α7nAChR激动剂后处理对大鼠在体心肌缺血—再灌注损伤的保护作用及机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     众多动物实验表明,在急性心肌缺血所致的最终心肌梗死面积中,大约50%是由缺血-再灌注损伤(ischemia reperfusion injury)所引起。虽然缺血预处理(ischemic precondition)是目前已知的最强大的心肌保护干预措施,但是由于其需要在心肌缺血发生前实施干预,显然这在急性心肌梗死的情况下是不可能的,所以其临床应用受到了极大的限制。虽然缺血后处理(ischemic postconditioning)成功地解决了缺血预处理所存在的干预时机选择问题,但是由于其与缺血预处理一样仍然依赖于有创操作,所以其仅可应用于接受冠状动脉介入治疗的患者或针对急性心肌缺血而实施的某些心脏手术中。另外,缺血后处理这一有创性操作本身也并非适用于所有的患者,并有导致病变冠状动脉破裂或粥样硬化斑块脱落等其他并发症的高风险。鉴于缺血预处理和缺血后处理的局限性,就临床应用而言,在心肌缺血发生后进行药物治疗以获得有效的心肌保护作用,即“药物后处理”(pharmacological postconditioning)则具有更大的临床实际意义。目前,药物预处理和药物后处理均已成为缺血预处理或缺血后处理的有效替代途径。药物后处理的主要优点是临床应用不受心肌缺血时间的限制、方法简便、不需要有创操作和费用低廉等。
     心肌缺血-再灌注损伤实际上是一种炎症反应,主要表现为炎症细胞局部侵润和炎症细胞因子大量产生和释放。晚近研究发现,胆碱能抗炎通路通过迷走神经作用于α7烟碱型乙酰胆碱受体(a7 nicotinic acetylcholiner receptor, a7nAChR)能够抑制炎症细胞因子的产生和释放,恢复炎症反应平衡,并保护机体。研究证实,迷走神经刺激可降低炎症反应时肿瘤坏死因子-α(tumor necrosisi factorα, TNF-α)、白介素6(interleukin 6, IL-6)和高迁移率组蛋白1 (high mobility group box 1, HMGB1)等炎症细胞因子的组织和循环血液水平,而且迷走神经刺激亦可保护缺血-再灌注所致的心肌损伤。由于应用a7nAChR激动剂能够产生与迷走神经刺激相同的效应,所以作为无创、操作简单的一种药物后处理,a7nAChR激动剂可能具有潜在的临床应用前景。虽然目前已有研究证实a7nAChR激动剂对肾脏缺血-再灌注损伤具有保护作用,但是a7nAChR激动剂对心肌缺血-再灌注损伤的保护作用尚未得到充分研究。
     联合不同干预措施以获得更好的心肌保护效果一直是心肌缺血-再灌注损伤领域重要的研究方向之一,而缺血后处理和a7nAChR激动剂后处理这两种具有临床应用价值的心肌保护干预措施的触发机制明显不同。有鉴于此,我们设计了这个随机对照实验,旨在观察缺血后处理和α7nAChR激动剂后处理的心肌保护效果,并试图证实联合应用两者是否能够获得协同性心肌保护作用。另外,本实验还试图确定α7nAChR激动剂后处理的最佳干预时间,并研究PI3K/Akt和JAK/STAT信号转导通路在联合应用缺血后处理和α7nAChR激动剂后处理心肌保护作用中的地位,以探讨其相互作用的内在机制。本实验共分为三部分:
     第1部分:PNU282987后处理和缺血后处理对在体大鼠心肌缺血-再灌注损伤及其炎症反应影响的实验研究
     第1部分实验的目的是采用大鼠在体心肌缺血-再灌注损伤模型比较性观察PNU282987后处理和缺血后处理的心肌保护效应,并验证两种干预措施在降低心肌梗死面积方面是否存在有协同性作用。
     将60只成年雄性Sprague Dawley (SD)大鼠(体重290-320g)麻醉后随机分为六组:空白对照组(S组,n=10);对照组(C组,n=10);缺血预处理组(IPC组,n=10);缺血后处理组(IPOC组,n=10); PNU282987后处理组(P组,n=10)和联合应用PNU282987后处理和缺血后处理组(PPOC组,n=10)。所有大鼠开胸后采用丝线将其冠状动脉左前降支(left anterior descending coronary artery, LAD)套扎做成活结。除S组之外,所用大鼠均接受局部心肌缺血30 min(阻断LAD)和再灌注180 min(开放LAD)的处理。C组不采用任何干预措施;IPC组在结扎LAD前进行3个循环的缺血预处理,每个循环是由5 min的LAD阻断和5 min的LAD开放组成,总处理时间是30min; IPOC组在再灌注前进行3个循环的缺血后处理,每个循环是由10s的LAD开放和10s的LAD阻断组成,总处理的时间是1min; S组、C组、IPC组和IPOC组大鼠均在30 min缺血后腹腔注射生理盐水1.5ml。P组于再灌注前腹腔注射PNU282987 2.4mg/kg; PPOC组的处理同IPOC组,并于再灌注前腹腔注射PNU282987 2.4mg/kg。实验过程中,连续监测心率(heart rate, HR).平均动脉压(mean arterial presure, MAP)和Ⅱ导联心电图(ECG),并保持大鼠直肠温度在36.5-37.5℃之间。在再灌注30 min和180 mmin时抽取血标本,采用大鼠专用试剂盒分别测定血清心肌肌钙蛋白Ⅰ(Cardiac Troponin-Ⅰ, cTnⅠ)、TNF-α、IL-6和HMGB1浓度。随后采用伊文思蓝和氯化三苯基四氮唑双重染色检测心肌梗死面积(infarctsize, IS%)。
     结果显示,各组大鼠的一般情况、心肌缺血前血流动力学参数的基础值和心肌缺血后15min的血流动力学参数比较差异均无显著统计学意义。
     再灌注期间S组的心率血压乘积(rate-pressure product, RPP)显著高于C组。C组的MAP显著低于S组、IPC组、IPOC组、P组和PPOC组。与IPC组相比,C组、IPOC组、P组和PPOC组缺血期发生室性心律失常的大鼠数目显著增多,并且缺血期室性心律失常评分显著增高。与C组相比,IPOC组和PPOC组再灌注初期发生室性心律失常的大鼠数目显著减少,并且再灌注初期室性心律失常评分也显著降低。
     与C组相比,IPC组、IPOC组、P组和PPOC组的IS%和血清cTnI浓度均显著降低;与IPC组相比,PPOC组的IS%无显著统计学差异,虽然IPOC组和P组的IS%显著增高,但P和PPOC组的TnI血清浓度显著降低;与IPOC组相比,P组的IS%无显著统计学差异,但PPOC组的IS%显著降低,并且P组和PPOC组的TnI显著降低。析因分析结果显示,PNU282987后处理和缺血后处理在降低IS%方面无交互作用。
     与S组相比,C组再灌注30 min时血清TNF-a和IL-6浓度显著增高,再灌注180min时血清TNF-α、IL-6和HMGB1浓度也显著增高。与C组相比,IPC组、IPOC组、P组和PPOC组再灌注180 min时血清TNF-a和HMGB1浓度均显著降低;除IPOC组再灌注30 min时血清TNF-a和IL-6浓度显著增高之外,IPC组、P组和PPOC组再灌注30 min时血清TNF-a和IL-6浓度均显著降低;并且P组和PPOC组再灌注180 min时的血清IL-6浓度也显著降低,而IPOC组再灌注180 min时血清IL-6浓度显著增高。与IPC组相比,IPOC组再灌注30 min时血清TNF-a和IL-6浓度显著增高,再灌注180 min时血清TNF-a, IL-6和HMGB1浓度显著增高;P组再灌注30 min时血清TNF-a浓度以及再灌注180 min时血清TNF-a, IL-6和HMGB1浓度显著降低,但是再灌注30 min时IL-6血清浓度显著增高;PPOC组再灌注30 min时血清TNF-a和IL-6浓度以及再灌注180 min时血清IL-6和HMGB1浓度显著降低。与IPOC组相比,P组和IPOC组再灌注30 min时血清TNF-α和IL-6浓度以及再灌注180 min时的血清TNF-α, IL-6和HMGB1浓度也显著降低。
     第2部分:PNU282987后处理减轻大鼠在体心肌缺血-再灌注损伤最佳干预时间的实验研究
     根据第1部分的研究结果,我们设计了这部分实验,其目的是探讨在心肌缺血再灌注过程中何时实施PNU282987后处理能够获得最佳的心肌保护效应,以确定PNU282987后处理的最佳干预时间。
     将70只成年雄性SD大鼠(体重290-320g)麻醉后随机分为七组:空白对照组(S组,n=10);对照组(C组,n=10);缺血预处理组(IPC组,n=10);PNU282987后处理组(P组,n=10);再灌注30 min时PNU282987后处理组(P30组,n=10);再灌注60min时PNU282987后处理组(P60组,n=10)和再灌注90 min时PNU282987后处理组(P90组,n=10)。C组、IPC组和P组的处理同第1部分实验,P30组、P60组和P90组的基本处理与C组相同,但分别在再灌注30 min、60 min和90 min时腹腔注射PNU282987 2.4mg/kg实施药物后处理。各项检测项目同实验第一部分。但仅在再灌注180 min时采血检测血清炎症细胞因子浓度。
     结果显示,各组大鼠的一般情况、心肌缺血前血流动力学参数的基础值和心肌缺血后15min的血流动力学参数比较差异均无显著统计学意义。再灌注期,C组的MAP显著低于S组、IPC组、P组、P30组和P60组。心肌缺血期,IPC组发生室性心律失常的大鼠数目较C组、P组、P30组、P60组和P90组显著减少,并且室性心律失常评分显著降低。与IPC组相比,C组、P30组、P60组和P90组再灌注初期室性心律失常评分显著增高。
     与C组相比,IPC组、P组、P30组、P60组和P90组再灌注180 min时的血清cTnI浓度和IS%值均显著降低。与IPC组相比,P组、P30组、P60组和P90组再灌注180 min时的血清cTnI浓度均显著降低,但是P组、P30组、P60组和P90组的IS%值显著增高。与P30组相比,P90组的IS%值显著增高。
     与S组相比,再灌注180 min时血清TNF-α、IL-6和HMGB1浓度在C组显著增高。与C组相比,再灌注180 min时血清TNF-a和HMGB1浓度在IPC组、P组、P30组、P60组和P90组显著降低,并且再灌注180 min时血清IL-6浓度在P组、P30组、P60组和P90组显著降低。与IPC组相比,再灌注180 min时血清IL-6和HMGB1浓度在P组、P30组、P60组和P90组显著降低,再灌注180 min时血清TNF-α浓度在P组显著降低,但再灌注180 min时血清TNF-α浓度在P30和P60组显著增高。与P组相比,P30组、P60组和P90组再灌注180 min时血清TNF-α和HMGB1浓度显著增高,但再灌注180 min时血清IL-6浓度显著降低。与P30组相比,P60组和P90组再灌注180 min时血清TNF-a和HMGB1浓度显著降低,但再灌注180 min时血清IL-6浓度显著增高。
     第3部分PI3K/Akt和JAK/STAT信号转导通路在联合应用PNU282987后处理和缺血后处理心肌保护作用机制中地位的研究
     本部分实验的目的是探讨PI3K/Akt和JAK/STAT信号转导通路在联合应用PNU282987后处理和缺血后处理心肌保护作用机制中的地位。
     25只成年雄性SD大鼠(体重290-320g)麻醉后随机分为五组:对照组(C组,n=5);缺血预处理组(IPC组,n=5);缺血后处理组(IPOC组,n=5); PNU282987后处理组(P组,n=5)、联合应用PNU282987后处理和缺血后处理组(PPOC组,n=5)。在开放LAD实施再灌注60min时结束实验,取大鼠左心室缺血区心肌标本。由心肌标本中提取总蛋白和总RNA,采用实时定量聚合酶链反应(Real-time quantitative polymerase chain reaction, RQ-PCR)技术观察Akt和STAT3基因在心肌组织的表达情况,并通过免疫蛋白印迹分析(Western-blotting)技术观察心肌组织Akt和STAT3蛋白磷酸化情况。
     Western-blotting结果显示,与C组相比,IPC组的p-Akt显著增强,同时IPOC组的p-Akt和P-STAT3显著增强。与IPC组相比,P组的p-Akt和P-STAT3显著减弱,同时PPOC组的P-STAT3也显著减弱。与IPOC组相比,P组的p-Akt和P-STAT3显著减弱,PPOC组的P-STAT3也显著减弱。RQ-PCR结果显示,IPC组STAT3基因表达较C组和P组显著增强,而且IPOC组的Akt基因表达较PPOC组显著增强。
     结论
     通过本实验,我们得出以下结论:
     1.PNU282987后处理和缺血后处理对大鼠心肌缺血-再灌注损伤的保护作用不尽相同。在减小心肌梗死面积方面两者的作用基本相同,但缺血后处理可显著抑制再灌注初期室性心律失常的发生,而PNU282987后处理对再灌注初期室性心律失常则无明显抑制作用。
     2.联合应用PNU282987后处理和缺血后处理能够获得增强的心肌保护作用,并且联合应用两种干预措施亦可弥补PNU282987后处理不能抑制再灌注初期室性心律失常的缺点。
     3.缺血预处理、PNU282987后处理、缺血后处理以及联合应用PNU282987后处理和缺血后处理均可明显抑制心肌缺血-再灌注过程中的炎症反应,并且是以联合应用PNU282987后处理和缺血后处理时的炎症反应抑制作用最强。但是,缺血预处理、PNU282987后处理和缺血后处理的炎症抑制作用在方式和强度方面存在有一定的差异。
     4.再灌注30 min时实施PNU282987后处理的心肌保护效果最佳。
     5.缺血预处理和缺血后处理的心肌保护作用涉及PI3K/Akt和JAK/STAT信号转导通路激活,并且这两个信号转导通路也参与PNU282987后处理以及联合应用PNU282987后处理和缺血后处理的心肌保护作用,但不是主要机制。PNU282987的心肌保护作用机制可能与缺血预处理和缺血后处理不同。
Background
     Many animal studies have shown that after acute myocardial infarction, the ischemia reperfusion injury (IRI) is responsible for up to 50%of the final infarct size. Although the ischemia preconditioning (IPC) remains the most powerful cardioprotective measure, but its clinical application has been hampered by the requirement of intervention before onset of acute myocardial ischemia, which is clearly impossible in the setting of acute myocardial infarction. Ischemia postconditioning (IPOC) can be triggered during the clinically applicable period of reperfusion. However, it has the similar limitation as the IPC, i.e. requirement of an invasive protocol. Thus, the IPOC can only be utilized in the patients undergoing percutaneous coronary intervention (PCI) or special surgery for acute myocardial ischemia. Meanwhile, operation at the "culprit coronary artery" can produce new lesion of vessel or plaque fragmentation, which increase the risk of complications. Due to the limitations of the IPC and IPOC, pharmacological postconditioning protocol may be of more clinically feasible, by which cardioprotective drugs can be administered after ischemia insult. Now pharmacological preconditioning and postconditioning have been improved to substitute the IPC and IPOC effectively. The merits of pharmacological postconditioning include no limitation of myocardial ischemia, low cost, noninvasive and convenience.
