M受体对膀胱ICC细胞兴奋性的影响及在膀胱收缩功能中作用的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景及目的:
     膀胱是具有高度顺应性的空腔器官,其排尿功能是通过膀胱收缩、尿道括约肌松弛协调完成的。膀胱收缩功能异常疾病临床发病率高,严重影响患者生活质量,但治疗效果不理想。究其原因是膀胱收缩功能调节复杂、相关疾病的发病机理不清。
     膀胱功能主要依赖于中枢神经系统( central nervous system;CNS )的控制,通过胆碱能神经调节收缩,肾上腺素能神经调节舒张,非胆碱能非肾上腺素能神经起辅助作用。但是在膀胱收缩异常的疾病的临床治疗中应用神经调节药物,症状虽有部分缓解,但是不能彻底治愈。提示神经调节为基础的理论不能满意解释膀胱收缩功能异常疾病的产生机制。离体膀胱可以产生局部的微小收缩或整体收缩,而整体收缩也可表现出膀胱内压力的变化,另外离体逼尿肌条也观察到其存在自发收缩活性。说明膀胱在神经调控外,其本身具有的特征也参与了膀胱收缩功能的调节,据此我们中心根据多年研究提出“膀胱源性”学说。
     膀胱ICC细胞是近年来在人和豚鼠等动物泌尿系统的输尿管、膀胱以及前列腺等组织内发现的形态上与胃肠道Cajal间质细胞(interstitial cells of Cajal,ICC)类似的细胞。胃肠道ICC是一种特殊的间质细胞,对胃肠道基本电节律的形成、神经传导的调控、信号整合等多种生理功能起到了重要的作用。胃肠道ICC保持正常的结构、功能及分布,对胃肠动力的产生和收缩功能调控至关重要,其分布密度减少和细胞网络完整性被破坏与一些胃肠动力紊乱性疾病的发生密切相关。而膀胱ICC细胞的研究尚处起步阶段,McCloskey等提出膀胱ICC细胞对膀胱的收缩功能调节可能具有重要作用。但是膀胱收缩是由全部逼尿肌细胞协调活动完成的,而膀胱ICC细胞不能在完全独立状态下实现对膀胱收缩功能的调节,那么膀胱ICC细胞必然同神经存在某种联系?
     胆碱能神经在膀胱的神经调控中起主要作用,其作用的实现是通过释放乙酰胆碱,作用于膀胱毒蕈碱样胆碱能受体(muscarinic receptor,M受体),引起逼尿肌收缩。逼尿肌M受体变化在各种膀胱收缩功能异常疾病的发病机理中具有重要作用。Braverman等在神经源性膀胱的研究中发现,M受体总量的增加或M2受体密度的增加,改变了大鼠去盆神经支配的膀胱逼尿肌的收缩特性,提示M_2受体变化可能主要致病因素。逼尿肌不稳定是最常见的排尿功能障碍性疾病,其发病机理可能与M受体亚型上调及M_2受体、M_3受体亚型之间的比例失调有关。
     最近的研究发现胃肠道ICC可以表达一系列神经受体,如嘌呤能受体、缓激肽受体、胆碱能和前列腺素受体。Kim等研究发现胆碱能刺激可以增加胃窦部和体部ICC的起搏频率,并且其胆碱能效应是由M_3受体介导的,提示胆碱能递质可以调节胃肠道ICC的兴奋性并通过ICC调节胃肠道平滑肌的收缩功能。本课题组前期研究发现,膀胱ICC细胞膜上有嘌呤能受体的表达,嘌呤能神经递质ATP可以兴奋膀胱ICC细胞。那么,M受体的激活是否可以兴奋膀胱ICC细胞,膀胱ICC细胞是否参与了胆碱能神经对膀胱收缩功能的调控?目前国内外未见相关报道。
     本课题拟围绕M受体亚型在膀胱ICC细胞中的分布,M受体的激活对膀胱ICC细胞兴奋性的影响以及阻断膀胱ICC细胞对膀胱收缩功能的影响三个方面进行研究。从一个全新的层面探讨膀胱收缩功能的调控机制,具有十分重要的理论价值,为膀胱收缩功能异常的研究提供新的切入点。
     方法:
     本课题以成年SD大鼠为研究对象。⑴形态学观察:通过免疫荧光双标和激光共聚焦显微镜观察的方法,鉴定大鼠膀胱ICC细胞的分布及膀胱ICC细胞上毒蕈碱样胆碱能受体五个亚型的表达;⑵细胞水平检测M受体对膀胱ICC细胞的功能的影响:进行大鼠膀胱ICC细胞和逼尿肌细胞原代混合培养,应用Fluo-3 AM钙荧光指示剂、胆碱能受体激动剂、亚型拮抗剂和激光聚焦显微镜观察膀胱ICC细胞[Ca~(2+)]_i的变化,了解M受体对膀胱ICC细胞兴奋性的调节;⑶组织水平:从卡巴可对正常大鼠离体膀胱肌条收缩功能的影响、M_2和M_3受体亚型特异性阻断剂对膀胱肌条收缩功能的影响、应ICC细胞特异性阻断剂甲磺酸伊马替尼(Glivec)阻断膀胱ICC细胞后,卡巴可对正常膀胱肌条收缩功能影响的改变等不同角度,来探讨膀胱ICC细胞在膀胱收缩功能调节中的作用。
     结果:
     1.激光共聚焦显微镜下观察显示,SD大鼠膀胱内可见c-kit染色阳性的膀胱ICC细胞。
     2. SD大鼠膀胱ICC细胞仅表达M_2和M_3受体亚型。
     3.成功进行了大鼠膀胱ICC细胞和DSMC的原代混合培养及鉴定。
     4. M受体激动剂卡巴可作用膀胱ICC细胞后,可以引起[Ca~(2+)]_i显著升高。
     5. M_2受体拮抗剂美索曲明可以轻度抑制卡巴可对膀胱ICC细胞的兴奋作用;M_3受体拮抗剂4-DAMP可以显著抑制卡巴可对膀胱ICC细胞的兴奋作用。
     6.在一定前负荷下(0.75g),膀胱肌条出现自发性的期相性收缩,不同终浓度的卡巴可可以引起肌条出现整体收缩幅度及自发性收缩振幅显著增强,自发性收缩频率出现先升高后降低的趋势。
     7.美索曲明可以轻度抑制卡巴可引起的膀胱肌条自发性收缩幅度和频率和肌条收缩张力;4-DAMP可以显著抑制卡巴可引起的膀胱肌条自发性收缩幅度、频率和肌条收缩张力。
     8. Glivec可以呈浓度依赖方式抑制卡巴可对膀胱肌条的收缩作用,并且对卡巴可引起的膀胱肌条收缩效应产生舒张效应。
     9.应用Glivec阻断膀胱ICC细胞后,卡巴可对膀胱肌条的自发性收缩振幅和收缩效应均被减弱。
     结论:
     1.大鼠膀胱ICC细胞细胞膜上存在M_2受体和M_3受体。
     2.胆碱能递质主要通过M_3受体兴奋膀胱ICC细胞。
     3.膀胱ICC细胞可能参与了胆碱能神经对逼尿肌收缩功能的调控。
Background and objective:
     Bladder, an empty organ with high compliance, always requires a coordinated contraction of the detrusor and relaxation of the urethra. Bladder dysfunctions are very common in clinic. Patients suffer from unbearable symptoms and there are no effective therapies to them in some patients because the regulation of bladder contractile function is complex and the pathogenesis of these diseases is not clear.
     Physiological contraction and relaxation of the urinary bladder are predominantly controled by central nervous system(CNS). The bladder contraction is mainly regulated by cholinergic nerve and the relaxation is mainly regulated by adrenergic nerve combining with the assistance of non-adrenergiccholinergic nerve. Unfortunately, satisfactory therapeutic effect is seldom obtained when treating the diseases of bladder constriction disorders using several kinds of antagonists to nerve regulation, which suggests that the theory based on neuroregulation can’t explain the exact mechanisms underling bladder contractile function disoders. Previous studies have demonstrated that the isolated bladder had localized micromotion or generalized contraction,and the generalized contraction induced the change of intravesical pressure. It was also found that detrusor muscle strip could generate spontaneous contraction. Then we supposed a hypothesis based on intrinsic bladder changed to explain the disorders besides nerve regulation, and tried to find the pathogenesis of them for many years in our reseach center.
     Recently, some specialized cells with various morphological, electrophisiological and immunohistochemical characteristics of interstitial cells of Cajal (ICC) have been located in many regions of ureter, bladder, prostate and so on. ICC, the pacemaker cells of the gastrointestinal tract, play important roles in the formation of basic electric rhythm of gastrointestinal tract, the regulation of neural conduction, signal integration and so on. The normal structures, function and distribution are important to maintain the gastrointestinal motility and contractile function. The number of ICC decreaseing or damage of the cellular network may induce some gastrointestinal motility disorders. McCloskey et al found ICC may play important roles in the regulation of bladder contraction. Moreover, the location of bladder ICC have connections with intramural nerves and associated with smooth muscle cells. Then, there may be some special relationships between ICC and nerve in bladder.
