjugate addition reaction of terminal alkynes catalytic in copper: conjugate addition of alkynes in water. J Am Chem Soc, 2003, 125:6054-6055.
    [156] Gil M V, Arévalo M J, Lópezó. Click chemistry - what's in a name? Triazole synthesis and beyond. Synthesis, 2007:1589-1620.
    [157] Chittaboina S, Xie F, Wang Q. One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from terminal acetylenes and in situ generated azides. Tetrahedron Lett, 2005, 46:2331-2336.
    [158] Binder W H, Sachsenhofer R.“Click”chemistry in polymer and materials science. Macromol Rapid Commun, 2007, 28:15-54.
    [159] Lummerstorfer T, Hoffmann H. Click chemistry on surfaces: 1,3-dipolar cycloaddition reactions of azide-terminated monolayers on silica. J Phys Chem B, 2004, 108:3963-3966.
    [160] Nandivada H, Chen H, Bondarenko L, Lahann J. Reactive Polymer Coatings that“Click”. Angew Chem Int Ed, 2006, 45:3360-3363.
    [161] Okner R, Domb A J, Mandler D. Electrochemical formation and characterization of copolymers based on N-pyrrole derivatives. Biomacromolecules, 2007; 8:2928-2935.
    [162] Haddour N, Cosnier S, Gondran C. Electrogeneration of a poly(pyrrole)-NTA chelator film for a reversible oriented immobilization of histidine-tagged proteins. J Am Chem Soc, 2005, 127:5752-5753.
    [163] Chen Y, Imrie C T, Ryder K S. Pyrrole- and polypyrrole-based liquid crystals. J Mater Chem, 2001, 11:990-995.
    [164] Download A J, Pletcher D. The influence of water on the electrodepostion of polypyrrole in acetonitrile. J Electroanal Chem, 1986, 206:139-145.
    [165] Downard A J, Pletcher D. A study of the conditions for the electrodeposition of polythiophene in acetonitrile. J Electroanal Chem, 1986, 206:147-152.
    [166] Ronald B, Benoit L, Bernd S, Jean-Laurent S, Dounia Y. Dense monolayers of metal-chelating ligands covalently attached to carbon electrodes electrochemically and their useful application in affinity binding of histidine-tagged proteins. Langmuir, 2005, 21:3362-3375.
    [167] Kim J S, Valencia C A, Liu R, Lin W. Highly-efficient purification of native polyhistidine-tagged proteins by multivalent NTA-modified magnetic nanoparticles. Bioconjugate Chem, 2007, 18:333-341.
    [168] Dharmasena S, Pongracz Z, Arnold E, et al. 3'-Azido-3'-deoxythymidine-(5')-tetraphospho- (5')-adenosine, the product of ATP-mediated excision of chain-terminating AZTMP, is a potent chain-terminating substrate for HIV-1 reverse transcriptase. Biochemistry, 2007, 46:828-836.
    [169] Hillaireau H, Le Doan T, Appel M, et al. Hybrid polymer nanocapsules enhance in vitro delivery of azidothymidine-triphosphate to macrophages. J Controlled Release, 2006, 116:346-352.
    [170] Brunetti I, Falcone A, Calabresi P, et al. 5-Fluorouracil enhances azidothymidine cytotoxicity: in vitro, in vivo, and biochemical studies. Cancer Res, 1990, 50:4026-4031.
    [171] Doroshow J H, Newman E, Carroll M, et al. Phase I trial of continuous infusion zidovudine (AZT) and cisplatin in patients with advanced cancer (Meeting abstract). Proc Annu Meet Am Soc Clin Oncol, 1994, 13:A377.
    [172] Tsuneyoshi K, Haraguchi M, Hongye Z, et al. Induction of thymidine phosphorylase expression by AZT contributes to enhancement of 5’-DFUR cytotoxicity. Cancer Lett, 2006, 244:239-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700