     Endogenous inflammatory response is a key factor in myocardial IRI, characterized with the local infiltration of inflammatory cells and excessive production and release of cytokines. Recently, cholinergic anti-inflammatory pathway has been demonstrated, by which vagus nerve can inhibit production of cytokines to avoid excessive inflammatory response through the specificα7 subunit of the nicotinic acetylcholine receptor (a7nAChR). Studies have identified that vagus nerve stimulation can decrease blood and tissue levels of tumor necrosis factor a (TNF-a), interleukin 6 (IL-6) and high mobility group box 1 (HMGB1), providing a protection against myocardial IRI. Because a7nAChR agonists can produce same effects as vagus nerve stimulation, they are potential treatments for myocardial IRI as noninvasive and effective pharmacological postconditioning. Although the renoprotective effect of a7nAChR agonist has been identified, there has still been no study evaluating its cardioprotection.
     Combining different interventions to obtain an augmented cardioprotection is always one of the most popular research focuses in the area of myocardial IRI. Because IPOC andα7nAChR agonist postconditioning might be triggered by different mechanisms, we designed this randomized, controlled animal experimental study. The aims of the present study were:1) to investigate cardioprotection of the IPOC and a7nAChR agonist postconditioning; 2) to determine whether there was the synergistic cardioprotection by a combination of IPOC and a7nAChR agonist postconditioning; 3) to verify the best implementation time of a7nAChR agonist postconditioning; 4) to assess roles of both PI3K/Akt and JAK/STAT signal pathways in the cardioprotection of combined a7nAChR agonist postconditioning and IPOC, in order to explore the inherent mechanism of the interaction betweenα7nAChR agonist postconditioning and IPOC. This study was divided into the three parts.
     Part 1 Experimental study on cardioprotective and anti-inflammatory effects of PNU282987 postconditioning and ischemia postconditioning in rat with myocardial ischemia reperfusion injury in vivo
     In this part experiment, an in vivo rat model of myocardial IRI was used to compare the cardioprotection of PNU282987 and ischemia postconditioning, and to identify whether there was synergistic infarct-sparing effect by combining the two treatments.
     Sixty anesthetized male Sprague Dawley rats (weighed 290 to 320 g) were randomly divided equally into six groups (n=10 in each group):sham group (S group), control group (C group), ischemia preconditioning group (IPC group), ischemia postconditioning group (IPOC group), PNU282987 postconditioning group (P group)and combined PNU282987 postconditioning and ischemia postconditioning group (PPOC group). After left thoracotomy in all rats, a 6-0 silk ligature was placed around the left anterior descending coronary artery (LAD) and encircled with a suture. In the groups other than S group, the LAD was ligated for 30 min followed by a 180-min reperfusion. In C group, no additional intervention was performed. In IPC group, rats underwent three consecutive 5-min LAD occlusion followed by a 5-min reperfusion, which was performed before a 30-min LAD ligation. In IPOC group, animals were subjected to three cycles of a 10-sec reperfusion followed by a 10-sec LAD reocclusion, which was executed immediately at the onset of a 180-min reperfusion. Furthermore, the rats in the sham, control and IPOC groups were injected intraperitoneally with 1.5 ml normal saline at the end of ischemia. PNU282987 (2.4 mg/kg) was injected intraperitoneally immediately before a 180-min reperfusion in P group. In PPOC group, rats received not only the same IPOC protocol as that of the IPOC group, but also the same PNU282987 injection as that of the P group. Throughout the experiment, heart rate (HR), mean arterial pressure (MAP), and a lead II electrocardiogram were continuously monitored. The rectal temperature was maintained at 36.5-37.5℃. Blood samples were taken at 30 min and 180 min of reperfusion for measuring serum concentrations of troponin I (Tnl), TNF-a, HMGB-1 and IL-6 by the kits specifically for rat. At the end of experiment, the infarct size (IS%) was assessed from excised hearts by Evans blue and triphenyltetrazolium chloride (TTC) staining.
     The results showed that rat's body weight, body temperature and baselines of HR, MAP and RPP did not differ among the seven groups (P>0.05). Also, HR, MAP and RPP did not differ among these groups after 15 min ischemia (P>0.05).
     During the period of reperfusion, the rate-pressure product (RPP) was significantly higher in S group than in C group. Also, MAP was significantly lower in C group than in S, IPC, IPOC, P and PPOC groups. Compared to IPC group, the number of rats suffering ischemic arrhythmia and arrhythmia score were significantly increased in C, IPOC, P and PPOC groups. Comparing to C group, the number of rats suffering reperfusion ventricular arrhythmia and arrhythmia score were significantly decreased in IPOC and PPOC groups.
     The IS%and serum concentration of cTnl were significantly higher in C group than in IPC, IPOC, P and PPOC groups. Compared to IPC group, the IS%was significantly increased in IPOC and P groups, but the serum concentration of cTnl was significantly decreased in P and PPOC groups. There was no difference in the IS%between the IPC and PPOC groups. Compared to IPOC group, the IS%was significantly reduced in PPOC group, and serum concentration of cTnl was significantly reduced in P and PPOC groups. There was no difference in the IS%between the IPOC and P groups. The results of Factorial design ANOVA showed that there was no synergistic effect when combining ischemic postconditioning and PNU282987 postconditioning.
     Compared to S group, the serum concentrations of TNF-a and IL-6 at 30 min of reperfusion and TNF-a, HMGB1 and IL-6 at 180 min of reperfusion were significantly increased in C group. Compared to C group, the serum concentrations of TNF-a and HMGB1 at 180 min of reperfusion were significantly decreased in IPC, IPOC, P and PPOC groups. The serum concentrations of TNF-a and IL-6 at 30 min of reperfusion were significantly higher in IPOC group than in C group, but the serum levels of TNF-a and IL-6 at 30 min of reperfusion were significantly lower in IPC, P and PPOC groups than in C group. The serum concentration of IL-6 at 180 min of reperfusion was significantly higher in IPOC group than in C group, however, the serum concentration of IL-6 at 180 min of reperfusion was significantly reduced in P and PPOC groups compared to C group. Compared to IPC group, the serum concentrations of TNF-a and IL-6 at 30 min of reperfusion and TNF-a, IL-6 and HMGB1 at 180 min of reperfusion were significantly increased in IPOC group. The serum concentrations of TNF-a, IL-6 and HMGB1 at 180 min of reperfusion and TNF-a at 30 min of reperfusion were significantly decreased in P group comparing to IPC group. However, the serum concentration of IL-6 at 30 min of reperfusion was significantly increased in P group comparing to IPC group. The Serum concentrations of TNF-a and IL-6 at 30 min of reperfusion and IL-6 and HMGB1 at 180 min of reperfusion were significantly lower in PPOC group than in IPC group. Compared to IPOC group, the serum concentrations of TNF-a and IL-6 at 30 min of reperfusion and those of TNF-a, IL-6 and HMGB1 at 180 min of reperfusion were significantly lower in P and PPOC groups.
     Part 2 The best time of PNU282987 postconditioning attenuating myocardial ischemia reperfusion injury in rats
     Based on the results from the first part experiment, we designed this part experiment to identify what time PNU282987 postconditioning was implemented during period of myocardial ischemia reperfusion injury process can produce the best cardioprotection.
     Seventy anesthetized male SD rats (weighed 290 to 320 g) were randomly allocated into the six groups (n=10 in each group):S group, C group, IPC group, P group, PNU282987 postconditioning at 30 min reperfusion group (P30 group), PNU282987 postconditioning at 60 min reperfusion group (P60 group) and PNU282987 postconditioning at 90 min reperfusion group (P90 group). The procedures of C, IPC and P groups were as same as those in the first part experiment. The treatments of P30, P60 and P90 groups were similar to that of P group, except PNU282987 were administrated intraperitoneally at 30 min,60 min and 90 min of reperfusion, respectively. All testing variables in this part were as same as those in the first part. However, the serum concentrations of inflammatory cytokines were assayed only at 180 min of reperfusion.
     The results showed that rat's body weight, body temperature and baselines of HR, MAP and RPP did not differ among the seven groups (P>0.05). Also, HR, MAP and RPP after 15 min of ischemia did also not differ among six groups (P>0.05). During the period of reperfusion, MAP was significantly lower in C group than in S, IPC, P, P30 and P60 groups. During the period of ischemia, the number of rat suffering ventricular arrhythmias and the score of arrhythmia were significantly reduced in IPC group compared to C, P, P30, P60 and P90 groups. Compared to IPC group, moreover, the arrhythmia score at onset of reperfusion was significantly increased in C, P30, P60 and P90 groups.
     Compared to C group, the serum concentration of cTnl at 180 min of reperfusion and IS%were significantly decreased in IPC, P, P30, P60 and P90 groups. The serum concentration of cTnI at 180 min of reperfusion was significantly lower in P, P30, P60 and P90 groups than in IPC group, but the IS%was significantly higher in P, P30, P60 and P90 groups than in IPC group. Compared to P30 group, the IS%was significantly increased in P90 group.
     Compared to S group, serum concentrations of TNF-a, IL-6 and HMGB1 at 180 min of reperfusion were significantly increased in C group. Compared to C group, the serum levers of TNF-a and HMGB1 at 180 min of reperfusion were significantly decreased in IPC, P, P30, P60 and P90 groups, and the serum concentration of IL-6 at 180 min of reperfusion were also significantly decreased in P, P30, P60 and P90 groups. Compared to IPC group, the serum concentrations of HMGB 1 and IL-6 at 180 min of reperfusion were significantly reduced in P, P30, P60 and P90 groups. Although the serum concentration of TNF-a at 180 min of reperfusion was significantly lower in P group than in IPC group, serum concentration of TNF-a at 180 min of reperfusion was significantly higher in P30 and P60 groups than in IPC group. Compared to P group, the serum levels of TNF-a and HMGB1 at 180 min of reperfusion were significantly increased in P30, P60 and P90 groups, but the serum concentration of IL-6 at 180 min of reperfusion was significantly reduced in these groups. The serum concentrations of TNF-a and HMGB1 at 180 min of reperfusion were significantly lower in P60 and P90 groups than in P30 group, however, the serum concentrations of IL-6 at 180 min of reperfusion were significantly increased in P60 and P90 group compared to P30 group.
     Part 3 Roles of the PI3K/Akt and JAK/STAT signal pathways in the cardioprotection of combined PNU282987 postconditioning and ischemia conditioning
     The aims of this part experiment were to explore the modulating roles of PI3K/Akt and JAK/STAT signal pathways in cardioprotective effects of combined PNU282987 postconditioning and IPOC.
     Twenty five anesthetized male SD rats (weighed 290 to 320 g) were randomly divided equally into five groups (n=5 in each group):control group, IPC group, IPOC group, PNU282987 postconditioning group and combined PNU282987 postconditioning and IPOC group. After 60 min of reperfusion, the myocardial tissues from the area at risk in the left ventricle were harvested from excised hearts. Total RNA and total protein were extracted from all myocardial samples, respectively. The real time quantitative polymerase chain reaction (RQ-PCR) was used to quantify the gene expression of Akt and STAT3 in all groups. Also, phosphorylated Akt and phosphorylated STAT3 in all samples were assessed by Western-blotting technique.
     Compared to C group, p-Akt in IPC group, and p-STAT3 and p-Akt were significantly increased in IPOC group. P-Akt and p-STAT3 in P group, and p-STAT3 in PPOC group were significantly lower than those in IPC group. Compared to IPOC group, p-Akt and p-STAT3 in P group and p-STAT3 in PPOC group were significantly reduced.
     The results of RQ-PCR demonstrated that the expression of STAT3 gene was significantly enhanced in IPC group compared to C and P groups. Also, the expression of Akt gene was significantly higher in IPOC group than in PPOC group.
     Conclusion
     Based on the results of all experiments, the following conclusions can be drawn:
     1. Cardioprotections induced by PNU282987 postconditioning and IPOC are not same. Although there is no significant difference between the two groups'effects of infarct size-sparing, IPOC inhibits reperfusion arrhythmia more effectively than PNU292987 postconditioning.
     2. Combination of PNU282987 postconditioning and IPOC can provide a stronger cardioprotection, evidenced by reduction of infarct size. Also, inability of PNU282987 postconditioning related to reperfusion arrhythmia is eliminated by their combination.
     3. In the present study, IPC, IPOC, PNU282987 postconditioning and combination of IPOC and PNU282987 postconditioning can inhibit the inflammatory response induced by the myocardial ischemia reperfusion injury. Also, the inflammatory inhibitory effect is strongest when combining PNU282987 postconditioning and IPOC. In addition, the intensity and pattern of inhibiting inflammatory response are different among the IPC, IPOC and PNU282987 postconditioning.
     4. Compared to PNU282987 postconditioning at the onset of reperfusion,60 min and 90 min of reperfusion, PNU282987 postconditioning at 30 min of reperfusion can produce the best cardioprotection.
     5. Although the cardioprotection of the IPC and IPOC may be contributed to activation of both PI3K/Akt and JAK/STAT signal pathways, these signal pathways are not the critical roles in the cardioprotection induced by PNU282987 postconditioning or the conbination of PNU282987 postconditioning and IPOC. The mechanisms of PNU282987 postconditioning against myocardial ischemia reperfusion injury may be different from those of the IPC and IPOC.
引文
[1]Lopez AD, Murray CC. The global burden of disease,1990-2020 [J]. Nat Med,1998, 4(11):1241-1243.
    [2]Lecour S. Multiple protective pathways against reperfusion injury:a SAFE path without Aktion? [J]. J Mol Cell Cardiol,2009,46(5):607-609.
    [3]陈韵岱.女性冠心病特点及诊治进展现状[A].见:第九届中国南方国际心血管病学术会议.当代心脏病学进展[C].2007:121-124.