     Cholinergic nerve play the predominant role in nerve regulation in bladder via released acetylcholine combining muscarinic receptor to induce detrusor contraction. Muscarinic receptors are related with many abnormalities of bladder contraction. Braverman et al found that total amount of M receptor or density of M_2 receptor increasing were associated with the contractility ability of bladder and those changes were independent with pelvic nerve, which suggests that M_2 receptor may be the main causative factor to this disease. Instability of detrusor muscle is the most common urination dysfunction; its pathogenesis may be related with the up-regulation of subtype of M receptor and disproportion of M_2 and M_3 receptor subtypes.
     Recent studies demonstrated that ICC in gastroinstestinal tract expresses several neuroceptors, such as purinergic receptors, bradykinin receptors, cholinergic and prostaglandin receptors. Kim et al found that the cholinergic stimulus mediated by M3 receptor increased the pacing frequency of ICC in gastic antrum and body, which suggests that cholinergic transmitter regulates the excitory of ICC in gastrointestinal tract to control the contractile function of smooth muscle in gastrointestinal tract. Our previous studies found that the ICC in bladder express purinergic receptors and ICC in bladder can be activated under the stimulation of purinergic neurotransmitter ATP. Then we are interested in the correlation between activation of M receptor and excitability of ICC in bladder, and whether ICC play roles in the regulation of bladder contraction underlying cholinergic nerve? There are no data on this subject reported by researchs of internal and abroad.
     This study will investigate the distribution of M receptor subtypes in bladder ICC, the relations of activation of M receptor and the excitory of ICC, and the contractile function of bladder when ICC were inhibited by Glivec, a specialized inhibitor of c-kit tyrosine kinase. The mechanism of regulation underling bladder contraction will be investigated by a firenew point, which is a worthy theory to offer new therapies for abnormalities of bladder contraction.
     Materials and Methods
     In this study, the roles of M receptors in bladder contractile function were observed in adult SD rats.⑴We identified the area of ICCs and the expression of the five muscarinic Cholinergic Receptors (M_1-M_5) on ICCs in bladder of rats using couple immunofluorescences and observing with confocal laser microscopy.⑵We investigated the contribution of M receptors to the function of ICCs in mixed primary culture of ICCs and detrusor muscle cells. Then the changes of [Ca~(2+)]_i in ICCs were observed under confocal laser microscopy after using Fluo-3 AM Calcium fluorescence indicator, Cholinergic receptor agonist and subtypes antagonist to examine how M receptors regulate the excitability of ICCs.⑶The role of ICCs in bladder contractile function was researched by comparing the changes of contractile functions using Carbachol in normal rat bladder in vitro, M_2 and M_3 receptors hypospecificity blocking agents in bladder strips. Furthermore the bladder strips contractile properties induced by Carbachol application were detected after been exposed to Glivec to block c-kit and the normal function of ICCs.
     Results
     1. C-kit positive ICCs were found in bladder of SD rats under confocal laser microscopy.
     2. We found that M_2 and M_3 but not M1, M4 and M5 receptor subtypes were expressed in bladder ICCs of SD rat by double lable of immunofluorescence.
     3. We successfully identified bladder ICC in mixed primary culture.
     4. In vitro application of Carbachol, an agonist of M receptor, significantly enhanced [Ca~(2+)]_i in cultured ICC.
     5. The Carbachol-induced excitability in cultured ICCs was mildly inhibited by Methoctramine, the antagonist of M_2 receptor, while it was significantly inhibited by 4-DAMP, the antagonist of M_3 receptor.
     6. The bladder strips showed spontaneous contractions under a fixed tention(0.75g). Gradually increasing the concentration of Carbachol could induce significant increasing in the amplitude of whole contractions and spontaneous contractions. Moreover, the frequency of spontaneous contractions showed high frequency in first and then down later.
     7. The amplitude/frequency of spontaneous contraction and the tention of the strips induced by Carbachol could be significantly inhibited by 4-DAMP but mildly inhibited by Methoctramine.
     8. The contraction of bladder strips could be inhibited by concentration dependent Glivec. Glivec could relax the bladder strips which were in contraction state induced by Carbachol.
     9. Glivec could significantly decrease the amplitude of spontaneous contraction and contractile effect of bladder strips induced by Carbachol.
     Conclutions
     1. ICCs express M_2 and M_3 receptors in bladder of rats.
     2. Cholinergic nerve stimulate can excite ICCs in bladder mainly via M_3 muscarinic receptors.
     3. ICCs in bladder might play roles in the regulation of detrusor contraction by the interaction with cholinergic nerve.
引文
1. Coolsaet BL, Van Duyl WA, Van Os-Bossagh P, et al. New concepts in relation to urge and detrusor activity.[J]. Neurourol Urodyn. 1993, 12(5): 463-71.
    2. Bristow SE, Neal DE. Ambulatory urodynamics.[J]. Br J Urol. 1996, 77(3): 333-8.
    3. Brading AF. A myogenic basis for the overactive bladder.[J]. Urology. 1997, 50(6A Suppl): 57-67; discussion 68-73.
    4.龚宇,宋波,熊恩庆,等.大鼠BOO对膀胱逼尿肌生物力学特性的影响[J].第三军医大学学报. 2003, (22): 2002-2004.
    5.宋波.逼尿肌兴奋性及逼尿肌不稳定[J].解放军医学杂志. 2003, (02): 128-130.
    6. Klemm MF, Exintaris B, Lang RJ. Identification of the cells underlying pacemaker activity in the guinea-pig upper urinary tract.[J]. J Physiol. 1999, 519 Pt 3: 867-84.
    7. Lang RJ, Takano H, Davidson ME, et al. Characterization of the spontaneous electrical and contractile activity of smooth muscle cells in the rat upper urinary tract.[J]. J Urol. 2001, 166(1): 329-34.
    8. Pezzone MA, Watkins SC, Alber SM, et al. Identification of c-kit-positive cells in the mouse ureter: the interstitial cells of Cajal of the urinary tract.[J]. Am J Physiol Renal Physiol. 2003, 284(5): F925-9.
    9. Metzger R, Schuster T, Till H, et al. Cajal-like cells in the human upper urinary tract.[J]. J Urol. 2004, 172(2): 769-72.
    10. Lang RJ, Klemm MF. Interstitial cell of Cajal-like cells in the upper urinary tract.[J]. J Cell Mol Med. 2005, 9(3): 543-56.
    11. der AA F van, Roskams T, Blyweert W, et al. Identification of kit positive cells in the human urinary tract.[J]. J Urol. 2004, 171(6 Pt 1): 2492-6.
    12. McCloskey KD, Gurney AM. Kit positive cells in the guinea pig bladder.[J]. J Urol. 2002, 168(2): 832-6.
    13.沈文浩,李为兵,熊恩庆,等.胃肠道起搏细胞ICCs在豚鼠泌尿道分布研究[J].第三军医大学学报. 2006, (02): 172-173.
    14. Exintaris B, Klemm MF, Lang RJ. Spontaneous slow wave and contractile activity of the guinea pig prostate.[J]. J Urol. 2002, 168(1): 315-22.
    15. Van der Aa F, Roskams T, Blyweert W, et al. Interstitial cells in the human prostate: anew therapeutic target?[J]. Prostate. 2003, 56(4): 250-5.
    16. Ward SM, Sanders KM, Hirst GD. Role of interstitial cells of Cajal in neural control of gastrointestinal smooth muscles.[J]. Neurogastroenterol Motil. 2004, 16 Suppl 1: 112-7.
    17. Rolle U, Piotrowska AP, Nemeth L, et al. Altered distribution of interstitial cells of Cajal in Hirschsprung disease.[J]. Arch Pathol Lab Med. 2002, 126(8): 928-33.
    18. Feldstein AE, Miller SM, El-Youssef M, et al. Chronic intestinal pseudoobstruction associated with altered interstitial cells of cajal networks.[J]. J Pediatr Gastroenterol Nutr. 2003, 36(4): 492-7.
    19. Braverman AS, Luthin GR, Ruggieri MR. M2 muscarinic receptor contributes to contraction of the denervated rat urinary bladder.[J]. Am J Physiol. 1998, 275(5 Pt 2): R1654-60.
    20.卢根生,宋波,金锡御,等.大鼠不稳定膀胱与毒蕈碱受体亚型密度关系的实验研究[J].解放军医学杂志. 2003, (02): 140-141.
    21. Chen H, Redelman D, Ro S, et al. Selective labeling and isolation of functional classes of interstitial cells of Cajal of human and murine small intestine.[J]. Am J Physiol Cell Physiol. 2007, 292(1): C497-507.
