胆汁酸(盐)的组装及其磁学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用Kiliani氧化—Wolff-kishner还原路线合成酮式胆汁酸及胆烷酸,产物经红外光谱、薄层色谱、元素分析、核磁共振谱等表征确证。采用共沉淀法、水热法实现了胆烷酸根在Zn-Al水滑石(LDHs)层间的超分子组装,并用XRD、FT-IR、DSC-TG、TEM和变温磁化强度(SQUID)等手段对样品进行表征,结果表明,直接共沉淀法得到的胆烷酸根插层LDHs结晶度较高、晶相较单一,胆烷酸根在LDHs层间呈与LDHs板层接近平行的有序排列,其磁化率与温度关系表明样品呈现反铁磁交换作用;水热法得到的胆烷酸根插层LDHs,胆烷酸根在LDHs层间呈单层、上下交叉且垂直于层板高度有序排列。采用水热法制备了脱氧胆酸根插层Zn-Al水滑石(LDHs),建立了脱氧胆酸根插层水滑石的超分子结构模型,即脱氧胆酸根阴离子通过静电力和氢键与LDHs层板相互作用,在层间呈单层、倾斜于层板有序排列。制备了各类正相及反相组装态胆烷酸盐,采用变温磁化强度(SQUID)对其磁学性能进行表征与分析,结果表明,样品主要呈反铁磁性。
The synthesis of cholanic acid was studied using cholic acid as starting material. Structure of the product is characterized by IR, TLC, elementary analysis, and ~1H NMR. Then cholanic acid was succefully intercalated into the Zn-Al Hydrotalcite compound by coprecipition method and hydrothermal method, the sample thereby obtained was characterized using several physicochemical techniques, i.e., XRD、FT-IR、DSC-TG、TEM and SQUID. Results indicated that cholanic acid-pillared Zn-Al hydrotalcite compound with good crystallinity cound be prepared by coprecipition method. Experimental data suggest the anion molecules form a paralleled layer, with the carboxylate groups pointing towards the brucite layers.χ~(-1)~T pattern of the samples show that they all bear antiferromagnetic exchange effect. While the LDH-cholanic intercalation compound synthesized by novel hydrothermal reaction show a different orientation, the cholanic anion form a single perpendicular layer in the interlayer space where the anionic substituents are thought to orient crosswise with each other to the surface of the cationic brucite-like sheet by electrostatic interactions. For the sample with deoxycholate prepared by hydrothermal method, we propose a supramolecular structure which the cholate anions form a tilted layer with their carboxylate groups pointing toward the brucite layer by electrostatic attraction and hydrogen bonding. In addition, the self-assemble cholanic salts are prepared, and their magnetic properties are characterized using SQUID, results show that there are antiferromagnetic exchange effect.
引文
[1] S. Mukhopadhyay, U. Maitra. Chemistry and biology of bile acids. Curr. Sci.,2004,87 (12): 1666-1683
    [2] Y. Sun, Z. L. Yang, L. Zhang. The interaction of Cu~(2+) ions and NaDC micelles. Spectrochimica Acta Part A,2002,58: 1489-1498
    [3] K. Matsuoka, M. Maeda, Y. Moroi. Micelle formation of sodium glyco- and taurocholates and sodium glyco- and taurodeoxycholates and solubilization of cholesterol into their micelles. Colloids and Surfaces B: Biointerfaces,2003,32:87-95
    [4] N. Funasaki, M. Fukuba, T. Hattori. et al. Micelle formation of bile salts and zwitterionic derivative as studied by two-dimensional NMR spectroscopy. Chemistry and Physics of Lipids,2006,142:43-57
    [5] H.M. Willemen, T. Vermonden, A. Koudijs. et al. Aggregation of different amino acid conjugates of cholic acid in aqueous solution. Colloids and Surfaces A:Physicochem. Aspects,2003,218:59-64