    [4]Hedstrom E, Engblom H, Frogner F, Astrom-Olsson K, Ohlin H, Jovinge S, Arheden H. Infarct evolution in man studied in patients with first-time coronary occlusion in comparison to different species-implications for assessment of myocardial salvage [J]. J Cardiovasc Magn Reson,2009,11:38.
    [5]Turer AT, Hill JA. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy [J]. Am J Cardiol,2010,106(3):360-368.
    [6]Yellon DM, Hausenloy DJ. Myocardial reperfusion injury [J]. N Engl J Med,2007, 357(11):1121一1135.
    [7]Gourdin MJ, Bree B, De Kock M. The impact of ischaemia-reperfusion on the blood vessel [J]. Eur J Anaesthesiol,2009,26(7):537-547.
    [8]Hausenloy DJ, Yellon DM. The evolving story of "conditioning" to protect against acute myocardial ischaemia-reperfusion injury [J]. Heart,2007,93(6):649-651.
    [9]Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium [J]. Circulation,1986,74(5):1124-1136.
    [10]Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J. Inhibition of myocardial injury by ischemic postconditioning during reperfusion:comparison with ischemic preconditioning [J]. Am J Physiol Heart Circ Physiol,2003,285(2):H579-H588.
    [11]Yang XC, Liu Y, Wang LF, Cui L, Wang T, Ge YG, Wang HS, et al. Reduction in myocardial infarct size by postconditioning in patients after percutaneous coronary intervention [J]. J Invasive Cardiol,2007,19(10):424-430.
    [12]Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin [J]. Nature,2000,405(6785):458-462.
    [13]Pavlov VA. Cholinergic modulation of inflammation [J]. Int J Clin Exp Med,2008, l(3):203-212.
    [14]Xiong J, Xue FS, Xu YC, Yang QY, Liao X, Wang WL. Cholinergic agonists may produce preservation of myocardial ischaemia/reperfusion injury [J]. Med Hypotheses,2009,73(3):312-314.
    [15]Andreadou I, Iliodromitis EK, Koufaki M, Kremastinos DT. Pharmacological pre-and post-conditioning agents:reperfusion-injury of the heart revisited [J]. Mini Rev Med Chem,2008,8(9):952-959.
    [16]Downey JM, Cohen MV. Why do we still not have cardioprotective drugs? [J]. Circ J,2009,73(7):1171-1177.
    [17]Weber NC, Schlack W. Inhalational anaesthetics and cardioprotection [J]. Handb Exp Pharmacol,2008(182):187-207.
    [18]Buja LM, Weerasinghe P. Unresolved issues in myocardial reperfusion injury [J]. Cardiovasc Pathol,2010,19(1):29-35.
    [19]Eckle T, Grenz A, Kohler D, Redel A, Falk M, Rolauffs B, Osswald H, et al. Systematic evaluation of a novel model for cardiac ischemic preconditioning in mice [J]. Am J Physiol Heart Circ Physiol,2006,291(5):H2533-H2540.
    [20]Vessey DA, Li L, Kelley M, Karliner JS. Combined sphingosine, S1P and ischemic postconditioning rescue the heart after protracted ischemia [J]. Biochem Biophys Res Commun,2008,375(3):425-429.
    [21]Manintveld OC, Hekkert ML, van der Ploeg NT, Verdouw PD, Duncker DJ. Interaction between pre-and postconditioning in the in vivo rat heart [J]. Exp Biol Med (Maywood),2009,234(11):1345-1354.
    [22]Arab S, Konstantinov IE, Boscarino C, Cukerman E, Mori A, Li J, et al. Early gene expression profiles during intraoperative myocardial ischemia-reperfusion in cardiac surgery [J]. J Thorac Cardiovasc Surg,2007,134(1):74-81.
    [23]Ha T, Hua F, Liu X, Ma J, Mcmullen JR, Shioi T, Izumo S, et al. Lipopolysaccharide-induced myocardial protection against ischaemia/reperfusion injury is mediated through a PI3K/Akt-dependent mechanism [J]. Cardiovasc Res, 2008,78(3):546-553.
    [24]Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning [J]. Trends Cardiovasc Med,2005,15(2):69-75.
    [25]Weihrauch D, Krolikowski JG, Bienengraeber M, Kersten JR, Warltier DC, Pagel PS. Morphine enhances isoflurane-induced postconditioning against myocardial infarction:the role of phosphatidylinositol-3-kinase and opioid receptors in rabbits [J]. Anesth Analg,2005,101(4):942-949.
    [26]Lecour S. Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury:Does it go beyond the RISK pathway? [J]. J Mol Cell Cardiol,2009,47(1):32-40.
    [27]Tarnavski O. Mouse surgical models in cardiovascular research [J]. Methods Mol Biol,2009,573:115-137.
    [28]Peart JN, Gross GJ. Cardioprotection following adenosine kinase inhibition in rat hearts [J]. Basic Res Cardiol,2005,100(4):328-336.
    [29]Kawada T, Yamazaki T, Akiyama T, Kitagawa H, Shimizu S, Mizuno M, Li M, et al. Vagal stimulation suppresses ischemia-induced myocardial interstitial myoglobin release [J]. Life Sci,2008,83(13-14):490-495.
    [30]Kloner RA, Dow J, Bhandari A. Postconditioning markedly attenuates ventricular arrhythmias after ischemia-reperfusion [J]. J Cardiovasc Pharmacol Ther,2006, 11(1):55-63.
    [31]Oozawa S, Mori S, Kanke T, Takahashi H, Liu K, Tomono Y, Asanuma M, et al. Effects of HMGB1 on ischemia-reperfusion injury in the rat heart [J]. Circ J,2008, 72(7):1178-1184.
    [32]Lim SY, Davidson SM, Hausenloy DJ, Yellon DM. Preconditioning and postconditioning:the essential role of the mitochondrial permeability transition pore [J]. Cardiovasc Res,2007,75(3):530-535.
    [33]Groban L, Vernon JC, Butterworth J. Intrathecal morphine reduces infarct size in a rat model of ischemia-reperfusion injury [J]. Anesth Analg,2004,98(4):903-909.
    [34]Turan NN, Basgut B, Aypar E, Ark M, Iskit AB, Cakici I. Chemical preconditioning effect of 3-nitropropionic acid in anesthetized rat heart [J]. Life Sci,2008, 82(17-18):928-933.
    [35]Chiari PC, Bienengraeber MW, Pagel PS, Krolikowski JG, Kersten JR, Warltier DC. Isoflurane protects against myocardial infarction during early reperfusion by activation of phosphatidylinositol-3-kinase signal transduction:evidence for anesthetic-induced postconditioning in rabbits [J]. Anesthesiology,2005, 102(1):102-109.
    [36]Bodnar AL, Cortes-Burgos LA, Cook KK, Dinh DM, Groppi VE, Hajos M, Higdon NR, et al. Discovery and structure-activity relationship of quinuclidine benzamides as agonists of a nicotinic acetylcholine receptors [J]. J Med Chem,2005, 48(4):905-908.
    [37]Su X, Lee JW, Matthay ZA, Mednick G, Uchida T, Fang X, Gupta N, et al. Activation of the anAChR reduces acid-induced acute lung injury in mice and rats [J]. Am J Respir Cell Mol Biol,2007,37(2):186-192.
    [38]颜虹,徐勇勇,赵耐青.医学统计学[M].北京:人民卫生出版社,2005:269.
    [39]Stumpner J, Redel A, Kellermann A, Lotz CA, Blomeyer CA, Smul TM, Kehl F, et al. Differential role of Pim-1 kinase in anesthetic-induced and ischemic preconditioning against myocardial infarction [J]. Anesthesiology,2009, 111(6):1257-1264.
    [40]Peoples GE, Mclennan PL, Howe PR, Groeller H. Fish oil reduces heart rate and oxygen consumption during exercise [J]. J Cardiovasc Pharmacol,2008, 52(6):540-547.
    [41]Pourkhalili K, Hajizadeh S, Tiraihi T, Akbari Z, Esmailidehaj M, Bigdeli MR, Khoshbaten A. Ischemia and reperfusion-induced arrhythmias:role of hyperoxic preconditioning [J]. J Cardiovasc Med (Hagerstown),2009,10(8):635-642.
    [42]Ferrera R, Benhabbouche S, Bopassa JC, Li B, Ovize M. One hour reperfusion is enough to assess function and infarct size with TTC staining in Langendorff rat model [J]. Cardiovasc Drugs Ther,2009,23(4)327-331.
    [43]刘万里,薛茜,曹明芹,马金凤.用SPSS实现完全随机设计多组比较秩和检验的多重比较[J].地方病通报,2007,22(2):27-29.
    [44]Guerra MS, Roncon-Albuquerque RJ, Lourenco AP, Falcao-Pires I, Cibrao-Coutinho P, Leite-Moreira AF. Remote myocardium gene expression after 30 and 120 min of ischaemia in the rat [J]. Exp Physiol,2006,91(2):473-480.
    [45]Wysoczynski M, Shin DM, Kucia M, Ratajczak MZ. Selective upregulation of interleukin-8 by human rhabdomyosarcomas in response to hypoxia:therapeutic implications [J]. Int J Cancer,2010,126(2):371-381.
    [46]Linfert D, Chowdhry T, Rabb H. Lymphocytes and ischemia-reperfusion injury [J]. Transplant Rev (Orlando),2009,23(1):1-10.
    [47]Granfeldt A, Lefer DJ, Vinten-Johansen J. Protective ischaemia in patients: preconditioning and postconditioning [J]. Cardiovasc Res,2009,83(2):234-246.
    [48]Shen YT, Depre C, Yan L, Park JY, Tian B, Jain K, Chen L, et al. Repetitive ischemia by coronary stenosis induces a novel window of ischemic preconditioning [J]. Circulation,2008,118(19):1961-1969.
    [49]Iliodromitis EK, Downey JM, Heusch G, Kremastinos DT. What is the optimal postconditioning algorithm? [J]. J Cardiovasc Pharmacol Ther,2009, 14(4):269-273.
    [50]Hausenloy DJ, Yellon DM. Time to take myocardial reperfusion injury seriously [J]. N Engl J Med,2008,359(5):518-520.
    [51]Sodha NR, Clements RT, Feng J, Liu Y, Bianchi C, Horvath EM, Szabo C, et al. Hydrogen sulfide therapy attenuates the inflammatory response in a porcine model of myocardial ischemia/reperfusion injury [J]. J Thorac Cardiovasc Surg,2009, 138(4):977-984.
    [52]Strande JL, Routhu KV, Hsu A, Nicolosi AC, Baker JE. Gadolinium decreases inflammation related to myocardial ischemia and reperfusion injury [J]. J Inflamm (Lond),2009,6:34.
    [53]Sun YM, Tian Y, Li X, Liu YY, Wang LF, Li J, Li ZQ, et al. Effect of atorvastatin on expression of IL-10 and TNF-α mRNA in myocardial ischemia-reperfusion injury in rats [J]. Biochem Biophys Res Commun,2009,382(2):336-340.
    [54]Gao HK, Yin Z, Zhang RQ, Zhang J, Gao F, Wang HC. GSK-3beta inhibitor modulates TLR2/NF-κB signaling following myocardial ischemia-reperfusion [J]. Inflamm Res,2009. PMID:19274437
    [55]Jiang WL, Fu FH, Xu BM, Tian JW, Zhu HB, Jian-Hou. Cardioprotection with forsythoside B in rat myocardial ischemia-reperfusion injury:relation to inflammation response [J]. Phytomedicine,2010,17(8-9):635-639.
    [56]Vinten-Johansen J, Zhao ZQ, Jiang R, Zatta AJ, Dobson GP. Preconditioning and postconditioning:innate cardioprotection from ischemia-reperfusion injury [J]. J Appl Physiol,2007,103(4):1441-1448.
    [57]Rosas-Ballina M, Tracey KJ. Cholinergic control of inflammation [J]. J Intern Med, 2009,265(6):663-679.
    [58]Katare RG, Ando M, Kakinuma Y, Arikawa M, Handa T, Yamasaki F, Sato T. Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect [J]. J Thorac Cardiovasc Surg,2009,137(1):223-231.
    [59]Crockett ET, Galligan JJ, Uhal BD, Harkema J, Roth R, Pandya K. Protection of early phase hepatic ischemia-reperfusion injury by cholinergic agonists [J]. BMC Clin Pathol,2006,6:3.
    [60]Huffmyer J, Raphael J. Physiology and pharmacology of myocardial preconditioning and postconditioning [J]. Semin Cardiothorac Vasc Anesth,2009, 13(1):5-18.
    [61]Thibault H, Piot C, Ovize M. Postconditioning in man [J]. Heart Fail Rev,2007, 12(3-4):245-248.
    [62]Gross ER, Gross GJ. Pharmacologic therapeutics for cardiac reperfusion injury [J]. Expert Opin Emerg Drugs,2007,12(3):367-388.
    [63]Peart JN, Headrick JP. Clinical cardioprotection and the value of conditioning responses [J]. Am J Physiol Heart Circ Physiol,2009,296(6):H1705-H1720.
    [64]Menger MD, Vollmar B. Pathomechanisms of ischemia-reperfusion injury as the basis for novel preventive strategies:is it time for the introduction of pleiotropic compounds? [J]. Transplant Proc,2007,39(2):485-488.
    [65]Smul TM, Lange M, Redel A, Stumpner J, Lotz CA, Roewer N, Kehl F. Desflurane-induced cardioprotection against ischemia-reperfusion injury depends on timing [J]. J Cardiothorac Vasc Anesth,2009,23(5):600-606.
    [66]Sato H, Bolli R, Rokosh GD, Bi Q, Dai S, Shirk G, Tang XL. The cardioprotection of the late phase of ischemic preconditioning is enhanced by postconditioning via a COX-2-mediated mechanism in conscious rats [J]. Am J Physiol Heart Circ Physiol, 2007,293(4):H2557-H2564.
    [67]Patten RD, Hall-Porter MR. Small animal models of heart failure:development of novel therapies, past and present [J]. Circ Heart Fail,2009,2(2):138-144.
    [68]Hearse DJ. Species variation in the coronary collateral circulation during regional myocardial ischaemia:a critical determinant of the rate of evolution and extent of myocardial infarction [J]. Cardiovasc Res,2000,45(1):213-219.
    [69]Zatta AJ, Kin H, Lee G, Wang N, Jiang R, Lust R, Reeves JG, et al. Infarct-sparing effect of myocardial postconditioning is dependent on protein kinase C signalling [J]. Cardiovasc Res,2006,70(2):315-324.