    22. Burnstock G, Lavin S. Interstitial cells of Cajal and purinergic signalling.[J]. Auton Neurosci. 2002, 97(1): 68-72.
    23. Iino S, Ward SM, Sanders KM. Interstitial cells of Cajal are functionally innervated by excitatory motor neurones in the murine intestine.[J]. J Physiol. 2004, 556(Pt 2): 521-30.
    24. Choi S, Park do Y, Yeum CH, et al. Bradykinin modulates pacemaker currents through bradykinin B2 receptors in cultured interstitial cells of Cajal from the murine small intestine.[J]. Br J Pharmacol. 2006, 148(7): 918-26.
    25. Jun JY, Choi S, Chang IY, et al. Deoxycholic acid inhibits pacemaker currents by activating ATP-dependent K+ channels through prostaglandin E2 in interstitial cells of Cajal from the murine small intestine.[J]. Br J Pharmacol. 2005, 144(2): 242-51.
    26. Kim TW, Koh SD, Ordog T, et al. Muscarinic regulation of pacemaker frequency in murine gastric interstitial cells of Cajal.[J]. J Physiol. 2003, 546(Pt 2): 415-25.
    27.李应龙,王江平,丁国富,等.膀胱“Cajal样间质细胞”的研究进展[J].医学综述.2007, (02): 85-87.
    28. Shafik A, El-Sibai O, Shafik AA, et al. Identification of interstitial cells of Cajal in human urinary bladder: concept of vesical pacemaker.[J]. Urology. 2004, 64(4): 809-13.
    29.杨航,宋波.泌尿系统“起搏样细胞”研究进展[J].国外医学.泌尿系统分册. 2005, (03): 294-297.
    30. Sergeant GP, Thornbury KD, McHale NG, et al. Interstitial cells of Cajal in the urethra.[J]. J Cell Mol Med. 2006, 10(2): 280-91.
    31. Lang RJ, Zoltkowski BZ, Hammer JM, et al. Electrical characterization of interstitial cells of Cajal-like cells and smooth muscle cells isolated from the mouse ureteropelvic junction.[J]. J Urol. 2007, 177(4): 1573-80.
    32. McHale NG, Hollywood MA, Sergeant GP, et al. Organization and function of ICC in the urinary tract.[J]. J Physiol. 2006, 576(Pt 3): 689-94.
    33. Lang RJ, Tonta MA, Zoltkowski BZ, et al. Pyeloureteric peristalsis: role of atypical smooth muscle cells and interstitial cells of Cajal-like cells as pacemakers.[J]. J Physiol. 2006, 576(Pt 3): 695-705.
    34. Komuro T, Zhou DS. Anti-c-kit protein immunoreactive cells corresponding to the interstitial cells of Cajal in the guinea-pig small intestine.[J]. J Auton Nerv Syst. 1996, 61(2): 169-74.
    35. Burns AJ, Herbert TM, Ward SM, et al. Interstitial cells of Cajal in the guinea-pig gastrointestinal tract as revealed by c-Kit immunohistochemistry.[J]. Cell Tissue Res. 1997, 290(1): 11-20.
    36. Wester T, Eriksson L, Olsson Y, et al. Interstitial cells of Cajal in the human fetal small bowel as shown by c-kit immunohistochemistry.[J]. Gut. 1999, 44(1): 65-71.
    37. Kenny SE, Connell G, Woodward MN, et al. Ontogeny of interstitial cells of Cajal in the human intestine.[J]. J Pediatr Surg. 1999, 34(8): 1241-7.
    38. Yamataka A, Ohshiro K, Kobayashi H, et al. Abnormal distribution of intestinal pacemaker (C-KIT-positive) cells in an infant with chronic idiopathic intestinal pseudoobstruction.[J]. J Pediatr Surg. 1998, 33(6): 859-62.
    39. Hagger R, Finlayson C, Kahn F, et al. A deficiency of interstitial cells of Cajal in Chagasic megacolon.[J]. J Auton Nerv Syst. 2000, 80(1-2): 108-11.
    40. He CL, Burgart L, Wang L, et al. Decreased interstitial cell of cajal volume in patients with slow-transit constipation.[J]. Gastroenterology. 2000, 118(1): 14-21.
    41. Sergeant GP Hollywood MA, McCloskey KD McHale NG, Thornbury KD. Role of IP(3) in modulation of spontaneous activity in pacemaker cells of rabbit urethra.[J]. Am. J. Physiol. Cell Physiol. 2001, (280): 1349-1356.
    42. Sharma VK, Colecraft HM, Rubin LE, et al. Does mammalian heart contain only the M2 muscarinic receptor subtype?[J]. Life Sci. 1997, 60(13-14): 1023-9.
    43. Murthy KS, Makhlouf GM. Differential coupling of muscarinic m2 and m3 receptors to adenylyl cyclases V/VI in smooth muscle. Concurrent M2-mediated inhibition via Galphai3 and m3-mediated stimulation via Gbetagammaq.[J]. J Biol Chem. 1997, 272(34): 21317-24.
    44. Stengel PW, Gomeza J, Wess J, et al. M(2) and M(4) receptor knockout mice: muscarinic receptor function in cardiac and smooth muscle in vitro.[J]. J Pharmacol Exp Ther. 2000, 292(3): 877-85.
    45.姚泰.生理学[M].第6版.人民卫生出版社,
    46. Kunisawa Y, Komuro T. Interstitial cells of Cajal associated with the submucosal plexus of the Guinea-pig stomach.[J]. Neurosci Lett. 2008 .
    47. Davidson RA, McCloskey KD. Morphology and localization of interstitial cells in the guinea pig bladder: structural relationships with smooth muscle and neurons.[J]. 2005, 173(4): 1385-90.
    48. Johnston L, Carson C, Lyons AD, et al. Cholinergic induced Ca2+-signalling in Interstitial Cells of Cajal from the guinea-pig bladder.[J]. Am J Physiol Renal Physiol. 2008, 294: 645-655.
    49. McCloskey KD. Characterization of outward currents in interstitial cells from the guinea pig bladder.[J]. J Urol. 2005, 173(1): 296-301.
    50. Thomsen L, Robinson TL, Lee JC, et al. Interstitial cells of Cajal generate a rhythmic pacemaker current.[J]. Nat Med. 1998, 4(7): 848-51.
    51. Epperson A, Hatton WJ, Callaghan B, et al. Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal.[J]. Am J Physiol Cell Physiol. 2000, 279(2): C529-39.
    52. Mikkelsen HB, Malysz J, Huizinga JD, et al. Action potential generation, Kit receptorimmunohistochemistry and morphology of steel-Dickie (Sl/Sld) mutant mouse small intestine.[J]. Neurogastroenterol Motil. 1998, 10(1): 11-26.
    53. Ward SM, Burns AJ, Torihashi S, et al. Impaired development of interstitial cells and intestinal electrical rhythmicity in steel mutants.[J]. Am J Physiol. 1995, 269(6 Pt 1): C1577-85.
    54. Linetsky E, Bottino R, Lehmann R, et al. Improved human islet isolation using a new enzyme blend, liberase.[J]. Diabetes. 1997, 46(7): 1120-3.
    55. Pinheiro AC, Gomez RS, Guatimosim C, et al. The effect of sevoflurane on intracellular calcium concentration from cholinergic cells.[J]. Brain Res Bull. 2006, 69(2): 147-52.
    56. Liu PS, Chiung YM, Kao YY. Effect of toluene diisocyanate on homeostasis of intracellular-free calcium in human neuroblastoma SH-SY5Y cells.[J]. Toxicol Appl Pharmacol. 2006, 211(2): 106-14.
    57. Schwarz EC, Wissenbach U, Niemeyer BA, et al. TRPV6 potentiates calcium-dependent cell proliferation.[J]. Cell Calcium. 2006, 39(2): 163-73.
    58. Huizinga JD, Zhu Y, Ye J, et al. High-conductance chloride channels generate pacemaker currents in interstitial cells of Cajal.[J]. Gastroenterology. 2002, 123(5): 1627-36.
    59. Walker RL, Koh SD, Sergeant GP, et al. TRPC4 currents have properties similar to the pacemaker current in interstitial cells of Cajal.[J]. Am J Physiol Cell Physiol. 2002, 283(6): C1637-45.
    60. Torihashi S, Fujimoto T, Trost C, et al. Calcium oscillation linked to pacemaking of interstitial cells of Cajal: requirement of calcium influx and localization of TRP4 in caveolae.[J]. J Biol Chem. 2002, 277(21): 19191-7.
    61. Johnston L, Sergeant GP, Hollywood MA, et al. Calcium oscillations in interstitial cells of the rabbit urethra.[J]. J Physiol. 2005, 565(Pt 2): 449-61.
    62. Lavoie B, Balemba OB, Nelson MT, et al. Morphological and physiological evidence for interstitial cell of Cajal (ICC)-like cells in the guinea pig gallbladder.[J]. J Physiol. 2007 .