    [6] N. Lutfun, B. T. Alan. Synthesis of ester-linked lithocholic acid dimmers. Steroids,2003,68:1157-1161. (Editors), The Liver:Biology and Pathobiology, Raven Press, New York, NY, 1988, pp.553-572
    [7] Inoue H.. Removal of sodium ion from bile acid solution using diffusional dialysis with cation exchange membrane. Separation and Purification Technology,2003,33: 89-197
    [8] 雷新响,张安将,熊静.猪去氧胆酸衍生物的NMR研究.波谱学杂志,2004,21(4):499-404
    [9] 卓超,冯炜,吴达俊.牛磺熊去氧胆酸的合成研究.合成化学,2004(5):444-446
    [10] 陆进,杜守颖,赵丽瑞.猪去氧胆酸提取工艺研究.中国中药杂志,2004,29(5):414-417
    [11] S.S. Rossi, J. L. Converse, A. F. Hofmann. High pressure liquid chromatographic analysis of conjugated bile acids in human bile: simultaneous resolution of sulfated and unsulfated lithocholyl amidates and the common conjugated bile acids. J. Lipid Res.,1987,28(5):589-595
    [12] L.Q. Xie, K. E. Markides, M. Lee. Biomedical applications of analytical supercritical fluid separation techniques. Anal. Biochem.,1992,200(1):7-19
    [13] S. Scalia, D. E. Games. Determination of free bile acids in Pharmaceutical preparations by packed column supercritical fluid chromatography. J. Pharm. Sci., 1993,82:44-47
    [14] S. Scalia, D.E. Games. Analysis of conjugated bile acids by packed-column supercritical fluid chromatography. J. Chromatography, 1992,574:197-203
    [15] 胡霞敏.牛磺胆酸钠合成方法的比较研究.武汉科技大学学报,2001,24(2):212-214
    [16] 郝晋清,李金玲,李武宏等.新型含胆酸功能基生物降解性水凝胶的合成与表征.离子交换与吸附,2005,21(3):202-208
    [17] K. Akiyoshi, S. Deguchi, N. Morguchi. et al. Self-aggregates of hydrophobized polysaccharides in water. Formation and characteristics of nanoparticles. Macromolecules, 1993,26(12): 3062-3068
    [18] K. Y. Lee, W. H. Jo, I. C. Kwon. et al. Structural determination and interior polarity of self-aggregates prepared from deoxycholic acid-modified chitosan in water. Macromolecules, 1998,31 (2):378-383
    [19] D. Avoce, H. Y. Liu, X. X. Zhu. N-alkylacrylamide copolymers with (meth) acrylamide derivatives of cholic acid :synthesis and thermosensitivity. Polymer,2003,44(2): 1081 - 1087
    [20] A.F. Hofmann. In The Liver: Biology and Pathobiology. I. M. Arias, W. B. Jakoby, H. Popper. et al. editors. Raven Press, New York,1988:553-572
    [21] A. Aumatell, R. J. Wells. Enantiomeric differentiation of a wide range of pharmacologically active substances by cyclodextrin-modified micellar electrokinetic capillary chromatography using a bile salt. J. Chromatogr, 1994,688:329-337
    [22] K.Y. Lee, J. H. Kim, I. C. Kwon. et al. Self-aggregates of deoxycholic acid-modified chitosan as a novel carrier of adriamycin. Colloid Poly. S ci.,2000,278,1216-1219
    [23] A. Stiehl. Bile salt sulphates in cholestasis. Eur. J. Clin. Invest.,1974,4:59-63
    [24] Y. Tazuke, N. Kodama, K. Adachi. et al. Jpn. J. Clin. Chem.,1992,21,249-258
    [25] S. Koide, N. Ito, I. Karube. Development of a micro-planar amperometric bile acid biosensor for urinalysis. Biosensors and Bioelectronics,2006.09.009