    [70]Tang XL, Sato H, Tiwari S, Dawn B, Bi Q, Li Q, Shirk G, et al. Cardioprotection by postconditioning in conscious rats is limited to coronary occlusions<45 min [J]. Am J Physiol Heart Circ Physiol,2006,291(5):H2308-H2317.
    [71]Moe KT, Wong P. Current trends in diagnostic biomarkers of acute coronary syndrome [J]. Ann Acad Med Singapore,2010,39(3):210-215.
    [72]Remick DG. Pathophysiology of sepsis [J]. Am J Pathol,2007,170(5):1435-1444.
    [73]Tinsley JH, Hunter FA, Childs EW. PKC and MLCK-dependent, cytokine-induced rat coronary endothelial dysfunction [J]. J Surg Res,2009,152(1):76-83.
    [74]Liu KX, Li YS, Huang WQ, Chen SQ, Wang ZX, Liu JX, Xia Z. Immediate postconditioning during reperfusion attenuates intestinal injury [J]. Intensive Care Med,2009,35(5):933-942.
    [75]Andrassy M, Volz HC, Igwe JC, Funke B, Eichberger SN, Kaya Z, Buss S, et al. High-mobility group box-1 in ischemia-reperfusion injury of the heart [J]. Circulation,2008,117(25):3216-3226.
    [76]Yang H, Wang H, Czura CJ, Tracey KJ. The cytokine activity of HMGB1 [J]. J Leukoc Biol,2005,78(1):1-8.
    [77]Li W, Sama AE, Wang H. Role of HMGB1 in cardiovascular diseases [J]. Curr Opin Pharmacol,2006,6(2):130-135.
    [78]Tsung A, Sahai R, Tanaka H, Nakao A, Fink MP, Lotze MT, Yang H, et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion [J]. J Exp Med,2005,201(7):1135-1143.
    [79]Lopiccolo J, Blumenthal GM, Bernstein WB, Dennis PA. Targeting the PI3K/Akt/mTOR pathway:effective combinations and clinical considerations [J]. Drug Resist Updat,2008, 11(1-2):32-50.
    [80]Nishida H, Sato T, Nomura M, Miyazaki M, Nakaya H. Glimepiride treatment upon reperfusion limits infarct size via the phosphatidylinositol 3-kinase/Akt pathway in rabbit hearts [J]. J Pharmacol Sci,2009,109(2):251-256.
    [81]Ravingerova T, Matejikova J, Neckar J, Andelova E, Kolar F. Differential role of PI3K/Akt pathway in the infarct size limitation and antiarrhythmic protection in the rat heart [J]. Mol Cell Biochem,2007,297(1-2):111-120.
    [82]Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion [J]. Am J Physiol Heart Circ Physiol,2005,288(2):H971-H976.
    [83]Vinten-Johansen J. Postconditioning:a mechanical maneuver that triggers biological and molecular cardioprotective responses to reperfusion [J]. Heart Fail Rev,2007, 12(3-4):235-244.
    [84]Hausenloy DJ, Yellon DM. Reperfusion injury salvage kinase signalling:taking a RISK for cardioprotection [J]. Heart Fail Rev,2007,12(3-4):217-234.
    [85]Mocanu MM, Yellon DM. PTEN, the Achilles'heel of myocardial ischaemia/reperfusion injury? [J]. Br J Pharmacol,2007,150(7):833-838.
    [86]Wagner M, Siddiqui MA. Signaling networks regulating cardiac myocyte survival and death [J]. Curr Opin Investig Drugs,2009,10(9):928-937.
    [87]Otani H. Ischemic preconditioning:from molecular mechanisms to therapeutic opportunities [J]. Antioxid Redox Signal,2008,10(2):207-247.
    [88]Smith RM, Suleman N, Lacerda L, Opie LH, Akira S, Chien KR, Sack MN. Genetic depletion of cardiac myocyte STAT-3 abolishes classical preconditioning [J]. Cardiovasc Res,2004,63(4):611-616.
    [89]Lacerda L, Somers S, Opie LH, Lecour S. Ischaemic postconditioning protects against reperfusion injury via the SAFE pathway [J]. Cardiovasc Res,2009, 84(2):201-208.
    [90]Goodman MD, Koch SE, Fuller-Bicer GA, Butler KL. Regulating RISK:a role for JAK-STAT signaling in postconditioning? [J]. Am J Physiol Heart Circ Physiol, 2008,295(4):H1649-H1656.
    [91]Hausenloy DJ, Yellon DM. Preconditioning and postconditioning:underlying mechanisms and clinical application [J]. Atherosclerosis,2009,204(2):334-341.
    [92]Gross ER, Hsu AK, Gross GJ. The JAK/STAT pathway is essential for opioid-induced cardioprotection:JAK2 as a mediator of STAT3, Akt, and GSK-3 beta [J]. Am J Physiol Heart Circ Physiol,2006,291(2):H827-H834.
    [93]Tracey KJ. The inflammatory reflex [J]. Nature,2002,420(6917):853-859.
    [94]Pavlov VA, Tracey KJ. Controlling inflammation:the cholinergic anti-inflammatory pathway [J]. Biochem Soc Trans,2006,34(Pt 6):1037-1040.
    [95]Johnston GR, Webster NR. Cytokines and the immunomodulatory function of the vagus nerve [J]. Br J Anaesth,2009,102(4):453-462.
    [96]Mioni C, Bazzani C, Giuliani D, Altavilla D, Leone S, Ferrari A, Minutoli L, et al. Activation of an efferent cholinergic pathway produces strong protection against myocardial ischemia/reperfusion injury in rats [J]. Crit Care Med,2005, 33(11):2621-2628.
    [97]Xie G, Zhang W, Chang Y, Chu Q. Relationship between perioperative inflammatory response and postoperative cognitive dysfunction in the elderly [J]. Med Hypotheses,2009,73(3):402-403.
    [98]Hu X, Jiang H, Ma F, Xu C, Bo C, Wen H, Wu B, et al. Similarities between ischemic preconditioning and postconditioning in myocardial ischemia/reperfusion injury [J]. Int J Cardiol,2010,144(1):135-136.
    [99]Zhou W, Zeng D, Chen R, Liu J, Yang G, Liu P, Zhou X. Limb ischemic preconditioning reduces heart and lung injury after an open heart operation in infants [J]. Pediatr Cardiol,2010,31(1):22-29.
    [100]高峰,Yan WL, Geng YJ,蔡振杰,朱妙章,臧益民,马新亮等.“缺氧后处理”对大鼠缺氧-复氧心室肌细胞的保护作用[J].心脏杂志,1999,11(4):241-242.
    [101]陶凌,李源,高峰,王跃民,龚卫琴.缺血后处理对急性心肌缺血再灌注兔心脏的保护作用[J].第四军医大学学报,2000,21(6):S116-S118.
    [102]Zatta AJ, Kin H, Yoshishige D, Jiang R, Wang N, Reeves JG, Mykytenko J, et al. Evidence that cardioprotection by postconditioning involves preservation of myocardial opioid content and selective opioid receptor activation [J]. Am J Physiol Heart Circ Physiol,2008,294(3):H1444-H1451.
    [103]Skyschally A, van Caster P, Iliodromitis EK, Schulz R, Kremastinos DT, Heusch G. Ischemic postconditioning:experimental models and protocol algorithms [J]. Basic Res Cardiol,2009,104(5):469-483.
    [104]Manintveld OC, Te LHM, van den Bos EJ, Suurenbroek GM, Dekkers DH, Verdouw PD, Lamers JM, et al. Cardiac effects of postconditioning depend critically on the duration of index ischemia [J]. Am J Physiol Heart Circ Physiol, 2007,292(3):H1551-H1560.
    [105]Iliodromitis EK, Zoga A, Vrettou A, Andreadou I, Paraskevaidis IA, Kaklamanis L, Kremastinos DT. The effectiveness of postconditioning and preconditioning on infarct size in hypercholesterolemic and normal anesthetized rabbits [J]. Atherosclerosis,2006,188(2):356-362.
    [106]Inserte J, Barba I, Hernando V, Garcia-Dorado D. Delayed recovery of intracellular acidosis during reperfusion prevents calpain activation and determines protection in postconditioned myocardium [J]. Cardiovasc Res,2009,81(1):116-122.
    [107]Kin H, Zhao ZQ, Sun HY, Wang NP, Corvera JS, Halkos ME, Kerendi F, et al. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion [J]. Cardiovasc Res,2004,62(1):74-85.
    [108]Mockford KA, Girn HR, Homer-Vanniasinkam S. Postconditioning:current controversies and clinical implications [J]. Eur J Vasc Endovasc Surg,2009, 37(4):437-442.
    [109]Penna C, Mancardi D, Raimondo S, Geuna S, Pagliaro P. The paradigm of postconditioning to protect the heart [J]. J Cell Mol Med,2008,12(2):435-458.
    [110]Luo W, Li B, Chen R, Huang R, Lin G. Effect of ischemic postconditioning in adult valve replacement [J]. Eur J Cardiothorac Surg,2008,33(2):203-208.
    [111]Thibault H, Piot C, Staat P, Bontemps L, Sportouch C, Rioufol G, Cung TT, et al. Long-term benefit of postconditioning [J]. Circulation,2008,117(8):1037-1044.
    [112]Gross ER, Gross GJ. Ligand triggers of classical preconditioning and postconditioning [J]. Cardiovasc Res,2006,70(2):212-221.
    [113]Bopassa JC, Ferrera R, Gateau-Roesch O, Couture-Lepetit E, Ovize M. PI 3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning [J]. Cardiovasc Res,2006,69(1):178-185.
    [114]Ahmed LA, Salem HA, Attia AS, El-Sayed ME. Enhancement of amlodipine cardioprotection by quercetin in ischaemia/reperfusion injury in rats [J]. J Pharm Pharmacol,2009,61(9):1233-1241.
    [115]Larsen JR, Aagaard S, Lie RH, Sloth E, Hasenkam JM. Sevoflurane improves myocardial ischaemic tolerance in a closed-chest porcine model [J]. Acta Anaesthesiol Scand,2008,52(10):1400-1410.
    [116]Xu YC, Xue FS, Liao X, Xiong J, Yang QY, Wang WL, Zhang YM. Combined morphine and limb remote ischaemia postconditioning may produce an enhanced cardioprotection [J]. Med Hypotheses,2009,73(3):302-305.
    [117]Li H, Wang JK, Zeng YM, Yang CX, Chen HT, Wen XJ, Shui CL, et al. Sevoflurane post-conditioning protects against myocardial reperfusion injury by activation of phosphatidylinositol-3-kinase signal transduction [J]. Clin Exp Pharmacol Physiol,2008,35(9):1043-1051.
    [118]Peng LY, Ma H, He JG, Gao XR, Zhang Y, He XH, Zhai YS, et al. Ischemic postconditioning attenuates ischemia/reperfusion injury in isolated hypertrophied rat heart [J]. Zhonghua Xin Xue Guan Bing Za Zhi,2006,34(8):685-689.
    [119]Murozono Y, Takahashi N, Shinohara T, Ooie T, Teshima Y, Hara M, Saikawa T, et al. Hyperthermia-induced cardioprotection is potentiated by ischemic postconditioning in rats [J]. Exp Biol Med (Maywood),2009,234(5):573-581.
    [120]Hausenloy DJ, Yellon DM. Preconditioning and postconditioning:united at reperfusion [J]. Pharmacol Ther,2007,116(2):173-191.
    [121]Hausenloy DJ, Yellon DM. The second window of preconditioning (SWOP) where are we now? [J]. Cardiovasc Drugs Ther,2010,24(3):235-254.
    [122]Venugopal V, Ludman A, Yellon DM, Hausenloy DJ.'Conditioning'the heart during surgery [J]. Eur J Cardiothorac Surg,2009,35(6):977-987.
    [123]Takamatsu T. Arrhythmogenic substrates in myocardial infarct [J]. Pathol Int,2008, 58(9):533-543.
    [124]Jiang H, Hu X, Lu Z, Wen H, Zhao D, Tang Q, Yang B. Effects of sympathetic nerve stimulation on ischemia-induced ventricular arrhythmias by modulating connexin43 in rats [J]. Arch Med Res,2008,39(7):647-654.
    [125]Sasano T, Abraham MR, Chang KC, Ashikaga H, Mills KJ, Holt DP, Hilton J, et al. Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction [J]. J Am Coll Cardiol,2008, 51(23):2266-2275.
    [126]Yilmaz MS, Coskun C, Yalcin M, Savci V. CDP-choline prevents cardiac arrhythmias and lethality induced by short-term myocardial ischemia-reperfusion injury in the rat:involvement of central muscarinic cholinergic mechanisms [J]. Naunyn Schmiedebergs Arch Pharmacol,2008,378(3):293-301.
    [127]Vegh A, Komori S, Szekeres L, Parratt JR. Antiarrhythmic effects of preconditioning in anaesthetised dogs and rats [J]. Cardiovasc Res,1992, 26(5):487-495.
    [128]Matejikova J, Kucharska J, Pinterova M, Pancza D, Ravingerova T. Protection against ischemia-induced ventricular arrhythmias and myocardial dysfunction conferred by preconditioning in the rat heart:involvement of mitochondrial KATP channels and reactive oxygen species [J]. Physiol Res,2009,58(1):9-19.
    [129]Osmancik PP, Stros P, Herman D. In-hospital arrhythmias in patients with acute myocardial infarction-the relation to the reperfusion strategy and their prognostic impact [J]. Acute Card Care,2008,10(1):15-25.
    [130]Kawada T, Yamazaki T, Akiyama T, Li M, Ariumi H, Mori H, Sunagawa K, et al. Vagal stimulation suppresses ischemia-induced myocardial interstitial norepinephrine release [J]. Life Sci,2006,78(8):882-887.
    [131]Halkos ME, Kerendi F, Corvera JS, Wang NP, Kin H, Payne CS, Sun HY, et al. Myocardial protection with postconditioning is not enhanced by ischemic preconditioning [J]. Ann Thorac Surg,2004,78(3):961-969,969.
    [132]Sasaki H, Shimizu M, Ogawa K, Okazaki F, Taniguchi M, Taniguchi I, Mochizuki S. Brief ischemia-reperfusion performed after prolonged ischemia (ischemic postconditioning) can terminate reperfusion arrhythmias with no reduction of cardiac function in rats [J]. Int Heart J,2007,48(2):205-213.
    [133]Steffens S, Montecucco F, Mach F. The inflammatory response as a target to reduce myocardial ischaemia and reperfusion injury [J]. Thromb Haemost,2009, 102(2):240-247.