    63. Chen JT, Chen RM, Lin YL, et al. Confocal laser scanning microscopy: I. An overview of principle and practice in biomedical research.[J]. Acta Anaesthesiol Taiwan. 2004,42(1): 33-40.
    64. Amos WB, White JG. How the confocal laser scanning microscope entered biological research.[J]. Biol Cell. 2003, 95(6): 335-42.
    65. McCloskey KD. Calcium currents in interstitial cells from the guinea-pig bladder.[J]. BJU Int. 2006, 97(6): 1338-43.
    66. Sui GP, Rothery S, Dupont E, et al. Gap junctions and connexin expression in human suburothelial interstitial cells.[J]. BJU Int. 2002, 90(1): 118-29.
    67. Sui GP, Wu C, Fry CH. Electrical characteristics of suburothelial cells isolated from the human bladder.[J]. J Urol. 2004, 171(2 Pt 1): 938-43.
    68. Wu C, Sui GP, Fry CH. Purinergic regulation of guinea pig suburothelial myofibroblasts.[J]. J Physiol. 2004, 559(Pt 1): 231-43.
    69. Igawa Y. Discussion: functional role of M(1), M(2), and M(3) muscarinic receptors in overactive bladder. Urology. 5A Suppl(55) ,2000. 47-9.
    70. Hirst GD, Dickens EJ, Edwards FR. Pacemaker shift in the gastric antrum of guinea-pigs produced by excitatory vagal stimulation involves intramuscular interstitial cells.[J]. J Physiol. 2002, 541(Pt 3): 917-28.
    71. Forrest AS, Ordog T, Sanders KM. Neural regulation of slow-wave frequency in the murine gastric antrum.[J]. Am J Physiol Gastrointest Liver Physiol. 2006, 290(3): G486-95.
    72. Besmer P, Manova K, Duttlinger R, et al. The kit-ligand (steel factor) and its receptor c-kit/W: pleiotropic roles in gametogenesis and melanogenesis.[J]. Dev Suppl. 1993 : 125-37.
    73. Chabot B, Stephenson DA, Chapman VM, et al. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus.[J]. Nature. 1988, 335(6185): 88-9.
    74. Maeda H, Yamagata A, Nishikawa S, et al. Requirement of c-kit for development of intestinal pacemaker system.[J]. Development. 1992, 116(2): 369-75.
    75. Dickens EJ, Edwards FR, Hirst GD. Selective knockout of intramuscular interstitial cells reveals their role in the generation of slow waves in mouse stomach.[J]. J Physiol. 2001, 531(Pt 3): 827-33.
    76. Ordog T, Baldo M, Danko R, et al. Plasticity of electrical pacemaking by interstitialcells of Cajal and gastric dysrhythmias in W/W mutant mice.[J]. Gastroenterology. 2002, 123(6): 2028-40.
    77. Huizinga JD, Thuneberg L, Kluppel M, et al. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity.[J]. Nature. 1995, 373(6512): 347-9.
    78. Alberti E, Mikkelsen HB, Wang XY, et al. Pacemaker activity and inhibitory neurotransmission in the colon of Ws/Ws mutant rats.[J]. Am J Physiol Gastrointest Liver Physiol. 2007, 292(6): G1499-510.
    79. Beckett EA, Ro S, Bayguinov Y, et al. Kit signaling is essential for development and maintenance of interstitial cells of Cajal and electrical rhythmicity in the embryonic gastrointestinal tract.[J]. Dev Dyn. 2007, 236(1): 60-72.
    80. Torihashi S, Nishi K, Tokutomi Y, et al. Blockade of kit signaling induces transdifferentiation of interstitial cells of cajal to a smooth muscle phenotype.[J]. Gastroenterology. 1999, 117(1): 140-8.
    81. Chang IY, Glasgow NJ, Takayama I, et al. Loss of interstitial cells of Cajal and development of electrical dysfunction in murine small bowel obstruction.[J]. J Physiol. 2001, 536(Pt 2): 555-68.
    82. Shimojima N, Nakaki T, Morikawa Y, et al. Imatinib blocks spontaneous mechanical activities in the adult mouse small intestine: possible inhibition of c-Kit signaling.[J]. Pharmacology. 2005, 74(2): 95-9.
    83. Hashitani H, Hayase M, Suzuki H. Effects of imatinib mesylate on spontaneous electrical and mechanical activity in smooth muscle of the guinea-pig stomach.[J]. Br J Pharmacol. 2008, 154(2): 451-9.
    84. Gabella G. Innervation of the gastrointestinal tract.[J]. Int Rev Cytol. 1979, 59: 129-93.
    85. Burnstock G. Review lecture. Neurotransmitters and trophic factors in the autonomic nervous system.[J]. J Physiol. 1981, 313: 1-35.
    86. Gabella G. The structural relations between nerve fibres and muscle cells in the urinary bladder of the rat.[J]. J Neurocytol. 1995, 24(3): 159-87.
    87. Ward SM, Beckett EA, Wang X, et al. Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons.[J]. J Neurosci. 2000, 20(4): 1393-403.
    88. Beckett EA, Horiguchi K, Khoyi M, et al. Loss of enteric motor neurotransmission inthe gastric fundus of Sl/Sl(d) mice.[J]. J Physiol. 2002, 543(Pt 3): 871-87.
    89. Beckett EA, McGeough CA, Sanders KM, et al. Pacing of interstitial cells of Cajal in the murine gastric antrum: neurally mediated and direct stimulation.[J]. J Physiol. 2003, 553(Pt 2): 545-59.
    90. Suzuki H, Ward SM, Bayguinov YR, et al. Involvement of intramuscular interstitial cells in nitrergic inhibition in the mouse gastric antrum.[J]. J Physiol. 2003, 546(Pt 3): 751-63.
    91. Song G, David G, Hirst S, et al. Regional variation in ICC distribution, pacemaking activity and neural responses in the longitudinal muscle of the murine stomach.[J]. J Physiol. 2005, 564(Pt 2): 523-40.
    92. Sanders KM, Ordog T, Koh SD, et al. Development and plasticity of interstitial cells of Cajal.[J]. Neurogastroenterol Motil. 1999, 11(5): 311-38.
    93. Ishikawa K, Komuro T, Hirota S, et al. Ultrastructural identification of the c-kit-expressing interstitial cells in the rat stomach: a comparison of control and Ws/Ws mutant rats.[J]. Cell Tissue Res. 1997, 289(1): 137-43.
    94. Povstyan OV, Gordienko DV, Harhun MI, et al. Identification of interstitial cells of Cajal in the rabbit portal vein.[J]. Cell Calcium. 2003, 33(4): 223-39.
    95. Torihashi S Ward SM, Sanders KM. Development of c-kit-positive cells and the onset of electrical rhythmicity in murine small intestine.[J]. Gastroeneterology. 1997, (112): 144–155.
    96. Harhun MI Gordienko DV, Povstyan OV Bolton T. B. Intercommunication between interstitial cells (ICs) and smooth muscle cells (SMCs) from rabbit portal vein?[J]. Biophys J. 2003, 84: 105a.
    1. Hulme EC, Lu ZL, Saldanha JW, et al. Structure and activation of muscarinic acetylcholine receptors.[J]. Biochem Soc Trans. 2003, 31(Pt 1): 29-34.
    2. Suh BC, Hille B. Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate.[J]. Curr Opin Neurobiol. 2005, 15(3): 370-8.
    3. Winks JS, Hughes S, Filippov AK, et al. Relationship between membrane phosphatidylinositol-4,5-bisphosphate and receptor-mediated inhibition of native neuronal M channels.[J]. J Neurosci. 2005, 25(13): 3400-13.
    4. Fuster D, Moe OW, Hilgemann DW. Lipid- and mechanosensitivities of sodium/hydrogen exchangers analyzed by electrical methods.[J]. Proc Natl Acad Sci U S A. 2004, 101(28): 10482-7.
    5. Meyer T, Wellner-Kienitz MC, Biewald A, et al. Depletion of phosphatidylinositol 4,5-bisphosphate by activation of phospholipase C-coupled receptors causes slow inhibition but not desensitization of G protein-gated inward rectifier K+ current in atrial myocytes.[J]. J Biol Chem. 2001, 276(8): 5650-8.
    6. Rubanyi GM. Endothelium-derived relaxing and contracting factors.[J]. J Cell Biochem. 1991, 46(1): 27-36.
    7. van Zwieten PA, Doods HN. Muscarinic receptors and drugs in cardiovascular medicine.[J]. Cardiovasc Drugs Ther. 1995, 9(1): 159-67.
    8. Marin MG, Culp DJ. Isolation and culture of submucosal gland cells.[J]. Clin Chest Med. 1986, 7(2): 239-45.
    9. Bosma MM, Bernheim L, Leibowitz MD, et al. Modulation of M current in frog sympathetic ganglion cells.[J]. Soc Gen Physiol Ser. 1990, 45: 43-59.