    [26] P.W. Swaan, J. R. Szoka, Francis C, S. φie. Use of the intestinal and hepatic bile acid transporters for drug delivery. Adv. Drug Deliv. Rev.,1996,20:59-82
    [27] P.B. Savage, C. Li. Cholic acid derivatives: novel antimicrobials. Expert Opin Invest Drugs,2000,9(2) :263 -72
    [28] H.M. Willemen, L. C. P. M. de Smet, A. Koudijs. et al. Micelle formation and antimicrobial activity of cholic acid derivatives with three permanent ionic head groups. Angew. Chem. Int. Ed., 2002, 41 (22):4275-4277
    [29] D.B. Salunke, B. G. Hazra, V. S. Pore. et al. New steroidal dimers with antifungal and antiproliferative activity. J. Med. Chem, 2004, 47(6):1591-1594
    [30] A. Kannan, E. de Clercq, C. Pannecouque. et al. Synthesis and anti-HIV activity of a bile acid analog of Cosalane. Tetrahedron, 200, 57(46):9385-91
    [31] G.D. Norata, A. L. Catapano. Lipid lowering activity of drugs affecting cholesterol absorption. Nutr. Metab. Cardiovasc. Dis., 2004, 14(1):42-51
    [32] F.D. Gillin. Exp. Parasitol, 1987, 31(11):1117
    [33] V.S. Pore, N. G. Aher, M. Kumar. et al. Design and synthesis of fluconazole/bile acid conjugate using click reaction. Tetrahedron, 2006, 62:11178-11186
    [34] F.W. Cope. Enhancement by high electric fields of superconduction in organic and biological solids at room temperature and a role in nerve conduction. Physiol. Chem. and Phys., 1974, 6(5):405-410
    [35] E.H. Halpem, A. A. Wolf. Speculations of superconductivity of ohmic materials. J. Franklin Inst., 1970, 289:193
    [36] A.A.Wolf, E. H. Halpern. On a Class of organic superconductors: A summary of findings. Proc. IEEE, 1976, 64(3): 357-359
    [37] A.A. Wolf, E. H. Halpern. Experimental high temperature organic superconductivity in the cholates: A summation of results. Physiol. Chem. Phys., 1976, 8:31
    [38] A. A. Wolf, E. H. Halpern, J. Sherman. Diamagnetic levitation in the fractionally superconduting bile cholates. Physiol. Chem. Phy., 1976, 8(2): 135-142
    [39] E. H. Halpern, A. A. Wolf. Speculations of superconductivity in biological and organic systems Advan. Cryyog., 1972, 17, 109-115
    [40] A.A. Wolf, E. H. Halpern. Organic Superconductors with high transition temperatures and high critical fields. U.S. 3, 944, 578(C1. 260-397.1; C075), 16 Mar 1976, Appl. 418, 337, 23 Nov 1973;7pp
    [41] E. H. Halpem. Search for organic superconductors. U. S. NTIS, AD. Rep. 1976, AD-AO26236, 156pp
    [42] A. A. Wolf. Experimental evidence for high temperature organic fractional superconduction in cholates. Physiol. Chem. Phy., 1976, 8(6):495-518
    [43] B. Deaver. Private communication,1975,7
    [44] E Rothwarf, D. Ford, L. Dubeck. Instruments for measuring magnetic transitions in the temperature range 4.2-300K. Rev. Sci. Instr., 1972,43:317
    [45] S. Goldfen. Evidence for high temperature superconduction in eholates. Phys. Chem. and Phys.,1974,6(3):261-268.