    [134]Li W, Olshansky B. Inflammatory cytokines and nitric oxide in heart failure and potential modulation by vagus nerve stimulation [J]. Heart Fail Rev,2011, 16(2):137-145.
    [135]Qin S, Wang H, Yuan R, Li H, Ochani M, Ochani K, Rosas-Ballina M, et al. Role of HMGB1 in apoptosis-mediated sepsis lethality [J]. J Exp Med,2006, 203(7):1637-1642.
    [136]Reil JC, Gilles S, Zahler S, Brandl A, Drexler H, Hultner L, Matrisian LM, et al. Insights from knock-out models concerning postischemic release of TNF a from isolated mouse hearts [J]. J Mol Cell Cardiol,2007,42(1):133-141.
    [137]Xiao H, Chen Z, Liao Y, Cheng X, Liu K, Wang Y, Wang M, et al. Positive correlation of tumor necrosis factor-a early expression in myocardium and ventricular arrhythmias in rats with acute myocardial infarction [J]. Arch Med Res, 2008,39(3):285-291.
    [138]Elmas E, Holzer L, Lang S, Popp T, Kalsch T, Wolpert C, Brueckmann M, Borggrefe M. Enhanced proinflammatory response of mononuclear cells to in vitro LPS-challenge in patients with ventricular fibrillation in the setting of acute myocardial infarction [J]. Cytokine,2008,43(2):138-142.
    [139]Wang H, Yu M, Ochani M, Amelia CA, Tanovic M, Susarla S, Li JH, et al. Nicotinic acetylcholine receptor al subunit is an essential regulator of inflammation [J]. Nature,2003,421(6921):384-388.
    [140]Pavlov VA, Ochani M, Yang LH, Gallowitsch-Puerta M, Ochani K, Lin X, Levi J, et al. Selective a7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis [J]. Crit Care Med,2007, 35(4):1139-1144.
    [141]Sadis C, Teske G, Stokman G, Kubjak C, Claessen N, Moore F, Loi P, et al. Nicotine protects kidney from renal ischemia/reperfusion injury through the cholinergic anti-inflammatory pathway [J]. PLoS One,2007,2(5):e469.
    [142]Yeboah MM, Xue X, Duan B, Ochani M, Tracey KJ, Susin M, Metz CN. Cholinergic agonists attenuate renal ischemia-reperfusion injury in rats [J]. Kidney Int,2008,74(1):62-69.
    [143]Suleiman MS, Zacharowski K, Angelini GD. Inflammatory response and cardioprotection during open-heart surgery:the importance of anaesthetics [J]. Br J Pharmacol,2008,153(1):21-33.
    [144]Hiasa G, Hamada M, Ikeda S, Hiwada K. Ischemic preconditioning and lipopolysaccharide attenuate nuclear factor-KB activation and gene expression of inflammatory cytokines in the ischemia-reperfused rat heart [J]. Jpn Circ J,2001, 65(11):984-990.
    [145]Lee TM, Lin MS, Tsai CH, Chang NC. Effect of ischaemic preconditioning on regional release of inflammatory markers [J]. Clin Sci (Lond),2005, 109(3):267-276.
    [146]Kin H, Wang NP, Mykytenko J, Reeves J, Deneve J, Jiang R, Zatta AJ, et al. Inhibition of myocardial apoptosis by postconditioning is associated with attenuation of oxidative stress-mediated nuclear factor-KB translocation and TNFa release [J]. Shock,2008,29(6):761-768.
    [147]Kharbanda RK, Nielsen TT, Redington AN. Translation of remote ischaemic preconditioning into clinical practice [J]. Lancet,2009,374(9700):1557-1565.
    [148]Liu KX, Li YS, Huang WQ, Li C, Liu JX, Li Y. Immediate but not delayed postconditioning during reperfusion attenuates acute lung injury induced by intestinal ischemia/reperfusion in rats:comparison with ischemic preconditioning [J]. J Surg Res,2009,157(1):e55-e62.
    [149]Wan S, Leclerc JL, Vincent JL. Cytokine responses to cardiopulmonary bypass: lessons learned from cardiac transplantation [J]. Ann Thorac Surg,1997, 63(l):269-276.
    [150]Kaminski KA, Kozuch M, Bonda TA, Stepaniuk MM, Waszkiewicz E, Chyczewski L, Musial WJ, et al. Effect of interleukin 6 deficiency on the expression of Bcl-2 and Bax in the murine heart [J]. Pharmacol Rep,2009, 61(3):504-513.
    [151]Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury [J]. Physiol Rev,2008,88(2):581-609.
    [152]Wang QD, Pernow J, Sjoquist PO, Ryden L. Pharmacological possibilities for protection against myocardial reperfusion injury [J]. Cardiovasc Res,2002, 55(1):25-37.
    [153]Nian M, Lee P, Khaper N, Liu P. Inflammatory cytokines and postmyocardial infarction remodeling [J]. Circ Res,2004,94(12):1543-1553.
    [154]Ge ZD, Pravdic D, Bienengraeber M, Pratt PJ, Auchampach JA, Gross GJ, Kersten JR, et al. Isoflurane postconditioning protects against reperfusion injury by preventing mitochondrial permeability transition by an endothelial nitric oxide synthase-dependent mechanism [J]. Anesthesiology,2010,112(1):73-85.
    [155]Ren C, Gao X, Niu G, Yan Z, Chen X, Zhao H. Delayed postconditioning protects against focal ischemic brain injury in rats [J]. PLoS One,2008,3(12):e3851.
    [156]Gaze DC, Collinson PO. Multiple molecular forms of circulating cardiac troponin:analytical and clinical significance [J]. Ann Clin Biochem,2008,45(Pt 4):349-355.
    [157]Mclean SL, Grayson B, Idris NF, Lesage AS, Pemberton DJ, Mackie C, Neill JC. Activation of a7 nicotinic receptors improves phencyclidine-induced deficits in cognitive tasks in rats:Implications for therapy of cognitive dysfunction in schizophrenia [J]. Eur Neuropsychopharmacol,2011,21(4):333-343.
    [158]Kannerup AS, Gronbaek H, Funch-Jensen P, Tonnesen E, Jorgensen RL, Mortensen FV. Cytokine changes during warm ischemia and reperfusion of the pig liver with or without preconditioning [J]. Eur Surg Res,2009,42(4):216-222.
    [159]Rosas-Ballina M, Goldstein RS, Gallowitsch-Puerta M, Yang L, Valdes-Ferrer SI, Patel NB, Chavan S, et al. The selective α7 agonist GTS-21 attenuates cytokine production in human whole blood and human monocytes activated by ligands for TLR2, TLR3, TLR4, TLR9, and RAGE [J]. Mol Med,2009,15(7-8):195-202.
    [160]Van Dyke TE, Kornman KS. Inflammation and factors that may regulate inflammatory response [J]. J Periodontol,2008,79(8 Suppl):1503-1507.
    [161]Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL. Cellular basis for the negative inotropic effects of tumor necrosis factor-a in the adult mammalian heart [J]. J Clin Invest,1993,92(5):2303-2312.
    [162]Sack MN, Smith RM, Opie LH. Tumor necrosis factor in myocardial hypertrophy and ischaemia--an anti-apoptotic perspective [J]. Cardiovasc Res,2000, 45(3):688-695.
    [163]Schulz R. TNFa in myocardial ischemia/reperfusion:damage vs. protection [J]. J Mol Cell Cardiol,2008,45(6):712-714.
    [164]Deuchar GA, Opie LH, Lecour S. TNFa is required to confer protection in an in vivo model of classical ischaemic preconditioning [J]. Life Sci,2007, 80(18):1686-1691.
    [165]Hu X, Jiang H, Cui B, Xu C, Lu Z, He B. Preconditioning with high mobility group box 1 protein protects against myocardial ischemia-reperfusion injury [J]. Int J Cardiol,2010,145(1):111-112.
    [166]Moro C, Jouan MG, Rakotovao A, Toufektsian MC, Ormezzano O, Nagy N, Tosaki A, et al. Delayed expression of cytokines after reperfused myocardial infarction:possible trigger for cardiac dysfunction and ventricular remodeling [J]. Am J Physiol Heart Circ Physiol,2007,293(5):H3014-H3019.
    [167]Sharma HS, Das DK. Role of cytokines in myocardial ischemia and reperfusion [J]. Mediators Inflamm,1997,6(3):175-183.
    [168]Duran WN. The double-edge sword of TNF-a in ischemia-reperfusion injury [J]. Am J Physiol Heart Circ Physiol,2008,295(6):H2221-H2222.
    [169]Hajos M, Hurst RS, Hoffmann WE, Krause M, Wall TM, Higdon NR, Groppi VE. The selective α7 nicotinic acetylcholine receptor agonist PNU-282987 [N-[(3R)-l-Azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide hydrochloride] enhances GABAergic synaptic activity in brain slices and restores auditory gating deficits in anesthetized rats [J]. J Pharmacol Exp Ther,2005,312(3):1213-1222.
    [170]Weichhart T, Saemann MD. The PI3K/Akt/mTOR pathway in innate immune cells:emerging therapeutic applications [J]. Ann Rheum Dis,2008,67 Suppl 3:i70-i74.
    [171]Wu T, Mohan C. The AKT axis as a therapeutic target in autoimmune diseases [J]. Endocr Metab Immune Disord Drug Targets,2009,9(2):145-150.
    [172]Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury:targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway [J]. Cardiovasc Res,2004,61(3):448-460.
    [173]Tong H, Chen W, Steenbergen C, Murphy E. Ischemic preconditioning activates phosphatidylinositol-3-kinase upstream of protein kinase C [J]. Circ Res,2000, 87(4):309-315.
    [174]Solenkova NV, Solodushko V, Cohen MV, Downey JM. Endogenous adenosine protects preconditioned heart during early minutes of reperfusion by activating Akt [J]. Am J Physiol Heart Circ Physiol,2006,290(1):H441-H449.
    [175]Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G, Schulz R. The myocardial JAK/STAT pathway:from protection to failure [J]. Pharmacol Ther,2008, 120(2):172-185.
    [176]Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM. Postconditioning:a form of "modified reperfusion" protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway [J]. Circ Res,2004,95(3):230-232.
    [177]Kaur S, Jaggi AS, Singh N. Molecular aspects of ischaemic postconditioning [J]. Fundam Clin Pharmacol,2009,23(5):521-536.
    [178]Rehni AK, Singh N. Role of phosphoinositide 3-kinase in ischemic postconditioning-induced attenuation of cerebral ischemia-evoked behavioral deficits in mice [J]. Pharmacol Rep,2007,59(2):192-198.
    [179]Kurdi M, Booz GW. JAK redux:a second look at the regulation and role of JAKs in the heart [J]. Am J Physiol Heart Circ Physiol,2009,297(5):H1545-H1556.
    [180]Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, Dey S, et al. Signal transducer and activator of transcription-3, inflammation, and cancer:how intimate is the relationship? [J]. Ann N Y Acad Sci,2009, 1171:59-76.
    [181]Mccormick J, Barry SP, Sivarajah A, Stefanutti G, Townsend PA, Lawrence KM, Eaton S, et al. Free radical scavenging inhibits STAT phosphorylation following in vivo ischemia/reperfusion injury [J]. FASEB J,2006,20(12):2115-2117.
    [182]Osugi T, Oshima Y, Fujio Y, Funamoto M, Yamashita A, Negoro S, Kunisada K, et al. Cardiac-specific activation of signal transducer and activator of transcription 3 promotes vascular formation in the heart [J]. J Biol Chem,2002, 277(8):6676-6681.
    [183]Hattori R, Maulik N, Otani H, Zhu L, Cordis G, Engelman RM, Siddiqui MA, et al. Role of STAT3 in ischemic preconditioning [J]. J Mol Cell Cardiol,2001, 33(11):1929-1936.
    [184]Butler KL, Huffman LC, Koch SE, Hahn HS, Gwathmey JK. STAT-3 activation is necessary for ischemic preconditioning in hypertrophied myocardium [J]. Am J Physiol Heart Circ Physiol,2006,291(2):H797-H803.
    [185]Huffman LC, Koch SE, Butler KL. Coronary effluent from a preconditioned heart activates the JAK-STAT pathway and induces cardioprotection in a donor heart [J]. Am J Physiol Heart Circ Physiol,2008,294(1):H257-H262.
    [186]Suleman N, Somers S, Smith R, Opie LH, Lecour SC. Dual activation of STAT-3 and Akt is required during the trigger phase of ischaemic preconditioning [J]. Cardiovasc Res,2008,79(1):127-133.
    [187]Benardete EA, Bergold PJ. Genomic analysis of ischemic preconditioning in adult rat hippocampal slice cultures [J]. Brain Res,2009,1292:107-122.
    [188]Boengler K, Buechert A, Heinen Y, Roeskes C, Hilfiker-Kleiner D, Heusch G, Schulz R. Cardioprotection by ischemic postconditioning is lost in aged and STAT3-deficient mice [J]. Circ Res,2008,102(1):131-135.
    [189]Hausenloy DJ, Yellon DM. Survival kinases in ischemic preconditioning and postconditioning [J]. Cardiovasc Res,2006,70(2):240-253.
    [190]Guha M, Mackman N. The PI3K-Akt pathway limits LPS activation of signaling pathways and expression of inflammatory mediators in human monocytic cells [J]. J Biol Chem,2002,277(35):32124-32132.
    [191]Williams DL, Ozment-Skelton T, Li C. Modulation of the phosphoinositide 3-kinase signaling pathway alters host response to sepsis, inflammation, and ischemia/reperfusion injury [J]. Shock,2006,25(5):432-439.
    [192]Fougerat A, Gayral S, Malet N, Briand-Mesange F, Breton-Douillon M, Laffargue M. Phosphoinositide 3-kinases and their role in inflammation:potential clinical targets in atherosclerosis? [J]. Clin Sci (Lond),2009,116(11):791-804.
    [193]Li XQ, Cao W, Li T, Zeng AG, Hao LL, Zhang XN, Mei QB. Amlodipine inhibits TNF-α production and attenuates cardiac dysfunction induced by lipopolysaccharide involving PI3K/Akt pathway [J]. Int Immunopharmacol,2009, 9(9):1032-1041.
    [194]Kaczorowski DJ, Nakao A, Mccurry KR, Billiar TR. Toll-like receptors and myocardial ischemia/reperfusion, inflammation, and injury [J]. Curr Cardiol Rev, 2009,5(3):196-202.
    [195]Puri KD, Doggett TA, Huang CY, Douangpanya J, Hayflick JS, Turner M, et al. The role of endothelial PI3Kγ activity in neutrophil trafficking [J]. Blood,2005, 106(1):150-157.