    10. Caulfield MP, Robbins J, Higashida H, et al. Postsynaptic actions of acetylcholine: the coupling of muscarinic receptor subtypes to neuronal ion channels.[J]. Prog Brain Res. 1993, 98: 293-301.
    11. Kurachi Y, Ishii M. Cell signal control of the G protein-gated potassium channel and its subcellular localization.[J]. J Physiol. 2004, 554(Pt 2): 285-94.
    12. Yamada M, Inanobe A, Kurachi Y. G protein regulation of potassium ion channels.[J]. Pharmacol Rev. 1998, 50(4): 723-60.
    13. Volpicelli LA, Levey AI. Muscarinic acetylcholine receptor subtypes in cerebral cortexand hippocampus.[J]. Prog Brain Res. 2004, 145: 59-66.
    14. Murthy KS, Makhlouf GM. Differential coupling of muscarinic m2 and m3 receptors to adenylyl cyclases V/VI in smooth muscle. Concurrent M2-mediated inhibition via Galphai3 and m3-mediated stimulation via Gbetagammaq.[J]. J Biol Chem. 1997, 272(34): 21317-24.
    15. Eglen RM, Choppin A, Watson N. Therapeutic opportunities from muscarinic receptor research.[J]. Trends Pharmacol Sci. 2001, 22(8): 409-14.
    16. van Koppen CJ, Kaiser B. Regulation of muscarinic acetylcholine receptor signaling.[J]. Pharmacol Ther. 2003, 98(2): 197-220.
    17. Unger VM, Hargrave PA, Baldwin JM, et al. Arrangement of rhodopsin transmembrane alpha-helices.[J]. Nature. 1997, 389(6647): 203-6.
    18. Palczewski K, Kumasaka T, Hori T, et al. Crystal structure of rhodopsin: A G protein-coupled receptor.[J]. Science. 2000, 289(5480): 739-45.
    19. Gether U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors.[J]. Endocr Rev. 2000, 21(1): 90-113.
    20. Allman K, Page KM, Curtis CA, et al. Scanning mutagenesis identifies amino acid side chains in transmembrane domain 5 of the M(1) muscarinic receptor that participate in binding the acetyl methyl group of acetylcholine.[J]. Mol Pharmacol. 2000, 58(1): 175-84.
    21. Lu ZL, Saldanha JW, Hulme EC. Transmembrane domains 4 and 7 of the M(1) muscarinic acetylcholine receptor are critical for ligand binding and the receptor activation switch.[J]. J Biol Chem. 2001, 276(36): 34098-104.
    22. Lu ZL, Curtis CA, Jones PG, et al. The role of the aspartate-arginine-tyrosine triad in the m1 muscarinic receptor: mutations of aspartate 122 and tyrosine 124 decrease receptor expression but do not abolish signaling.[J]. Mol Pharmacol. 1997, 51(2): 234-41.
    23. Jones PG, Curtis CA, Hulme EC. The function of a highly-conserved arginine residue in activation of the muscarinic M1 receptor.[J]. Eur J Pharmacol. 1995, 288(3): 251-7.
    24. Page KM, Curtis CA, Jones PG, et al. The functional role of the binding site aspartate in muscarinic acetylcholine receptors, probed by site-directed mutagenesis.[J]. Eur J Pharmacol. 1995, 289(3): 429-37.
    25. Ward SD, Curtis CA, Hulme EC. Alanine-scanning mutagenesis of transmembranedomain 6 of the M(1) muscarinic acetylcholine receptor suggests that Tyr381 plays key roles in receptor function.[J]. Mol Pharmacol. 1999, 56(5): 1031-41.
    26. Lu ZL, Hulme EC. The functional topography of transmembrane domain 3 of the M1 muscarinic acetylcholine receptor, revealed by scanning mutagenesis.[J]. J Biol Chem. 1999, 274(11): 7309-15.
    27. Hulme EC, Lu ZL, Ward SD, et al. The conformational switch in 7-transmembrane receptors: the muscarinic receptor paradigm.[J]. Eur J Pharmacol. 1999, 375(1-3): 247-60.
    28. Liu J, Blin N, Conklin BR, et al. Molecular mechanisms involved in muscarinic acetylcholine receptor-mediated G protein activation studied by insertion mutagenesis.[J]. J Biol Chem. 1996, 271(11): 6172-8.
    29. Kostenis E, Zeng FY, Wess J. Structure-function analysis of muscarinic receptors and their associated G proteins.[J]. Life Sci. 1999, 64(6-7): 355-62.
    30. Koenig JA, Edwardson JM. Intracellular trafficking of the muscarinic acetylcholine receptor: importance of subtype and cell type.[J]. Mol Pharmacol. 1996, 49(2): 351-9.
    31. Moro O, Lameh J, Sadee W. Serine- and threonine-rich domain regulates internalization of muscarinic cholinergic receptors.[J]. J Biol Chem. 1993, 268(10): 6862-5.
    32. Pals-Rylaarsdam R, Hosey MM. Two homologous phosphorylation domains differentially contribute to desensitization and internalization of the m2 muscarinic acetylcholine receptor.[J]. J Biol Chem. 1997, 272(22): 14152-8.
    33. Goodman OB Jr, Krupnick JG, Santini F, et al. Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor.[J]. Nature. 1996, 383(6599): 447-50.
    34. Krupnick JG, Goodman OB Jr, Keen JH, et al. Arrestin/clathrin interaction. Localization of the clathrin binding domain of nonvisual arrestins to the carboxy terminus.[J]. J Biol Chem. 1997, 272(23): 15011-6.
    35. Takei K, Haucke V. Clathrin-mediated endocytosis: membrane factors pull the trigger.[J]. Trends Cell Biol. 2001, 11(9): 385-91.
    36. Claing A, Perry SJ, Achiriloaie M, et al. Multiple endocytic pathways of G protein-coupled receptors delineated by GIT1 sensitivity.[J]. Proc Natl Acad Sci U S A. 2000, 97(3): 1119-24.
    37. Vogler O, Nolte B, Voss M, et al. Regulation of muscarinic acetylcholine receptorsequestration and function by beta-arrestin.[J]. J Biol Chem. 1999, 274(18): 12333-8.
    38. Mundell SJ, Benovic JL. Selective regulation of endogenous G protein-coupled receptors by arrestins in HEK293 cells.[J]. J Biol Chem. 2000, 275(17): 12900-8.
    39. Santini F, Penn RB, Gagnon AW, et al. Selective recruitment of arrestin-3 to clathrin coated pits upon stimulation of G protein-coupled receptors.[J]. J Cell Sci. 2000, 113 ( Pt 13): 2463-70.
    40. Roseberry AG, Hosey MM. Internalization of the M2 muscarinic acetylcholine receptor proceeds through an atypical pathway in HEK293 cells that is independent of clathrin and caveolae.[J]. J Cell Sci. 2001, 114(Pt 4): 739-46.
    41. Wu G, Krupnick JG, Benovic JL, et al. Interaction of arrestins with intracellular domains of muscarinic and alpha2-adrenergic receptors.[J]. J Biol Chem. 1997, 272(28): 17836-42.
    42. Caulfield MP, Birdsall NJ. International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors.[J]. Pharmacol Rev. 1998, 50(2): 279-90.
    43. Wess J. Molecular biology of muscarinic acetylcholine receptors.[J]. Crit Rev Neurobiol. 1996, 10(1): 69-99.
    44. Wess J. Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications.[J]. Annu Rev Pharmacol Toxicol. 2004, 44: 423-50.
    45. Hamilton SE, Loose MD, Qi M, et al. Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice.[J]. Proc Natl Acad Sci U S A. 1997, 94(24): 13311-6.
    46. Miyakawa T, Yamada M, Duttaroy A, et al. Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor.[J]. J Neurosci. 2001, 21(14): 5239-50.
    47. Gerber DJ, Sotnikova TD, Gainetdinov RR, et al. Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice.[J]. Proc Natl Acad Sci U S A. 2001, 98(26): 15312-7.
    48. Anagnostaras SG, Murphy GG, Hamilton SE, et al. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice.[J]. Nat Neurosci. 2003, 6(1): 51-8.
    49. Rouse ST, Hamilton SE, Potter LT, et al. Muscarinic-induced modulation of potassium conductances is unchanged in mouse hippocampal pyramidal cells that lack functionalM1 receptors.[J]. Neurosci Lett. 2000, 278(1-2): 61-4.
    50. Hartvig P, Gillberg PG, Gordh T Jr, et al. Cholinergic mechanisms in pain and analgesia.[J]. Trends Pharmacol Sci. 1989, Suppl: 75-9.
    51. Widman M, Tucker S, Brase DA, et al. Cholinergic agents: antinociception without morphine type dependence in rats.[J]. Life Sci. 1985, 36(21): 2007-15.