    [46] S. Goldfein. Anomalies in the property relations tending to reinforce high temperature superconductivity in eholates. U. S. NTIS, AD-A Rep. 1974,No. 009005, 40pp
    [47] S. Goldfein. Search for a room temperature superconductor. U. S. NTIS, AD-A Rep. Announce Index (U. S.) 1975,75(13),209
    [48] J.H. Choy, S. J. Choi, J. M. Oh. et al. Clay minerals and layered double hydroxides for novel biological applications. Applied Clay Science,2007,36:122-132
    [49] K. Zou, H. Zhang, X. Duan. Studies on the formation of 5-aminosalieylate intercalated Zn-A1 layered double hydroxides as a function of Zn/Al molar ratios and synthesis routes. Chemical Engineering Science,2007,62(7):2022-2031
    [50] 杜以波,D.G.Evans,段雪等.阴离子型层柱材料研究进展.化学通报,2000,63(5):20.24
    [51] N. Iyi, K. Fujii, K. Okamoto. Factors influencing the hydration of layered double hydroxides (LDHs) and the appearance of an intermediate second staging phase. Applied Clay Science,2007:218-227
    [52] 苟国敬,马培华.褚敏雄氯离子柱撑复合氢氧化物纳米微晶的制备及属性.化学学报,2004,62(21):2150-2160
    [53] 孟锦宏,张慧,王治强.插层组装超分子结构有机物柱撑阴离子层状材料.化学通报,2003(2):85-94
    [54] 孙幼松,矫庆泽,赵芸.对苯二甲酸柱撑水滑石的组装及其结构特征.应用化学,2001,18(10):781-784
    [55] 焦飞鹏,黄可龙,彭霞辉.光学纯酒石酸柱撑Mg-Al水滑石的制备及应用.中国有色金属学报,2005,15(6):975-980
    [56] E. M. Cait, P. Derek, S. N. Woolf. Engineered and designed peptide-based fibrous biomaterials. Current Opinion in Solid State and Materials Science,2004(8): 141-149
    [57] 蒋维,农兰平,曾和平.癸二酸根插层水滑石的组装及其结构表征.无机化学学报,2004,20(11):1329-1334
    [58] 张伟锋,李殿卿,孙勐.超分子结构甲基橙插层水滑石的组装及其光热稳定性研究.高等学校化学学报,2004,25(10):1799-1803
    [59] S. Carlino, M. J. Hudson, S. W. Husain. et al. The reaction of molten phenylphosphonic acid with a layered double hydroxide and its calcined oxide. Solid State Ionics,1996,84 (122): 117-129
    [60] S. Carlino, M. J. Hudson. Mater. Chem.,1994,4(1): 99-104
    [61] 段雪,矫庆泽.中国专利:00 132 145,2001
    [62] P.P. Kuma, A. G. Kalinichev, R. J. Kirkpatrick. Hydration, Swelling, Interlayer Structure, and Hydrogen Bonding in Organolayered Double Hydroxides: Insights from Molecular Dynamics Simulation of Citrate-Intercalated Hydrotalcite. J. Phys. Chem. B.,2006,110(9):3841-3844
    [63] J.W. Wang, A. G. Kalinichev, R. J. Kirkpatrick. et al. Molecular modeling of the structure and energetics of hydrotalcite hydration. Chem. Mater.,2001,13:145-150
    [64] M. Meyn, K. Beneke, G. Lagaly. Anion exchange reaction of layered double hydroxides. Inorg. Chem.1990,29(26):5201-5207
    [65] 蒋维,农兰,曾和平.癸二酸根插层水滑石的组装及其结构表征.无机化学学报,2004,20(11):1329-1334
    [66] F. Kooli, M. Vucelic. Synthesis and properties of terephthalate and benzoate intercalates of Mg-Al layered double hydroxides possessing varying layer charge. Chemistry of Materials, 1996: 1969-1977
    [67] G.D. Moggridge, G. Tourillon. A NEXAFS study of the orientation of benzoate intercalated into a layer double hydroxide. Physica B,1995,208:269-270
    [68] F. Kooli, I. C. Chisem, M. Vucelic. et al. Synthesis and properties of terephthalate and benzoate intercalates of Mg-Al layered double hydroxides possessing varying layer charge. Chem. Mater., 1996,8(8):1969-1977
    [69] M. del Arco, S. Gutie' rrez, C. Marti. Synthesis and characterization of layered double hydroxides(LDH) intercalated with non-steroidal anti-inflammatory drugs (NSAID). Journal of Solid State Chemistry,2004,177: 3954-3962