    [196]Lopez-Neblina F, Toledo-Pereyra LH. Phosphoregulation of signal transduction pathways in ischemia and reperfusion [J]. J Surg Res,2006,134(2):292-299.
    [197]Xu H, He Y, Yang X, Liang L, Zhan Z, Ye Y, Yang X, et al. Anti-malarial agent artesunate inhibits TNF-a-induced production of proinflammatory cytokines via inhibition of NF-κB and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes [J]. Rheumatology (Oxford),2007, 46(6):920-926.
    [198]de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, Berthoud HR, et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway [J]. Nat Immunol,2005,6(8):844-851.
    [199]Mcdonough JL, Arrell DK, Van Eyk JE. Troponin I degradation and covalent complex formation accompanies myocardial ischemia/reperfusion injury [J]. Circ Res,1999,84(1):9-20.
    [200]Zhao XM, Sun S, Liu XH. Experimental model of myocardial ischemia/reperfusion in rat established by ligating coronary artery with capsule. [J]. J Chin Microcirc, 2007, 11(3):206-208.
    [201]Loukogeorgakis SP, Williams R, Pariagiotidou AT, Kolvekar SK, Donald A, Cole TJ, Yellon DM, et al. Transient limb ischemia induces remote preconditioning and remote postconditioning in humans by a KATP channel dependent mechanism [J]. Circulation,2007,116(12):1386-1395.
    [202]Gritsopoulos G, Iliodromitis EK, Zoga A, Farmakis D, Demerouti E, Papalois A, Paraskevaidis IA, et al. Remote postconditioning is more potent than classic postconditioning in reducing the infarct size in anesthetized rabbits [J]. Cardiovasc Drugs Ther,2009,23(3):193-198.
    [203]Dohmann HF, Silva SA, Sousa AL, Braga AM, Branco RV, Haddad AF, Oliveira MA, et al. Multicenter double blind trial of autologous bone marrow mononuclear cell transplantation through intracoronary injection post acute myocardium infarction-MiHeart/AMI study [J]. Trials,2008,9:41.
    [204]Morrissey RP, Diamond GA, Kaul S. Statins in acute coronary syndromes:do the guideline recommendations match the evidence? [J]. J Am Coll Cardiol,2009, 54(15):1425-1433.
    [205]Rosamond W, Flegal K, Friday G, Furie K, Go A, Greenlund K, Haase N, et al. Heart disease and stroke statistics--2007 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee [J]. Circulation,2007,115(5):e69-el71.
    [206]Widimsky P, Wijns W, Fajadet J, de Belder M, Knot J, Aaberge L, Andrikopoulos G, et al. Reperfusion therapy for ST elevation acute myocardial infarction in Europe description of the current situation in 30 countries [J]. Eur Heart J,2010, 31(8):943-957.
    [207]Qin XJ, Shi HZ. Major causes of death during the past 25 years in China [J]. Chin Med J,2007,120(24):2317-2320.
    [208]Zhang XH, Lu ZL, Liu L. Coronary heart disease in China [J]. Heart,2008, 94(9):1126-1131.
    [209]Ferdinandy P, Schulz R, Baxter GF. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning [J]. Pharmacol Rev,2007,59(4):418-458.
    [210]Yeboah MM, Xue X, Javdan M, Susin M, Metz CN. Nicotinic acetylcholine receptor expression and regulation in the rat kidney after ischemia-reperfusion injury [J]. Am J Physiol Renal Physiol,2008,295(3):F654-F661.
    [211]Mura M, Andrade CF, Han B, Seth R, Zhang Y, Bai XH, Waddell TK, et al. Intestinal ischemia-reperfusion-induced acute lung injury and oncotic cell death in multiple organs [J]. Shock,2007,28(2):227-238.
    [212]Kaminski KA, Bonda TA, Korecki J, Musial WJ. Oxidative stress and neutrophil activation--the two keystones of ischemia/reperfusion injury [J]. Int J Cardiol, 2002,86(1):41-59.
    [213]Misra MK, Sarwat M, Bhakuni P, Tuteja R, Tuteja N. Oxidative stress and ischemic myocardial syndromes [J]. Med Sci Monit,2009,15(10):A209-A219.
    [214]Tsutsumi T, Ide T, Yamato M, Kudou W, Andou M, Hirooka Y, Utsumi H, Tsutsui H, et al. Modulation of the myocardial redox state by vagal nerve stimulation after experimental myocardial infarction [J]. Cardiovasc Res,2008,77(4):713-721.
    [215]Zweier JL, Talukder MA. The role of oxidants and free radicals in reperfusion injury [J]. Cardiovasc Res,2006,70(2):181-190.
    [216]Zimmet JM, Hare JM. Nitroso-redox interactions in the cardiovascular system [J]. Circulation,2006,114(14):1531-1544.
    [217]Gill R, Tsung A, Billiar T. Linking oxidative stress to inflammation:Toll-like receptors [J]. Free Radic Biol Med,2010,48(9):1121-1132.
    [218]Jang HR, Ko GJ, Wasowska BA, Rabb H. The interaction between ischemia-reperfusion and immune responses in the kidney [J]. J Mol Med,2009, 87(9):859-864.
    [219]Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury [J]. Cardiovasc Res,2004,61(3):481-497.
    [220]Jordan JE, Zhao ZQ, Vinten-Johansen J. The role of neutrophils in myocardial ischemia-reperfusion injury [J]. Cardiovasc Res,1999,43(4):860-878.
    [221]Rezkalla SH, Kloner RA. Coronary no-reflow phenomenon:from the experimental laboratory to the cardiac catheterization laboratory [J]. Catheter Cardiovasc Interv, 2008,72(7):950-957.
    [222]马国强,李跃荣.心肌缺血-再灌注损伤与细胞凋亡的机制及其防治研究进展[J].滨州医学院学报,2007,30(1):50-52.
    [223]Li J, Wu F, Zhang H, Fu F, Ji L, Dong L, Li Q, et al. Insulin inhibits leukocyte-endothelium adherence via an Akt-NO-dependent mechanism in myocardial ischemia/reperfusion [J]. J Mol Cell Cardiol,2009,47(4):512-519.
    [224]刘芳,潘芳.核转录因子NF-κB与心肌缺血-再灌注损伤[J].中国实用医药杂志,2007,2(13):83-85.
    [225]Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease [J]. Biochem Pharmacol,2009,78(6):539-552.
    [226]Hall G, Hasday JD, Rogers TB. Regulating the regulator:NF-κB signaling in heart [J]. J Mol Cell Cardiol,2006,41(4):580-591.
    [227]Czibik G, Wu Z, Berne GP, Tarkka M, Vaage J, Laurikka J, Jarvinen O, et al. Human adaptation to ischemia by preconditioning or unstable angina:involvement of nuclear factor kappa B, but not hypoxia-inducible factor 1 alpha in the heart [J]. Eur J Cardiothorac Surg,2008,34(5):976-984.
    [228]Kim JW, Jin YC, Kim YM, Rhie S, Kim HJ, Seo HG, Lee JH, et al. Daidzein administration in vivo reduces myocardial injury in a rat ischemia/reperfusion model by inhibiting NF-κB activation [J]. Life Sci,2009,84(7-8):227-234.
    [229]Yang J, Jiang H, Yang J, Ding JW, Chen LH, Li S, Zhang XD. Valsartan preconditioning protects against myocardial ischemia-reperfusion injury through TLR4/NF-κB signaling pathway [J]. Mol Cell Biochem,2009,330(1-2):39-46.
    [230]Frantz S, Tillmanns J, Kuhlencordt PJ, Schmidt I, Adamek A, Dienesch C, Thum T, et al. Tissue-specific effects of the nuclear factor kB subunit p50 on myocardial ischemia-reperfusion injury [J]. Am J Pathol,2007,171(2):507-512.
    [231]Dong LY, Chen ZW. Myocardial ischemia/reperfusion injury and inflammatory reaction [J]. Chin J Clin Pharmaco Ther,2008,13(5):582-588.
    [232]Zhang M, Xu YJ, Saini HK, Turan B, Liu PP, DhallaNS. Pentoxifylline attenuates cardiac dysfunction and reduces TNF-a level in ischemic-reperfused heart [J]. Am J Physiol Heart Circ Physiol,2005,289(2):H832-H839.
    [233]Gao X, Zhang H, Belmadani S, Wu J, Xu X, Elford H, Potter BJ, Zhang C. Role of TNF-a-induced reactive oxygen species in endothelial dysfunction during reperfusion injury [J]. Am J Physiol Heart Circ Physiol,2008, 295(6):H2242-H2249.
    [234]Pevni D, Frolkis I, Shapira I, Schwartz D, Schwartz I, Chernichovski T, Nesher N, et al. Cardioplegic ischemia or reperfusion:which is a main trigger for tumor necrosis factor production? [J]. Int J Cardiol,2008,127(2):186-191.
    [235]Canton M, Skyschally A, Menabo R, Boengler K, Gres P, Schulz R, Haude M, et al. Oxidative modification of tropomyosin and myocardial dysfunction following coronary microembolization [J]. Eur Heart J,2006,27(7):875-881.
    [236]Zhang C, Xu X, Potter BJ, Wang W, Kuo L, Michael L, Bagby GJ, et al. TNF-a contributes to endothelial dysfunction in ischemia/reperfusion injury [J]. Arterioscler Thromb Vase Biol,2006,26(3):475-480.
    [237]Funakoshi H, Zacharia LC, Tang Z, Zhang J, Lee LL, Good JC, Herrmann DE, et al. Al adenosine receptor upregulation accompanies decreasing myocardial adenosine levels in mice with left ventricular dysfunction [J]. Circulation,2007, 115(17):2307-2315.
    [238]Ono K, Matsumori A, Shioi T, Furukawa Y, Sasayama S. Cytokine gene expression after myocardial infarction in rat hearts:possible implication in left ventricular remodeling [J]. Circulation,1998,98(2):149-156.
    [239]Lecour S, Rochette L, Opie L. Free radicals trigger TNFa-induced cardioprotection [J]. Cardiovasc Res,2005,65(1):239-243.
    [240]Lecour S, Smith RM, Woodward B, Opie LH, Rochette L, Sack MN. Identification of a novel role for sphingolipid signaling in TNFa and ischemic preconditioning mediated cardioprotection [J]. J Mol Cell Cardiol,2002,34(5):509-518.
    [241]Gao Q, Zhang SZ, Cao CM, Bruce IC, Xia Q. The mitochondrial permeability transition pore and the Ca2+-activated K+channel contribute to the cardioprotection conferred by tumor necrosis factor-a [J]. Cytokine,2005,32(5):199-205.
    [242]Pevni D, Frolkis I, Schwartz D, Schwartz I, Chernichovski T, Kramer A, Ben-Gal Y, et al. New evidence for the role of TNF-a in liver ischaemic/reperfusion injury [J]. Eur J Clin Invest,2008,38(9):649-655.
    [243]Sack M. Tumor necrosis factor-a in cardiovascular biology and the potential role for anti-tumor necrosis factor-α therapy in heart disease [J]. Pharmacol Ther,2002, 94(1-2):123-135.
    [244]Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation [J]. Nature,2002,418(6894):191-195.
    [245]Smart N, Mojet MH, Latchman DS, Marber MS, Duchen MR, Heads RJ. IL-6 induces PI 3-kinase and nitric oxide-dependent protection and preserves mitochondrial function in cardiomyocytes [J]. Cardiovasc Res,2006, 69(1):164-177.
    [246]Shu J, Ren N, Du Jb, Zhang M, Cong HL, Huang TG. Increased levels of interleukin-6 and matrix metalloproteinase-9 are of cardiac origin in acute coronary syndrome [J]. Scand Cardiovasc J,2007,41(3):149-154.
    [247]Deten A, Volz HC, Briest W, Zimmer HG. Cardiac cytokine expression is upregulated in the acute phase after myocardial infarction. Experimental studies in rats [J]. Cardiovasc Res,2002,55(2):329-340.
    [248]Dawn B, Xuan YT, Guo Y, Rezazadeh A, Stein AB, Hunt G, Wu WJ, et al. IL-6 plays an obligatory role in late preconditioning via JAK-STAT signaling and upregulation of iNOS and COX-2 [J]. Cardiovasc Res,2004,64(1):61-71.
    [249]Kaminski KA, Kozuch M, Bonda T, Wojtkowska I, Kozieradzka A, Dobrzycki S, et al. Coronary sinus concentrations of interleukin 6 and its soluble receptors are affected by reperfusion and may portend complications in patients with myocardial infarction [J]. Atherosclerosis,2009,206(2):581-587.
    [250]Vasan RS, Sullivan LM, Roubenoff R, Dinarello CA, Harris T, Benjamin EJ, Sawyer DB, et al. Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction:the Framingham Heart Study [J]. Circulation,2003,107(11):1486-1491.
    [251]Yang S, Zheng R, Hu S, Ma Y, Choudhry MA, Messina JL, Rue LR, et al. Mechanism of cardiac depression after trauma-hemorrhage:increased cardiomyocyte IL-6 and effect of sex steroids on IL-6 regulation and cardiac function [J]. Am J Physiol Heart Circ Physiol,2004,287(5):H2183-H2191.
    [252]Leftheriotis DI, Fountoulaki KT, Flevari PG, Parissis JT, Panou FK, Andreadou IT, Venetsanou KS, et al. The predictive value of inflammatory and oxidative markers following the successful cardioversion of persistent lone atrial fibrillation [J]. Int J Cardiol,2009,135(3):361-369.
    [253]Imaizumi T, Nejima J, Kiuchi K, Takeda S, Seino Y, Tanaka K, Takano T. Dynamics and source of endothelin-1 and interleukin-6 following coronary reperfusion in patients with acute myocardial infarction [J]. J Nippon Med Sch, 2007,74(2):131-147.
    [254]Lindmark E, Diderholm E, Wallentin L, Siegbahn A. Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy [J]. JAMA,2001, 286(17):2107-2113.
    [255]Kanda T, Takahashi T. Interleukin-6 and cardiovascular diseases [J]. Jpn Heart J, 2004,45(2):183-93.
    [256]Nandi D, Mishra MK, Basu A, Bishayi B. Protective effects of interleukin-6 in lipopolysaccharide (LPS)-induced experimental endotoxemia are linked to alteration in hepatic anti-oxidant enzymes and endogenous cytokines [J]. Immunobiology,2010,215(6):443-451.
    [257]Rollwagen FM, Madhavan S, Singh A, Li YY, Wolcott K, Maheshwari R. IL-6 protects enterocytes from hypoxia-induced apoptosis by induction of bcl-2 mRNA and reduction of fas mRNA [J]. Biochem Biophys Res Commun,2006, 347(4):1094-1098.