    52. Gomeza J, Shannon H, Kostenis E, et al. Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice.[J]. Proc Natl Acad Sci U S A. 1999, 96(4): 1692-7.
    53. Shapiro MS, Loose MD, Hamilton SE, et al. Assignment of muscarinic receptor subtypes mediating G-protein modulation of Ca(2+) channels by using knockout mice.[J]. Proc Natl Acad Sci U S A. 1999, 96(19): 10899-904.
    54. Stengel PW, Gomeza J, Wess J, et al. M(2) and M(4) receptor knockout mice: muscarinic receptor function in cardiac and smooth muscle in vitro.[J]. J Pharmacol Exp Ther. 2000, 292(3): 877-85.
    55. Levey AI. Immunological localization of m1-m5 muscarinic acetylcholine receptors in peripheral tissues and brain.[J]. Life Sci. 1993, 52(5-6): 441-8.
    56. Yamada M, Miyakawa T, Duttaroy A, et al. Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean.[J]. Nature. 2001, 410(6825): 207-12.
    57. Matsui M, Motomura D, Karasawa H, et al. Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype.[J]. Proc Natl Acad Sci U S A. 2000, 97(17): 9579-84.
    58. Stengel PW, Cohen ML. Muscarinic receptor knockout mice: role of muscarinic acetylcholine receptors M(2), M(3), and M(4) in carbamylcholine-induced gallbladder contractility.[J]. J Pharmacol Exp Ther. 2002, 301(2): 643-50.
    59. Gomeza J, Zhang L, Kostenis E, et al. Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M(4) muscarinic acetylcholine receptor knockout mice.[J]. Proc Natl Acad Sci U S A. 1999, 96(18): 10483-8.
    60. Yamada M, Lamping KG, Duttaroy A, et al. Cholinergic dilation of cerebral blood vessels is abolished in M(5) muscarinic acetylcholine receptor knockout mice.[J]. Proc Natl Acad Sci U S A. 2001, 98(24): 14096-101.
    61. Pitschner HF, Schlepper M, Schulte B, et al. Selective antagonists reveal different functions of M cholinoceptor subtypes in humans.[J]. Trends Pharmacol Sci. 1989,Suppl: 92-6.
    62. Carmine AA, Brogden RN. Pirenzepine. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in peptic ulcer disease and other allied diseases.[J]. Drugs. 1985, 30(2): 85-126.
    63. Duncan G, Collison DJ. Role of the non-neuronal cholinergic system in the eye: a review.[J]. Life Sci. 2003, 72(18-19): 2013-9.
    64. Ellis DZ, Nathanson JA, Rabe J, et al. Carbachol and nitric oxide inhibition of Na,K-ATPase activity in bovine ciliary processes.[J]. Invest Ophthalmol Vis Sci. 2001, 42(11): 2625-31.
    65. Iwabuchi Y, Katagiri M, Masuhara T. Salivary secretion and histopathological effects after single administration of the muscarinic agonist SNI-2011 in MRL/lpr mice.[J]. Arch Int Pharmacodyn Ther. 1994, 328(3): 315-25.
    66. Fox RI, Konttinen Y, Fisher A. Use of muscarinic agonists in the treatment of Sjogren's syndrome.[J]. Clin Immunol. 2001, 101(3): 249-63.
    67. Eglen RM, Choppin A, Watson N. Therapeutic opportunities from muscarinic receptor research.[J]. Trends Pharmacol Sci. 2001, 22(8): 409-14.
    68. Yarker YE, Goa KL, Fitton A. Oxybutynin. A review of its pharmacodynamic and pharmacokinetic properties, and its therapeutic use in detrusor instability.[J]. Drugs Aging. 1995, 6(3): 243-62.
    69. Nilvebrant L, Hallen B, Larsson G. Tolterodine--a new bladder selective muscarinic receptor antagonist: preclinical pharmacological and clinical data.[J]. Life Sci. 1997, 60(13-14): 1129-36.
    70. Alabaster VA. Discovery & development of selective M3 antagonists for clinical use.[J]. Life Sci. 1997, 60(13-14): 1053-60.
    71. van Noord JA, Bantje TA, Eland ME, et al. A randomised controlled comparison of tiotropium nd ipratropium in the treatment of chronic obstructive pulmonary disease. The Dutch Tiotropium Study Group.[J]. Thorax. 2000, 55(4): 289-94.
    72. Disse B. Antimuscarinic treatment for lung diseases from research to clinical practice.[J]. Life Sci. 2001, 68(22-23): 2557-64.
    1. Andersson KE, Arner A. Urinary bladder contraction and relaxation: physiology and pathophysiology.[J]. Physiol Rev. 2004, 84(3): 935-86.
    2. Michel MC, Vrydag W. Alpha1-, alpha2- and beta-adrenoceptors in the urinary bladder, urethra and prostate.[J]. Br J Pharmacol. 2006, 147 Suppl 2: S88-119.
    3. Abrams P, Andersson KE, Buccafusco JJ, et al. Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder.[J]. Br J Pharmacol. 2006, 148(5): 565-78.
    4. Hegde SS. Muscarinic receptors in the bladder: from basic research to therapeutics.[J]. Br J Pharmacol. 2006, 147 Suppl 2: S80-7.
    5. Caulfield MP, Birdsall NJ. International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors.[J]. Pharmacol Rev. 1998, 50(2): 279-90.
    6. Felder CC. Muscarinic acetylcholine receptors: signal transduction through multiple effectors.[J]. FASEB J. 1995, 9(8): 619-25.
    7. Mamoon AM, Smith J, Baker RC, et al. Activation of muscarinic receptors in porcine airway smooth muscle elicits a transient increase in phospholipase D activity.[J]. J Biomed Sci. 1999, 6(2): 97-105.
    8. Schmidt M, Fasselt B, Rumenapp U, et al. Rapid and persistent desensitization of m3 muscarinic acetylcholine receptor-stimulated phospholipase D. Concomitant sensitization of phospholipase C.[J]. J Biol Chem. 1995, 270(34): 19949-56.
    9. Guizzetti M, Costa LG. Activation of phosphatidylinositol 3 kinase by muscarinic receptors in astrocytoma cells.[J]. Neuroreport. 2001, 12(8): 1639-42.
    10. Inoue R, Waniishi Y, Yamada K, et al. A possible role of tyrosine kinases in theregulation of muscarinic receptor-activated cation channels in guinea pig ileum.[J]. Biochem Biophys Res Commun. 1994, 203(3): 1392-7.
    11. Larocca JN, Almazan G. Acetylcholine agonists stimulate mitogen-activated protein kinase in oligodendrocyte progenitors by muscarinic receptors.[J]. J Neurosci Res. 1997, 50(5): 743-54.
    12. Wang P, Dhanasekaran N, Luthin GR. ERK activation and cellular proliferation in response to muscarinic acetylcholine receptor agonists.[J]. Ann N Y Acad Sci. 1997, 812: 182-3.
    13. Schmidt M, Voss M, Weernink PA, et al. A role for rho-kinase in rho-controlled phospholipase D stimulation by the m3 muscarinic acetylcholine receptor.[J]. J Biol Chem. 1999, 274(21): 14648-54.
    14. Caulfield MP. Muscarinic receptors--characterization, coupling and function.[J]. Pharmacol Ther. 1993, 58(3): 319-79.
    15. Simpson PB, Nahorski SR, Challiss RA. Agonist-evoked Ca~(2+) mobilization from stores expressing inositol 1,4,5-trisphosphate receptors and ryanodine receptors in cerebellar granule neurones.[J]. J Neurochem. 1996, 67(1): 364-73.
    16. Makhlouf GM, Murthy KS. Signal transduction in gastrointestinal smooth muscle.[J]. Cell Signal. 1997, 9(3-4): 269-76.
    17. Kories C, Czyborra C, Fetscher C, et al. Gender comparison of muscarinic receptor expression and function in rat and human urinary bladder: differential regulation of M2 and M3 receptors?[J]. Naunyn Schmiedebergs Arch Pharmacol. 2003, 367(5): 524-31.
    18. Marsh KA, Harrisss DR, Hill SJ. Desensitization of muscarinic receptor-coupled inositol phospholipid hydrolysis in human detrusor cultured smooth cells.[J]. J Urol. 1996, 155(4): 1439-43.
    19. Nelson CP, Gupta P, Napier CM, et al. Functional selectivity of muscarinic receptor antagonists for inhibition of M3-mediated phosphoinositide responses in guinea pig urinary bladder and submandibular salivary gland.[J]. J Pharmacol Exp Ther. 2004, 310(3): 1255-65.
    20. Schneider T, Hein P, Michel MC. Signal transduction underlying carbachol-induced contraction of rat urinary bladder. I. Phospholipases and Ca~(2+) sources.[J]. J PharmacolExp Ther. 2004, 308(1): 47-53.