    [70] C. Deckert, K. Zahouily, L. Keller. et al. Ultrafast Synthesis of. Bentonite-Acrylate Nanocomposite Materials by UV-Radiation Curing. J. Mater. Sci.,2002,37,4831-4838
    [71] J. Plank, H. Keller, R R. Andres. et al. Novel organo-mineral phases obtained by intercalation of maleic anhydride-allyl ether copolymers into layered calcium aluminium hydrates. Inorg. Chim. Acta, 2006, 359:4901-4908
    [72] J. Plank, Z. Dai, P. R. Andres. Preparation and characterization of new a-Al-polycarboxylate layered double hydroxides. Materials Letters, 2006, 60:3614-3617
    [73] W. Chen, L. Feng, B. J. Qu. In situ synthesis of poly(methyl methacrylate)/MgAl layered double hydroxide nanocomposite with high transparency and enhanced thermal properties. Solid State Commun, 2004, 130: 259-263
    [74] G. R. Williams, A. J. Norquist, D. O'Hare. The formation of ordered heterostructures during the intercalation of phosphonic acids into layred double hydroxide. Chem. Commun., 2003: 1816-1817
    [75] G. R. Williams, A. J. Norquist, D. O'Hare. Time-Resolved, In-situ X-ray Diffraction Studies of Staging During Phosphonic Acid Intercalation into [LiAl_2(OH)_6] Cl·H_2O. Chem. Mater., 2004, 16: 975-981
    [76] G. R. Williams, D. O'Hare. Factors Influencing Staging during Anion-Exchange Intercalation into [LiAl_2(OH)_6] x·mH_2O (X=Cl~-, Br~-, NO_3~-). Chemistry of Materials, 2005, 17(10): 2632-2640
    [77] G. R. Williams, D. O'Hare. New phosphonate intercalates of [Ca_2Al(OH)_6] NO_3·yH_2O: A synthetic and kinetic study. Solid State Sciences, 2006, 8:971-980
    [78] J. Choy, S. Y. Kwak, Y. J. Jeong, J. S. Park. Inorganic layered double hydroxides as nonviral vectors. Angew. Chem. Int. Ed., 2000, 39:4042-4045
    [79] A'. Fudala, I. Pa'linko', I. Kiricsi. Preparation and characterization of hybrid organic-inorganic composite materials using the amphoteric property of amino acids: amino acid intercalated layered double hydroxide and montmorillonite. Inorg. Chem., 1999, 38: 4653-4658
    [80] N.T. Whilton, P. J. Vickers, S. Mann. Bioinorganic clays:synthesis and characterization of amino and polyamino acid intercalated layered double hydroxides. J. Mater. Chem., 1997, 7, 1623-1629
    [81] S. Aisawa, H. Hirahara, K. Ishiyama. et al. Sugar-anionic clay composite materials: intercalation ofpentoses in layered double hydroxide. J. Solid State Chem., 2003, 174:342-348
    [82] S. Aisawa, S. Takahashi, W. Ogasawara. et al. Direct intercalation of amino acids into the layered double hydroxides by coprecipitation. J. Solid State Chem., 2001, 162:52-62
    [83] B. Lotsch, F. Millange, R. I. Walton. et al. Separationof nucleoside monophosphates using preferential anion exchange intercalation in layered double hydroxides. Solid State Sci., 2001, 3:883-886
    [84] H. Nakayama, N. Wada, M. Tsuhako, Intercalation of amino acids and peptides into Mg-Al layered double hydroxide by reconstruction method. Int. J. Pharm., 2004, 269:469-478
    [85] S. Aisawa, H. Kudo, T. Hoshi. et al. Intercalation behavior of amino acids into Zn-Al-layered double hydroxide by calcinations-rehydration reaction. Journal of Solid State Chemistry, 2004, 177:3987-3994
    [86] S. Aisawa, Y. Ohnuma, K. Hirose. et al. Intercalation of nucleotides into layered double hydroxides by ion-exchange reaction. Applied Clay Science, 2005, 28: 137-145
    [87] D.M. Small, P. P. Nair, D. Kritchevsky (Eds.), The Bile Acids:Chemistry, Physiology, and Metabolism, Vol. 1, Plenum, New York, 1971, Chap. 8