    [258]Arumugam TV, Okun E, Tang SC, Thundyil J, Taylor SM, Woodruff TM. Toll-like receptors in ischemia-reperfusion injury [J]. Shock,2009,32(1):4-16.
    [259]Arumugam TV, Shiels I A, Woodruff TM, Granger DN, Taylor SM. The role of the complement system in ischemia-reperfusion injury [J]. Shock,2004, 21(5):401-409.
    [260]Kaczorowski DJ, Mollen KP, Edmonds R, Billiar TR. Early events in the recognition of danger signals after tissue injury [J]. J Leukoc Biol,2008, 83(3):546-552.
    [261]Chao W. Toll-like receptor signaling:a critical modulator of cell survival and ischemic injury in the heart [J]. Am J Physiol Heart Circ Physiol,2009, 296(1):H1-H12.
    [262]Chong AJ, Shimamoto A, Hampton CR, Takayama H, Spring DJ, Rothnie CL, Yada M, et al. Toll-like receptor 4 mediates ischemia/reperfusion injury of the heart [J]. J Thorac Cardiovasc Surg,2004,128(2):170-179.
    [263]Cha J, Wang Z, Ao L, Zou N, Dinarello CA, Banerjee A, Fullerton DA, et al. Cytokines link Toll-like receptor 4 signaling to cardiac dysfunction after global myocardial ischemia [J]. Ann Thorac Surg,2008,85(5):1678-1685.
    [264]Favre J, Musette P, Douin-Echinard V, Laude K, Henry JP, Arnal JF, Thuillez C, et al. Toll-like receptors 2-deficient mice are protected against postischemic coronary endothelial dysfunction [J]. Arterioscler Thromb Vasc Biol,2007, 27(5):1064-1071.
    [265]Loubele ST, Spek CA, Leenders P, van Oerle R, Aberson HL, Hamulyak K, Ferrell G, Esmon CT, Spronk HM, Ten CH. Activated protein C protects against myocardial ischemia/reperfusion injury via inhibition of apoptosis and inflammation [J]. Arterioscler Thromb Vasc Biol,2009,29(7):1087-1092.
    [266]Schmidt MR, Smerup M, Konstantinov IE, Shimizu M, Li J, Cheung M, White PA, et al. Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism:first demonstration of remote ischemic perconditioning [J]. Am J Physiol Heart Circ Physiol,2007, 292(4):H1883-H1890.
    [267]Churchill EN, Ferreira JC, Brum PC, Szweda LI, Mochly-Rosen D. Ischaemic preconditioning improves proteasomal activity and increases the degradation of deltaPKC during reperfusion [J]. Cardiovasc Res,2010,85(2):385-394.
    [268]Ji B, Liu M, Liu J, Wang G, Feng W, Lu F, Shengshou H. Evaluation by cardiac troponin I:the effect of ischemic preconditioning as an adjunct to intermittent blood cardioplegia on coronary artery bypass grafting [J]. J Card Surg,2007, 22(5):394-400.
    [269]Pasupathy S, Homer-Vanniasinkam S. Ischaemic preconditioning protects against ischaemia/reperfusion injury, emerging concepts [J]. Eur J Vasc Endovasc Surg, 2005,29(2):106-115.
    [270]Romanque P, Diaz A, Tapia G, Uribe-Echevarria S, Videla LA, Fernandez V. Delayed ischemic preconditioning protects against liver ischemia-reperfusion injury in vivo [J]. Transplant Proc,2010,42(5):1569-1575.
    [271]Nakajima T, Ochi S, Oda C, Ishii M, Ogawa K. Ischemic preconditioning attenuates of ischemia-induced degradation of spectrin and tau:implications for ischemic tolerance [J]. Neurol Sci,2011,32(2):229-239.
    [272]Itoh T, Fukami K, Suzuki T, Aoki H, Ohira K, Satoh N, Shibata M, et al. Effect of pre-myocardial infarction angina pectoris on post-myocardial infarction arrhythmias after reperfusion therapy [J]. Am J Cardiol,2006,97(8):1157-1161.
    [273]Fallavollita JA. Determinants of delayed preconditioning against myocardial stunning in chronically-instrumented pigs [J]. J Cardiovasc Transl Res,2009, 2(l):71-80.
    [274]Wojtovich AP, Burwell LS, Sherman TA, Nehrke KW, Brookes PS. The C. elegans mitochondrial K+ATP channel:a potential target for preconditioning [J]. Biochem Biophys Res Commun,2008,376(3):625-628.
    [275]Kaneko H, Anzai T, Naito K, Kohno T, Maekawa Y, Takahashi T, Kawamura A, et al. Role of ischemic preconditioning and inflammatory response in the development of malignant ventricular arrhythmias after reperfused ST-elevation myocardial infarction [J]. J Card Fail,2009,15(9):775-781.
    [276]Zubakov D, Hoheisel JD, Kluxen FW, Brandle M, Ehring T, Hentsch B, Frohme M. Late ischemic preconditioning of the myocardium alters the expression of genes involved in inflammatory response [J]. FEBS Lett,2003,547(l-3):51-55.
    [277]Wang Y, Yin B, Liu S, Xue S. Cardioprotective effect by tumor necrosis factor-a and interleukin-6 through late preconditioning in unstable angina patients [J]. Arch Med Res,2007,38(l):80-85.
    [278]Lim SY, Yellon DM, Hausenloy DJ. The neural and humoral pathways in remote limb ischemic preconditioning [J]. Basic Res Cardiol,2010,105(5):651-655.
    [279]Kloner RA. Clinical application of remote ischemic preconditioning [J]. Circulation,2009,119(6):776-778.
    [280]Bolli R, Li QH, Tang XL, Guo Y, Xuan YT, Rokosh G, Dawn B. The late phase of preconditioning and its natural clinical application--gene therapy [J]. Heart Fail Rev,2007,12(3-4):189-199.
    [281]Li SJ, Wu YN, Kang Y, Yin YQ, Gao WZ, Liu YX, Lou JS. Noninvasive limb ischemic preconditioning protects against myocardial I/R injury in rats [J]. J Surg Res,2010,164(1):162-168.
    [282]You L, Li L, Xu Q, Ren J, Zhang F. Postconditioning reduces infarct size and cardiac myocyte apoptosis via the opioid receptor and JAK-STAT signaling pathway [J]. Mol Biol Rep,2011,38(1):437-443.
    [283]Donato M, D'Annunzio V, Berg G, Gonzalez G, Schreier L, Morales C, Wikinski RL, et al. Ischemic postconditioning reduces infarct size by activation of A\ receptors and K+ATP channels in both normal and hypercholesterolemic rabbits [J]. J Cardiovasc Pharmacol,2007,49(5):287-292.
    [284]Tawa M, Fukumoto T, Yamashita N, Ohkita M, Ayajiki K, Okamura T, Matsumura Y. Postconditioning improves postischemic cardiac dysfunction independently of norepinephrine overflow after reperfusion in rat hearts: comparison with preconditioning [J]. J Cardiovasc Pharmacol,2010,55(1):6-13.
    [285]Heusch G. Postconditioning:old wine in a new bottle? [J]. J Am Coll Cardiol, 2004,44(5):1111-1112.
    [286]Vinten-Johansen J, Granfeldt A, Mykytenko J, Undyala VV, Dong Y, Przyklenk K. The multi-dimensional physiological responses to postconditioning [J]. Antioxid Redox Signal,2010,14(5):791-810.
    [287]Pinheiro BB, Fiorelli AI, Gomes OM. Effects of ischemic postconditioning on left ventricular function of isolated rat hearts [J]. Rev Bras Cir Cardiovasc,2009, 24(1):31-37.
    [288]Sun HY, Wang NP, Halkos M, Kerendi F, Kin H, Guyton RA, Vinten-Johansen J, et al. Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways [J]. Apoptosis,2006, 11(9):1583-1593.
    [289]Ke JJ, Yu FX, Rao Y, Wang YL. Adenosine postconditioning protects against myocardial ischemia-reperfusion injury though modulate production of TNF-a and prevents activation of transcription factor NF-κB [J]. Mol Biol Rep,2011, 38(l):531-538.
    [290]Sadat U, Walsh SR, Varty K. Cardioprotection by ischemic postconditioning during surgical procedures [J]. Expert Rev Cardiovasc Ther,2008,6(7):999-1006.
    [291]van Vuuren D, Lochner A. Ischaemic postconditioning:from bench to bedside.. [J]. Cardiovasc J Afr,2008,19(6):311-320.
    [292]Balakumar P, Rohilla A, Singh M. Pre-conditioning and postconditioning to limit ischemia-reperfusion-induced myocardial injury:what could be the next footstep? [J]. Pharmacol Res,2008,57(6):403-412.
    [293]Wang WZ. Investigation of reperfusion injury and ischemic preconditioning in microsurgery [J]. Microsurgery,2009,29(1):72-79.
    [294]Durukan A, Tatlisumak T. Preconditioning-induced ischemic tolerance:a window into endogenous gearing for cerebroprotection [J]. Exp Transl Stroke Med,2010, 2(1):2.
    [295]Cao C, Wang S, Fan L, Wan X, Liu X, Chen X. Renal protection by ischemic preconditioning is associated with p50/p50 homodimers [J]. Am J Nephrol,2010, 31(1):1-8.
    [296]Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic 'preconditioning'protects remote virgin myocardium from subsequent sustained coronary occlusion [J]. Circulation,1993,87(3):893-899.
    [297]Tapuria N, Kumar Y, Habib MM, Abu AM, Seifalian AM, Davidson BR. Remote ischemic preconditioning:a novel protective method from ischemia reperfusion injury--a review [J]. J Surg Res,2008,150(2):304-330.
    [298]Kanoria S, Jalan R, Seifalian AM, Williams R, Davidson BR. Protocols and mechanisms for remote ischemic preconditioning:a novel method for reducing ischemia reperfusion injury [J]. Transplantation,2007,84(4):445-458.
    [299]Herrmann JL. Remote ischemic preconditioning reduces myocardial ischemia/reperfusion injury [J]. J Surg Res,2010,159(2):660-662.
    [300]Konstantinov IE, Arab S, Li J, Coles JG, Boscarino C, Mori A, Cukerman E, et al. The remote ischemic preconditioning stimulus modifies gene expression in mouse myocardium [J]. J Thorac Cardiovasc Surg,2005,130(5):1326-1332.
    [301]Huda R, Chung DH, Mathru M. Ischemic preconditioning at a distance:altered gene expression in mouse heart and other organs following brief occlusion of the mesenteric artery [J]. Heart Lung Circ,2005,14(1):36-43.
    [302]Shimizu M, Saxena P, Konstantinov IE, Cherepanov V, Cheung MM, Wearden P, Zhangdong H, et al. Remote ischemic preconditioning decreases adhesion and selectively modifies functional responses of human neutrophils [J]. J Surg Res, 2010,158(1):155-161.
    [303]Souza FM, Loiola RT, Rocha EL, Simao AF, Gomes AS, Souza MH, Ribeiro RA. Hind limb ischemic preconditioning induces an anti-inflammatory response by remote organs in rats [J]. Braz J Med Biol Res,2009,42(10):921-929.
    [304]Cheung MM, Kharbanda RK, Konstantinov IE, Shimizu M, Frndova H, Li J, Holtby HM, et al. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery:first clinical application in humans [J]. J Am Coll Cardiol,2006,47(11):2277-2282.
    [305]Takagi H, Manabe H, Kawai N, Goto SN, Umemoto T. Review and meta-analysis of randomized controlled clinical trials of remote ischemic preconditioning in cardiovascular surgery [J]. Am J Cardiol,2008,102(11):1487-1488.
    [306]Hoole SP, Heck PM, Sharples L, Khan SN, Duehmke R, Densem CG, Clarke SC, et al. Cardiac Remote Ischemic Preconditioning in Coronary Stenting (CRISP Stent) Study:a prospective, randomized control trial [J]. Circulation,2009, 119(6):820-827.
    [307]Kerendi F, Kin H, Halkos ME, Jiang R, Zatta AJ, Zhao ZQ, Guyton RA, et al. Remote postconditioning. Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors [J]. Basic Res Cardiol,2005,100(5):404-412.
    [308]Li CM, Zhang XH, Ma XJ, Luo M. Limb ischemic postconditioning protects myocardium from ischemia-reperfusion injury [J]. Scand Cardiovasc J,2006, 40(5):312-317.
    [309]Andreka G, Vertesaljai M, Szantho G, Font G, Piroth Z, Fontos G, Juhasz ED, et al. Remote ischaemic postconditioning protects the heart during acute myocardial infarction in pigs [J]. Heart,2007,93(6):749-752.
    [310]Madias JE. "Remote ischemic postconditioning" for no-reflow in patients undergoing primary percutaneous coronary intervention for ST-elevation myocardial infarction? [J]. Am J Cardiol,2010,105(2):281.
    [311]Ziemssen T, Kern S. Psychoneuroimmunology--cross-talk between the immune and nervous systems [J]. J Neurol,2007,254 Suppl 2:18-111.
    [312]Strom TB, Deisseroth A, Morganroth J, Carpenter CB, Merrill JP. Alteration of the cytotoxic action of sensitized lymphocytes by cholinergic agents and activators of adenylate cyclase [J]. Proc Natl Acad Sci USA,1972,69(10):2995-2999.
    [313]Thayer JF. Vagal tone and the inflammatory reflex [J]. Cleve Clin J Med,2009,76 Suppl 2:S23-S26.
    [314]Huston JM, Ochani M, Rosas-Ballina M, Liao H, Ochani K, Pavlov VA, Gallowitsch-Puerta M, et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis [J]. J Exp Med,2006,203(7):1623-1628.
    [315]Ghia JE, Blennerhassett P, Kumar-Ondiveeran H, Verdu EF, Collins SM. The vagus nerve:a tonic inhibitory influence associated with inflammatory bowel disease in a murine model [J]. Gastroenterology,2006,131(4):1122-1130.
    [316]Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway [J]. J Clin Invest,2007,117(2):289-296.
    [317]van Westerloo DJ. The vagal immune reflex:a blessing from above [J]. Wien Med Wochenschr,2010,160(5-6):112-117.
    [318]Chernyavsky Al, Arredondo J, Skok M, Grando SA. Auto/paracrine control of inflammatory cytokines by acetylcholine in macrophage-like U937 cells through nicotinic receptors [J]. Int Immunopharmacol,2010,10(3):308-315.