    21. Imai T, Tanaka Y, Okamoto T, et al. 2-Aminoethoxydiphenyl borate causes dissociation between membrane electrical and mechanical activity in guinea-pig urinary bladder smooth muscle.[J]. Naunyn Schmiedebergs Arch Pharmacol. 2002, 366(3): 282-5.
    22. Durlu-Kandilci NT, Brading AF. Involvement of Rho kinase and protein kinase C in carbachol-induced calcium sensitization in beta-escin skinned rat and guinea-pig bladders.[J]. Br J Pharmacol. 2006, 148(3): 376-84.
    23. An JY, Yun HS, Lee YP, et al. The intracellular pathway of the acetylcholine-induced contraction in cat detrusor muscle cells.[J]. Br J Pharmacol. 2002, 137(7): 1001-10.
    24. Braverman AS, Tibb AS, Sr Ruggieri MR. M2 and M3 muscarinic receptor activation of urinary bladder contractile signal transduction. I. Normal rat bladder.[J]. J Pharmacol Exp Ther. 2006, 316(2): 869-74.
    25. Wegener JW, Schulla V, Lee TS, et al. An essential role of Cav1.2 L-type calcium channel for urinary bladder function.[J]. FASEB J. 2004, 18(10): 1159-61.
    26. Schneider T, Fetscher C, Krege S, et al. Signal transduction underlying carbachol-induced contraction of human urinary bladder.[J]. J Pharmacol Exp Ther. 2004, 309(3): 1148-53.
    27. Banno Y, Takuwa Y, Akao Y, et al. Involvement of phospholipase D in sphingosine 1-phosphate-induced activation of phosphatidylinositol 3-kinase and Akt in Chinese hamster ovary cells overexpressing EDG3.[J]. J Biol Chem. 2001, 276(38): 35622-8.
    28. Yang SJ, An JY, Shim JO, et al. The mechanism of contraction by 2-chloroadenosine in cat detrusor muscle cells.[J]. J Urol. 2000, 163(2): 652-8.
    29. Schneider T, Fetscher C, Krege S, et al. Signal transduction underlying carbachol-induced contraction of human urinary bladder.[J]. J Pharmacol Exp Ther. 2004, 309(3): 1148-53.
    30. Andersson KE. Treatment of overactive bladder: other drug mechanisms.[J]. Urology. 2000, 55(5A Suppl): 51-7; discussion 59.
    31. Nakahara T, Kubota Y, Saito M, et al. Protease-activated receptor-2-mediated contraction of urinary bladder is enhanced in cyclophosphamide-treated rats.[J]. Naunyn Schmiedebergs Arch Pharmacol. 2004, 369(2): 212-9.
    32. Aburto T, Jinsi A, Zhu Q, et al. Involvement of protein kinase C activation in alpha 2-adrenoceptor-mediated contractions of rabbit saphenous vein.[J]. Eur J Pharmacol. 1995, 277(1): 35-44.
    33. Dessy C, Kim I, Sougnez CL, et al. A role for MAP kinase in differentiated smooth muscle contraction evoked by alpha-adrenoceptor stimulation.[J]. Am J Physiol. 1998, 275(4 Pt 1): C1081-6.
    34. Moritz KU, Walter R, May K, et al. The anticholinergic drug propiverine inhibits the protein kinase C activity in the rat urinary bladder.[J]. Pharmazie. 2005, 60(1): 49-51.
    35. Michel MC, Hegde SS. Treatment of the overactive bladder syndrome with muscarinic receptor antagonists: a matter of metabolites?[J]. Naunyn Schmiedebergs Arch Pharmacol. 2006, 374(2): 79-85.
    36. Liu SH, Lin-Shiau SY. Protein kinase c regulates purinergic component of neurogenic contractions in mouse bladder.[J]. J Urol. 2000, 164(5): 1764-7.
    37. Weng TI, Chen WJ, Liu SH. Bladder instillation of Escherichia coli lipopolysaccharide alters the muscle contractions in rat urinary bladder via a protein kinase C-related pathway.[J]. Toxicol Appl Pharmacol. 2005, 208(2): 163-9.
    38. Fleichman M, Schneider T, Fetscher C, et al. Signal transduction underlying carbachol-induced contraction of rat urinary bladder. II. Protein kinases.[J]. J Pharmacol Exp Ther. 2004, 308(1): 54-8.
    39. Somlyo AP, Somlyo AV. Ca~(2+) sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase.[J]. Physiol Rev. 2003, 83(4): 1325-58.
    40. Chopra LC, Hucks D, Twort CH, et al. Effects of protein tyrosine kinase inhibitors on contractility of isolated bronchioles of the rat.[J]. Am J Respir Cell Mol Biol. 1997, 16(4): 372-8.
    41. Di Salvo J, Pfitzer G, Semenchuk LA. Protein tyrosine phosphorylation, cellular Ca~(2+), and Ca~(2+) sensitivity for contraction of smooth muscle.[J]. Can J Physiol Pharmacol. 1994, 72(11): 1434-9.
    42. Grasa L, Arruebo MP, Plaza MA, et al. The role of tyrosine kinase in prostaglandin E2 and vanadate-evoked contractions in rabbit duodenum in vitro.[J]. J Physiol Pharmacol. 2006, 57(2): 279-89.
    43. Jin N, Siddiqui RA, English D, et al. Communication between tyrosine kinase pathway and myosin light chain kinase pathway in smooth muscle.[J]. Am J Physiol. 1996, 271(4 Pt 2): H1348-55.
    44. Jinsi A, Paradise J, Deth RC. A tyrosine kinase regulates alpha-adrenoceptor- stimulated contraction and phospholipase D activation in the rat aorta.[J]. Eur J Pharmacol. 1996, 302(1-3): 183-90.
    45. Steusloff A, Paul E, Semenchuk LA, et al. Modulation of Ca~(2+) sensitivity in smooth muscle by genistein and protein tyrosine phosphorylation.[J]. Arch Biochem Biophys. 1995, 320(2): 236-42.
    46. Tolloczko B, Tao FC, Zacour ME, et al. Tyrosine kinase-dependent calcium signaling in airway smooth muscle cells.[J]. Am J Physiol Lung Cell Mol Physiol. 2000, 278(6): L1138-45.
    47. Roberts RE. Role of the extracellular signal-regulated kinase (Erk) signal transduction cascade in alpha(2) adrenoceptor-mediated vasoconstriction in porcine palmar lateral vein.[J]. Br J Pharmacol. 2001, 133(6): 859-66.
    48. Tolloczko B, Turkewitsch P, Choudry S, et al. Src modulates serotonin-induced calcium signaling by regulating phosphatidylinositol 4,5-bisphosphate.[J]. Am J Physiol Lung Cell Mol Physiol. 2002, 282(6): L1305-13.
    49. Carter RW, Kanagy NL. Tyrosine kinases regulate intracellular calcium during alpha(2)-adrenergic contraction in rat aorta.[J]. Am J Physiol Heart Circ Physiol. 2002, 283(4): H1673-80.
    50. Lagaud GJ, Randriamboavonjy V, Roul G, et al. Mechanism of Ca~(2+) release and entry during contraction elicited by norepinephrine in rat resistance arteries.[J]. Am J Physiol. 1999, 276(1 Pt 2): H300-8.
    51. Toma C, Jensen PE, Prieto D, et al. Effects of tyrosine kinase inhibitors on the contractility of rat mesenteric resistance arteries.[J]. Br J Pharmacol. 1995, 114(6): 1266-72.
    52. Wijetunge S, Lymn JS, Hughes AD. Effects of protein tyrosine kinase inhibitors on voltage-operated calcium channel currents in vascular smooth muscle cells and pp60(c-src) kinase activity.[J]. Br J Pharmacol. 2000, 129(7): 1347-54.
    53. Kubota Y, Kajioka S, Biers SM, et al. Investigation of the effect of the c-kit inhibitorGlivec on isolated guinea-pig detrusor preparations.[J]. Auton Neurosci. 2004, 115(1-2): 64-73.
    54. Fetscher C, Chen H, Schafers RF, et al. Modulation of noradrenaline-induced microvascular constriction by protein kinase inhibitors.[J]. Naunyn Schmiedebergs Arch Pharmacol. 2001, 363(1): 57-65.
    55. Xiao D, Zhang L. ERK MAP kinases regulate smooth muscle contraction in ovine uterine artery: effect of pregnancy.[J]. Am J Physiol Heart Circ Physiol. 2002, 282(1): H292-300.
    56. Altmann C, Steenpass V, Czyborra P, et al. Comparison of signalling mechanisms involved in rat mesenteric microvessel contraction by noradrenaline and sphingosyl- phosphorylcholine.[J]. Br J Pharmacol. 2003, 138(1): 261-71.
    57. Janssen LJ, Premji M, Netherton S, et al. Vasoconstrictor actions of isoprostanes via tyrosine kinase and Rho kinase in human and canine pulmonary vascular smooth muscles.[J]. Br J Pharmacol. 2001, 132(1): 127-34.