    [88] A. Coello, F. Meijide, E. R. Nunez. et al. Aggregation behavior of bile salts in aqueous solution. Journal of Pharmaceutical Sciences, 1996, 85:283-290
    [89] G. Li, L. B. McGown. Model for Bile Salt Micellization and Solubilization from Studies of a Polydisperse Array of Fluorescent Probes and Molecular Modeling. J. Phys. Chem., 1994, 98, 13711-13719
    [90] L. Hao, R. H. Lu, D. G. Leaist. et al. Aggregation number of aqueous sodium cholate micelles from mutual diffusion measurements. J. Solution Chem., 1997, 26(2):113
    [91] S. Goulin, X. X. Zhu. Fluorescence and NMR Studies of the Effect of a Bile Acid Dimer on the Micellization of Bile Salts. Langrnuir, 1998, 14(15):4025-4029
    [92] W.L. Hinze (Ed.), Bile Acid/Salt Surfactant Systems, JAI Press, Stamford, CT, 2000
    [93] Y. Sun, Z. L. Yang, L. Zhang. et al. The interaction of Co~(2+) ions and sodium deoxycholate micells. Journal of Molecular Sturcture, 2003, 655:321-330
    [94] Y. Li, J. F. Holzwarth, C. Bohne. Aggregation dynamics of sodium taurodeoxycholate and sodium deoxycholate. Langmuir, 2000, 16:2038-2041
    [95] A. O. Karlsson, R. Ipsen, Y. Ardo. Observations of casein micelles in skim milk concentrate by transmission electron microscopy. LWT-Food Science and Technology, 2007, 40(6): 1102-1107
    [96] Y. P. Wei, F. Cheng. Synthesis and aggregates of cellulose-based hydrophobically associating polymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,298(3):201-205
    [97] A.K. Iyer, K. Greish, J. Fang. High-loading nanosized micelles of copoly(styrene-maleic acid)-zinc protoporphyrin for targeted delivery of a potent heme oxygenase inhibitor. Biomaterials,28(10):1871 -1881
    [98] H. Sugioka, K. Matsuoka, Y. Moroi. Temperature effect on formation of sodium cholate micelle. Journal of Colloid and Interface Science,2003,259:156-162
    [99] 张莉,杨展澜,熊尧.H~+对水溶液中脱氧胆酸钠聚集体的影响.物理化学学报,2004,20(10):1196-1199
    [100] K. Matsuoka, M. Maeda, M. Moroi. Micelle formation of sodium glycol- and taurocholates and sodium glycol- and taurodeoxycholates and solubilization of cholesterol into their micelles. Colloids and Surfaces B: Biointerfaces,2003,32: 87-95
    [101] Y. Moroi. Micelles; Theoretical and Applied Aspects,Plenum Press, New York, 1992,Chap.4-9
    [102] H. Sugioka, Y. Moroi. Miceile formation of sodium cholate and solubilization into the micelle. Biochimiea et Biophysica, Acta,1998,1394(1):99-110
    [103] Y. Moroi, M. Okabe, Micelle formation of sodium ursodeoxycholate and solubilization into the micelle. Colloids Surfaces A,2000,169:75-84
    [104] K. Matsuoka, Y. Moroi. Micelle formation of sodium deoxycholate and sodium ursodeoxycholate (Part 1). Biochimica et Biophysica,Acta,2002,1580(2): 189-199
    [105] K.Holmberg,B.Jonsson,B.Kronberg.et al.水溶液中的表面活性剂和聚合物.韩丙勇 张学军译.北京:化学工业出版,2005:32-122
    [106] 赵国玺.表面活性剂作用原理.北京:中国轻工业出版,2003:10-98
    [1] N. Funasaki, M. Fukuba, T. Hattori. et al. Micelle formation of bile salts and zwitterionic derivative as studied by two-dimensional NMR spectroscopy. Chemistry and Physics of Lipids,2006,142:43-57
    [2] H. M. Willemen, T. Vermonden, A. Koudijs. et al. Aggregation of different amino acid conjugates of cholic acid in aqueous solution. Colloids and Surfaces A: Physicochem.,2003,218:59-64