    [319]Orr-Urtreger A, Goldner FM, Saeki M, Lorenzo I, Goldberg L, De Biasi M, Dani JA, et al. Mice deficient in the α7 neuronal nicotinic acetylcholine receptor lack a-bungarotoxin binding sites and hippocampal fast nicotinic currents [J]. J Neurosci,1997,17(23):9165-9171.
    [320]Saeed RW, Varma S, Peng-Nemeroff T, Sherry B, Balakhaneh D, Huston J, Tracey KJ, et al. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation [J]. J Exp Med,2005,201(7):1113-1123.
    [321]de Jonge WJ, Ulloa L. The α7 nicotinic acetylcholine receptor as a pharmacological target for inflammation [J]. Br J Pharmacol,2007, 151(7):915-929.
    [322]Pavlov VA, Ochani M, Gallowitsch-Puerta M, Ochani K, Huston JM, Czura CJ, Al-Abed Y, et al. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia [J]. Proc Natl Acad Sci USA,2006, 103(13):5219-5223.
    [323]Gallowitsch-Puerta M, Pavlov VA. Neuro-immune interactions via the cholinergic anti-inflammatory pathway [J]. Life Sci,2007,80(24-25):2325-2329.
    [324]Pavlov VA, Parrish WR, Rosas-Ballina M, Ochani M, Puerta M, Ochani K, Chavan S, et al. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway [J]. Brain Behav Immun, 2009,23(1):41-45.
    [325]Rosas-Ballina M, Ochani M, Parrish WR, Ochani K, Harris YT, Huston JM, Chavan S, et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia [J]. Proc Natl Acad Sci USA,2008, 105(31):11008-11013.
    [326]Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, Al-Abed Y, et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis [J]. Nat Med,2004,10(11):1216-1221.
    [327]Parrish WR, Rosas-Ballina M, Gallowitsch-Puerta M, Ochani M, Ochani K, Yang LH, Hudson L, et al. Modulation of TNF release by choline requires a7 subunit nicotinic acetylcholine receptor-mediated signaling [J]. Mol Med,2008, 14(9-10):567-574.
    [328]Marrero MB, Bencherif M. Convergence of α7 nicotinic acetylcholine receptor-activated pathways for anti-apoptosis and anti-inflammation:central role for JAK2 activation of STAT3 and NF-κB [J]. Brain Res,2009,1256:1-7.
    [329]Chatterjee PK, Al-Abed Y, Sherry B, Metz CN. Cholinergic agonists regulate JAK2/STAT3 signaling to suppress endothelial cell activation [J]. Am J Physiol Cell Physiol,2009,297(5):C1294-C1306.
    [330]Bernik TR, Friedman SG, Ochani M, Diraimo R, Ulloa L, Yang H, Sudan S, et al. Pharmacological stimulation of the cholinergic antiinflammatory pathway [J]. J Exp Med,2002,195(6):781-788.
    [331]Peter C, Schmidt K, Hofer S, Stephan M, Martin E, Weigand MA, Walther A. Effects of physostigmine on microcirculatory alterations during experimental endotoxemia [J]. Shock,2010,33(4):405-411.
    [332]Chorny A, Anderson P, Gonzalez-Rey E, Delgado M. Ghrelin protects against experimental sepsis by inhibiting high-mobility group box 1 release and by killing bacteria [J]. J Immunol,2008,180(12):8369-8377.
    [333]van Westerloo DJ, Giebelen IA, Florquin S, Daalhuisen J, Bruno MJ, de Vos AF, Tracey KJ, et al. The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis [J]. J Infect Dis,2005,191(12):2138-2148.
    [334]Kessler W, Traeger T, Westerholt A, Neher F, Mikulcak M, Muller A, Maier S, et la. The vagal nerve as a link between the nervous and immune system in the instance of polymicrobial sepsis [J]. Langenbecks Arch Surg,2006,391(2):83-87.
    [335]Song XM, Li JG, Wang YL, Hu ZF, Zhou Q, Du ZH, Jia BH. The protective effect of the cholinergic anti-inflammatory pathway against septic shock in rats [J]. Shock,2008,30(4):468-472.
    [336]Assuncao M, Machado FR. Sepsis, Coagulation and Anticoagulants [J]. Endocr Metab Immune Disord Drug Targets,2010,10(3):204-213.
    [337]van Westerloo DJ, Giebelen IA, Meijers JC, Daalhuisen J, de Vos AF, Levi M, van der Poll T. Vagus nerve stimulation inhibits activation of coagulation and fibrinolysis during endotoxemia in rats [J]. J Thromb Haemost,2006, 4(9):1997-2002.
    [338]Huston JM, Gallowitsch-Puerta M, Ochani M, Ochani K, Yuan R, Rosas-Ballina M, Ashok M, et al. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis [J]. Crit Care Med,2007,35(12):2762-2768.
    [339]Giebelen IA, van Westerloo DJ, Larosa GJ, de Vos AF, van der Poll T. Stimulation of α7 cholinergic receptors inhibits lipopolysaccharide-induced neutrophil recruitment by a tumor necrosis factor a-independent mechanism [J]. Shock,2007, 27(4):443-447.
    [340]Rakonczay ZJ, Hegyi P, Takacs T, Mccarroll J, Saluja AK. The role of NF-κB activation in the pathogenesis of acute pancreatitis [J]. Gut,2008,57(2):259-267.
    [341]van Westerloo DJ, Giebelen IA, Florquin S, Bruno MJ, Larosa GJ, Ulloa L, Tracey KJ, et al. The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice [J]. Gastroenterology,2006,130(6):1822-1830.
    [342]Wu R, Wang P. Preclinical studies with adrenomedullin and its binding protein as cardiovascular protective agents for hemorrhagic shock [J]. Cardiovasc Drug Rev, 2006,24(3-4):204-213.
    [343]Shaked G, Grinberg G, Sufaro Y, Douvdevani A, Shapira Y, Artru A, Czeiger D. Ketamine delays mortality in an experimental model of hemorrhagic shock and subsequent sepsis [J]. Resuscitation,2009,80(8):935-939.
    [344]Guarini S, Altavilla D, Cainazzo MM, Giuliani D, Bigiani A, Marini H, Squadrito G, et al. Efferent vagal fibre stimulation blunts nuclear factor-KB activation and protects against hypovolemic hemorrhagic shock [J]. Circulation,2003, 107(8):1189-1194.
    [345]Li JG, Hu ZF, Du ZH, Zhou Q, Jia BH, Peng ZQ, Ye XF, Li B. Protective effect of the cholinergic anti-inflammatory pathway against hemorrhagic shock in rats [J]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue,2005,17(1):24-27.
    [346]Guarini S, Cainazzo MM, Giuliani D, Mioni C, Altavilla D, Marini H, Bigiani A, et al. Adrenocorticotropin reverses hemorrhagic shock in anesthetized rats through the rapid activation of a vagal anti-inflammatory pathway [J]. Cardiovasc Res, 2004,63(2):357-365.
    [347]Turler A, Schnurr C, Nakao A, Togel S, Moore BA, Murase N, Kalff JC, et al. Endogenous endotoxin participates in causing a panenteric inflammatory ileus after colonic surgery [J]. Ann Surg,2007,245(5):734-744.
    [348]The FO, Boeckxstaens GE, Snoek SA, Cash JL, Bennink R, Larosa GJ, van den Wijngaard RM, et al. Activation of the cholinergic anti-inflammatory pathway ameliorates postoperative ileus in mice [J]. Gastroenterology,2007, 133(4):1219-1228.
    [349]Bonaz B. The cholinergic anti-inflammatory pathway and the gastrointestinal tract [J]. Gastroenterology,2007,133(4):1370-1373.
    [350]Ghia JE, Blennerhassett P, El-Sharkawy RT, Collins SM. The protective effect of the vagus nerve in a murine model of chronic relapsing colitis [J]. Am J Physiol Gastrointest Liver Physiol,2007,293(4):G711-G718.
    [351]Cunningham C, Campion S, Lunnon K, Murray CL, Woods JF, Deacon RM, Rawlins JN, et al. Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease [J]. Biol Psychiatry,2009, 65(4):304-312.
    [352]Brenner T, Nizri E, Irony-Tur-Sinai M, Hamra-Amitay Y, Wirguin I. Acetylcholinesterase inhibitors and cholinergic modulation in Myasthenia Gravis and neuroinflammation [J]. J Neuroimmunol,2008,201-202:121-127.
    [353]Bermejo P, Martin-Aragon S, Benedi J, Susin C, Felici E, Gil P, Ribera JM, et al. Differences of peripheral inflammatory markers between mild cognitive impairment and Alzheimer's disease [J]. Immunol Lett,2008,117(2):198-202.
    [354]Tobinick EL, Gross H. Rapid cognitive improvement in Alzheimer's disease following perispinal etanercept administration [J]. J Neuroinflammation,2008,5:2.
    [355]Toledo MA, Junqueira LJ. Cardiac autonomic modulation and cognitive status in Alzheimer's disease [J]. Clin Auton Res,2010,20(1):11-17.
    [356]Nizri E, Hamra-Amitay Y, Sicsic C, Lavon I, Brenner T. Anti-inflammatory properties of cholinergic up-regulation:A new role for acetylcholinesterase inhibitors [J]. Neuropharmacology,2006,50(5):540-547.
    [357]Borovikova LV, Ivanova S, Nardi D, Zhang M, Yang H, Ombrellino M, Tracey KJ. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation [J]. Auton Neurosci,2000,85(1-3):141-147.
    [358]Karu I, Tahepold P, Sulling TA, Alver M, Zilmer M, Starkopf J. Off-pump coronary surgery causes immediate release of myocardial damage markers [J]. Asian Cardiovasc Thorac Ann,2009,17(5):494-499.
    [359]Bernik TR, Friedman SG, Ochani M, Diraimo R, Susarla S, Czura CJ, Tracey KJ. Cholinergic antiinflammatory pathway inhibition of tumor necrosis factor during ischemia reperfusion [J]. J Vase Surg,2002,36(6):1231-1236.
    [360]Altavilla D, Guarini S, Bitto A, Mioni C, Giuliani D, Bigiani A, Squadrito G, et al. Activation of the cholinergic anti-inflammatory pathway reduces NF-κB activation, blunts TNF-a production, and protects againts splanchic artery occlusion shock [J]. Shock,2006,25(5):500-506.
    [361]Brack KE, Patel VH, Mantravardi R, Coote JH, Ng GA. Direct evidence of nitric oxide release from neuronal nitric oxide synthase activation in the left ventricle as a result of cervical vagus nerve stimulation [J]. J Physiol,2009,587(Pt 12):3045-3054.
    [362]Brack KE, Patel VH, Coote JH, Ng GA. Nitric oxide mediates the vagal protective effect on ventricular fibrillation via effects on action potential duration restitution in the rabbit heart [J]. J Physiol,2007,583(Pt 2):695-704.
    [363]Wu R, Dong W, Ji Y, Zhou M, Marini CP, Ravikumar TS, Wang P. Orexigenic hormone ghrelin attenuates local and remote organ injury after intestinal ischemia-reperfusion [J]. PLoS One,2008,3(4):e2026.
    [364]Kutsuna S, Tsuruta R, Fujita M, Todani M, Yagi T, Ogino Y, Igarashi M, et al. Cholinergic agonist physostigmine suppresses excessive superoxide anion radical generation in blood, oxidative stress, early inflammation, and endothelial injury in rats with forebrain ischemia/reperfusion [J]. Brain Res,2010,1313:242-249.
    [365]Wang ZF, Wang J, Zhang HY, Tang XC. Huperzine A exhibits anti-inflammatory and neuroprotective effects in a rat model of transient focal cerebral ischemia [J]. J Neurochem,2008,106(4):1594-1603.
    [366]Czura CJ, Schultz A, Kaipel M, Khadem A, Huston JM, Pavlov VA, Redl H, et al. Vagus nerve stimulation regulates hemostasis in swine [J]. Shock,2010, 33(6):608-613.
    [367]Mousa SA, Goncharuk O, Miller D. Recent advances of TNF-a antagonists in rheumatoid arthritis and chronic heart failure [J]. Expert Opin Biol Ther,2007, 7(5):617-625.
    [368]Beekwilder JP, Beems T. Overview of the clinical applications of vagus nerve stimulation [J]. J Clin Neurophysiol,2010,27(2):130-138.
    [369]Schwartz PJ, De Ferrari GM, Sanzo A, Landolina M, Rordorf R, Raineri C, Campana C, et al. Long term vagal stimulation in patients with advanced heart failure:first experience in man [J]. Eur J Heart Fail,2008,10(9):884-891.
    [370]Zang WJ, Sun L, Yu XJ, Lv J, Chen LN, Liu BH. Vagal control of cardiac functions and vagal protection of ischemic myocardium [J]. Sheng Li Xue Bao, 2008,60(4):443-452.
    [371]La Marca R, Nedeljkovic M, Yuan L, Maercker A, Ehlert U. Effects of auricular electrical stimulation on vagal activity in healthy men:Evidence from a three-armed randomized trial [J]. Clin Sci (Lond),2009.
    [372]Reale M, Iarlori C, Gambi F, Feliciani C, Isabella L, Gambi D. The acetylcholinesterase inhibitor, Donepezil, regulates a Th2 bias in Alzheimer's disease patients [J]. Neuropharmacology,2006,50(5):606-613.
    [373]Nobrega AC, Loures DL, Pontes PV, Sant'Anna ID, Mesquita ET. Cholinergic stimulation with pyridostigmine prevents the impairment in ventricular function during mental stress in coronary artery disease patients [J]. Int J Cardiol,2008, 125(3):418-421.
    [374]Mcginn AP, Rosamond WD, GoffDJ, Taylor HA, Miles JS, Chambless L. Trends in prehospital delay time and use of emergency medical services for acute myocardial infarction:experience in 4 US communities from 1987-2000 [J]. Am Heart J,2005,150(3):392-400.
    [375]De Hert SG, Preckel B, Hollmann MW, Schlack WS. Drugs mediating myocardial protection [J]. Eur J Anaesthesiol,2009,26(12):985-995.
    [376]Boengler K, Schulz R, Heusch G. Loss of cardioprotection with ageing [J]. Cardiovasc Res,2009,83(2):247-261.
    [377]Filkova M, Haluzik M, Gay S, Senolt L. The role of resistin as a regulator of inflammation:Implications for various human pathologies [J]. Clin Immunol,2009, 133(2):157-170.
    [378]Muller-Werdan U. Inflammation and ageing [J]. Z Gerontol Geriatr,2007, 40(5):362-365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700