    58. Watts SW, Florian JA, Monroe KM. Dissociation of angiotensin II-stimulated activation of mitogen-activated protein kinase kinase from vascular contraction.[J]. J Pharmacol Exp Ther. 1998, 286(3): 1431-8.
    59. Weng TI, Chen WJ, Wu HY, et al. Uropathogenic Escherichia coli alters muscle contractions in rat urinary bladder via a nitric oxide synthase-related signaling pathway.[J]. J Infect Dis. 2006, 194(12): 1774-82.
    60. Rameh LE, Cantley LC. The role of phosphoinositide 3-kinase lipid products in cell function.[J]. J Biol Chem. 1999, 274(13): 8347-50.
    61. Northcott CA, Hayflick JS, Watts SW. PI3-kinase upregulation and involvement in spontaneous tone in arteries from DOCA-salt rats: is p110delta the culprit?[J]. Hypertension. 2004, 43(4): 885-90.
    62. Ibitayo AI, Tsunoda Y, Nozu F, et al. Src kinase and PI 3-kinase as a transduction pathway in ceramide-induced contraction of colonic smooth muscle.[J]. Am J Physiol. 1998, 275(4 Pt 1): G705-11.
    63. Wang Y, Yoshioka K, Azam MA, et al. Class II phosphoinositide 3-kinase alpha-isoform regulates Rho, myosin phosphatase and contraction in vascular smooth muscle.[J]. Biochem J. 2006, 394(Pt 3): 581-92.
    64. Yoshioka K, Sugimoto N, Takuwa N, et al. Essential role for class II phosphoinositide 3-kinase alpha-isoform in Ca~(2+)-induced, Rho- and Rho kinase-dependent regulation of myosin phosphatase and contraction in isolated vascular smooth muscle cells.[J]. Mol Pharmacol. 2007, 71(3): 912-20.
    65. Riento K, Ridley AJ. Rocks: multifunctional kinases in cell behaviour.[J]. Nat Rev Mol Cell Biol. 2003, 4(6): 446-56.
    66. Chang S, Hypolite JA, DiSanto ME, et al. Increased basal phosphorylation of detrusor smooth muscle myosin in alloxan-induced diabetic rabbit is mediated by upregulation of Rho-kinase beta and CPI-17.[J]. Am J Physiol Renal Physiol. 2006, 290(3): F650-6.
    67. Takahashi R, Nishimura J, Hirano K, et al. Ca~(2+) sensitization in contraction of human bladder smooth muscle.[J]. J Urol. 2004, 172(2): 748-52.
    68. Wibberley A, Chen Z, Hu E, et al. Expression and functional role of Rho-kinase in rat urinary bladder smooth muscle.[J]. Br J Pharmacol. 2003, 138(5): 757-66.
    69. Braverman AS, Doumanian LR, Sr Ruggieri MR. M2 and M3 muscarinic receptor activation of urinary bladder contractile signal transduction. II. Denervated rat bladder.[J]. J Pharmacol Exp Ther. 2006, 316(2): 875-80.
    70. Speich JE, Borgsmiller L, Call C, et al. ROK-induced cross-link formation stiffens passive muscle: reversible strain-induced stress softening in rabbit detrusor.[J]. Am J Physiol Cell Physiol. 2005, 289(1): C12-21.
    71. Rajasekaran M, Wilkes N, Kuntz S, et al. Rho-kinase inhibition suppresses bladder hyperactivity in spontaneously hypertensive rats.[J]. Neurourol Urodyn. 2005, 24(3): 295-300.
    72. Jezior JR, Brady JD, Rosenstein DI, et al. Dependency of detrusor contractions on calcium sensitization and calcium entry through LOE-908-sensitive channels.[J]. Br J Pharmacol. 2001, 134(1): 78-87.
    73. Visser AJ, van Mastrigt R. Simultaneous recording of mechanical and intracellular electrical activity in guinea-pig urinary bladder smooth muscle: a comparison with human detrusor contraction.[J]. Urology. 2000, 56(4): 696-701.
    74. Wuest M, Hiller N, Braeter M, et al. Contribution of Ca~(2+) influx to carbachol-induced detrusor contraction is different in human urinary bladder compared to pig and mouse.[J]. Eur J Pharmacol. 2007, 565(1-3): 180-9.
    75. Zderic SA, Sillen U, Liu GH, et al. Developmental aspects of excitation contraction coupling of rabbit bladder smooth muscle.[J]. J Urol. 1994, 152(2 Pt 2): 679-81.
    76. Buckner SA, Milicic I, Daza AV, et al. Spontaneous phasic activity of the pig urinary bladder smooth muscle: characteristics and sensitivity to potassium channel modulators.[J]. Br J Pharmacol. 2002, 135(3): 639-48.
    77. Masters JG, Neal DE, Gillespie JI. The contribution of intracellular Ca~(2+) release to contraction in human bladder smooth muscle.[J]. Br J Pharmacol. 1999, 127(4): 996-1002.
    78. Frew R, Lundy PM. A role for Q type Ca~(2+) channels in neurotransmission in the rat urinary bladder.[J]. Br J Pharmacol. 1995, 116(1): 1595-8.
    79. Rivera L, Brading AF. The role of Ca~(2+) influx and intracellular Ca~(2+) release in the muscarinic-mediated contraction of mammalian urinary bladder smooth muscle.[J]. BJU Int. 2006, 98(4): 868-75.
    80. Wu L, Bauer CS, Zhen XG, et al. Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2.[J]. Nature. 2002, 419(6910): 947-52.
    81. Kajioka S, Nakayama S, McMurray G, et al. Ca(2+) channel properties in smooth muscle cells of the urinary bladder from pig and human.[J]. Eur J Pharmacol. 2002, 443(1-3): 19-29.
    82. Wuest M, Weiss A, Waelbroeck M, et al. Propiverine and metabolites: differences in binding to muscarinic receptors and in functional models of detrusor contraction.[J]. Naunyn Schmiedebergs Arch Pharmacol. 2006, 374(2): 87-97.
    83. Kajioka S, Nakayama S, Asano H, et al. Involvement of ryanodine receptors in muscarinic receptor-mediated membrane current oscillation in urinary bladder smooth muscle.[J]. Am J Physiol Cell Physiol. 2005, 288(1): C100-8.
    1. Ward SM, Sanders KM, Hirst GD. Role of interstitial cells of Cajal in neural control of gastrointestinal smooth muscles. Neurogastroenterol Motil. 2004; 16 Suppl 1: 112-7
    2. Lang RJ, Klemm MF. Interstitial cell of Cajal-like cells in the upper urinary tract. J Cell Mol Med. 2005; 9: 543-56
    3. McCloskey KD, Gurney AM. Kit positive cells in the guinea pig bladder. J Urol. 2002; 168: 832-6
    4. McCloskey KD, Hollywood MA, Thornbury KD, Ward SM, McHale NG. Kit-like immunopositive cells in sheep mesenteric lymphatic vessels. Cell Tissue Res. 2002; 310: 77-84
    5. Pezzone MA, Watkins SC, Alber SM, et al. Identification of c-kit-positive cells in the mouse ureter: the interstitial cells of Cajal of the urinary tract. Am J Physiol Renal Physiol. 2003; 284: F925-9
    6. der AA F v, Roskams T, Blyweert W, Ost D, Bogaert G, De Ridder D. Identification of kit positive cells in the human urinary tract. J Urol. 2004; 171: 2492-6
    7. Romert P, Mikkelsen HB. c-kit immunoreactive interstitial cells of Cajal in the human small and large intestine. Histochem Cell Biol. 1998; 109: 195-202
    8. Sergeant GP, Hollywood MA, McCloskey KD, McHale NG, Thornbury KD. Role of IP(3) in modulation of spontaneous activity in pacemaker cells of rabbit urethra. Am J Physiol Cell Physiol. 2001; 280: C1349-56
    9. Pezzone MA, Watkins SC, Alber SM, et al. Identification of c-kit-positive cells in the mouse ureter: the interstitial cells of Cajal of the urinary tract. Am J Physiol Renal Physiol. 2003; 284: F925-9
    10. Eglen RM. Muscarinic receptor subtype pharmacology and physiology. Prog Med Chem. 2005; 43: 105-36
    11. Wess J. Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol. 2004; 44: 423-50
    12. Caulfield MP, Birdsall NJ. International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev. 1998; 50: 279-90
    13. Igawa Y. Discussion: functional role of M(1), M(2), and M(3) muscarinic receptors inoveractive bladder. Urology. 2000; 55: 47-9;; discussion 50
    16. Davidson RA, McCloskey KD. Morphology and localization of interstitial cells in the guinea pig bladder: structural relationships with smooth muscle and neurons. 2005; 173: 1385-90
    17. McCloskey KD. Characterization of outward currents in interstitial cells from the guinea pig bladder. 2005; 173: 296-301

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700