    [3] S. Reis, C. G. Moutinho, C. Matos. et al. Nonivasive methods to determine the critical micelle concentration of some bile acid salts. Analytical Biochemistry,2004,334:117-126
    [4] R. Ninomiya, K. Matsuoka, Y. Moroi. Micelle formation of sodium chenodeoxyeholate and solubilization into the micelles: comparison with other unconjugated bile salts. Bioehimica et Biophysica Acta,2003,1634:116-125
    [5] 郝晋清,李金玲,李武宏等.新型含胆酸功能基生物降解性水凝胶的合成与表征.离子交换与吸附,2005,21(3):202-208
    [6] Y. Sato, N. Ikekawa. Preparation of Chenodeoxycholic acid. J. Am. Chem. Soc., 1959: 1367-1369
    [1] Z. Chang, D. G. Evans, X. Duan. et al. Synthesis of [Zn-Al-CO_3] layered double hydroxides by a coprecipitation method under steady-state conditions. Journal of Solid State Chemistry,2005,178:2766-2777
    [2] F.R. Costa, M. A. Goad, U. Wagenknecht. et al. Nanocomposites based on polyethylene and Mg-Al layered double hydroxide. I. Synthesis and characterization. Polymer,2005,46:4447-4453
    [3] F. R. Costa, B. K.Satapathy, U. Wagenknecht. Morphology and fracture behaviour of polyethylene/Mg-Al layered double hydroxide(LDH) nanocomposites. European Polymer Journal,2006,42:2140-2152
    [4] S. Goldfein,. et al. Search for a room temperature superconductor. U. S. NTIS, AD-A-Rep. Announce Index (U.S.) 1975,75(13),209
    [5] E. H. Halpem. Search for organic superconductors. U. S. NTIS, AD. Rep. 1976,AD-AO26236,156pp
    [6] A. A. Wolf, E. H. Halpem., J. Sherman. Diamagnetic levitation in the fractionally supe-rconduting bile cholates. Physiol. Chem. Phy., 1976,8(2): 135-42
    [7] 姜鹏,侯万国,韩书华等.Zn-Mg-Al型类水滑石纳米颗粒制备及晶体结构.高等学校化学学报,2002,23(1):78-82
    [8] L. Z. Qiu, W. Chen, B. J. Qu. Structural characterisation and thermal properties of exfoliated polystyrene/ZnAl layered double hydroxide nanocomposites prepared via solution intercalation. Polymer Degradation and Stability,2005,87:433-440
    [9] P. Ding, B. J. Qu. Synthesis and characterization of exfoliated polystyrene/ZnAl layered double hydroxide nanocomposite via emulsion polymerization. Journal of Colloid and Interface Science,2005,291:13-18
    [10] 包玉敏,李连生,马淑杰等.类水滑石[Cd_xMg_(6-x)Al_2(OH)_(16)]~(?2+)[S·2H_2O]~(2-)的合成与表征.高等学校化学学报,1996,17(3):355-358
    [11] M. Tu, J. Y. Shen, Y. Chen. Microcalorimetric Studies of Zn-Al mixed oxides obtained from hydrotalcite-type precursors. Jounal of Thermal analysis and calorimetry, 1999,58 (2):441-446
    [12] D. A. Margarita, G. Sona, M. Cristina, et al. Synthesis and characterization of layered double hydroxides(LDH) intercalated with non-steroidal anti-inflammatory drugs (NSAID). Journal of solid state chemistry,2004,177:3954-3962
    [1] M. Nayak, T. R. N. Kutty, V. Jayaraman. et al. Preparation of the layered double hydroxide(LDH) LiAl_2(OH)_7·2H_2O by gel to crystallite conversion and a hydrothermal method, and its conversion to lithium aluminates. J. Mater. Chem.,1997,7,2131-2137
    [2] F. Qi, H. X. yao, K. Kajiyoshi. et al. Hydrothermal soft chemical synthesis of Ni(OH)_2-Birnessite sandwich layered compound and layered LiNi_(1/3)Mn_(2/3)O_2. Chemistry Letters,2001,30(10): 1036
    [3] M. Ogawa, So Asal. Hydrothermal synthesis of layered double hydroxide-deoxycholate intercalation compound. Chem. Mater.,2000,12:3253-3255
    [4] Takahashi, Hideo, Okada. et al.(Kyowa Chemical Industry Co., Ltd)US Patent,2002,6,418,661
    [5] 谢鲜梅.层状化合物镍铝水滑石的制备和表征.无机化学学报,2000,16:43-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700