Rho激酶和磷酸二酯酶对环核苷酸依赖性血管舒张作用的调节
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环核苷酸包括环-磷酸腺苷(cAMP,或称环腺苷酸)和环-磷酸鸟苷(cGMP,或称环鸟苷酸)。作为第二信使物质,它们在机体组织细胞的生物活性中起着重要作用。在血管,其胞内浓度的改变直接影响血管平滑肌的反应性。cAMP由ATP通过腺苷酸环化酶的作用而生成。腺苷酸环化酶既可以通过与之偶联的β肾上腺素受体激活(异丙肾上腺素为该受体的激动剂),又可以被其激活剂(forskolin)直接激活,从而影响细胞内cAMP的水平。作为一种强效β肾上腺素受体激动剂,异丙肾上腺素(isoprenaline)不仅使血管平滑肌细胞内的cAMP浓度增加,还可以作用于内皮细胞,通过cAMP的作用最终激活eNOS-NO-cGMP信息通路,产生内皮依赖性作用,使血管舒张。cGMP要依靠鸟苷酸环化酶的作用,由GTP生成。在血管,鸟苷酸环化酶的激活通常需要内、外源性NO的作用,也就是说,内皮细胞的eNOS可以被乙酰胆碱(acetylcholine)或其他内皮依赖性舒血管物质激活,使NO生成增加;另外,硝普钠、硝酸甘油等作为NO供体,可以直接释放NO。NO扩散至血管平滑肌细胞,激活可溶性鸟苷酸环化酶(sGC),进而增加cGMP在胞内的水平。cAMP和cGMP浓度增加的结果是降低胞内钙离子的浓度或其敏感性,或者通过其他机制最终引起血管舒张。同时,二者浓度也受其水解酶磷酸二酯酶(PDE)的影响。研究发现,某些生理病理情况会导致PDE活性的异常,从而直接改变血管的舒张状态。
     目前,NO供体被广泛用于心血管疾病的治疗,诸如动脉粥样硬化、高血压、冠心病等。但是,治疗过程中出现的硝酸甘油耐受大大限制了该药的临床应用。因此,深入了解耐受产生的机制并探寻合理有效的防治措施,成为亟待研究的课题。在某些病理生理情况下,血栓素(TxA_2)的生成增加,该物质会通过TP受体(thromboxane-prostanoid receptor)激活Rho/Rho激酶通路,引发钙敏感化或抑制NO产生,使血管功能发生异常改变。但是,这种异常改变对cAMP调节的血管舒张作用有何影响还未见报道。
     因此,在本实验中,我们选取大鼠双侧颈总动脉和胸主动脉为观察对象,分别用myograph和organ bath的方法对血管张力进行测定;用激光共聚焦方法对原代培养的大鼠胸主动脉内皮细胞胞内一氧化氮和钙离子浓度进行测定;用ELISA试剂盒检测血管组织内环核苷酸的水平;并用免疫印迹方法对蛋白水平进行检测,旨在观察:激活TP受体对cAMP调节的内皮依赖性和内皮非依赖性血管舒张的影响并探讨Rho激酶和PDE从中的作用;新型PDE5抑制剂T 0156对硝酸甘油耐受的影响以及作用机制是否和增加血管组织内cGMP水平有关。本课题研究对于进一步揭示某些病理生理情况下血管功能损伤的机制和预防具有重要的意义;并为PDE5抑制剂用于防治硝酸酯类耐受,提高抗缺血药应用的临床效果提供理论依据。
     本实验研究证实:1)Isoprenaline引起内皮依赖性血管舒张,用L-NAME或ODQ阻断NO通路后,isoprenaline的内皮依赖性舒血管作用消失;U46619(3*10~(-8)M,1*10~(-7)M,3*10~(-7)M)浓度依赖性地抑制isoprenaline引起的血管舒张,并且这一抑制作用被TP受体阻断剂S18886(0.3μM)完全阻断;在内皮功能完好的血管,Rho激酶抑制剂Y27632和HA 1077部分翻转了U46619对isoprenaline引发血管舒张的抑制作用;但是,在去除内皮的血管,两种药物却对U46619的抑制血管舒张作用无明显影响;当把NO通路(L-NAME或者ODQ)阻断后,U46619对血管舒张的抑制作用不再能被Rho激酶抑制剂(Y27632,HA 1077)所翻转。通过原代培养的大鼠主动脉内皮细胞研究证实,isoprenaline(1*10~(-7)M)可以引起内皮细胞NO产生增加和细胞内钙离子浓度增加,isoprenaline促进NO生成的作用被L-NAME阻断;U46619(1*10~(-7)M)对isoprenaline引起的NO产生和钙增加均有抑制作用,并且这一抑制作用被TP受体阻断剂S18886阻断;给予Y27632和U46619预孵20分钟,然后再给isoprenaline,显示U46619抑制isoprenaline引起NO生成增加和钙增加的作用被Y27632不同程度翻转。通过免疫印迹实验证明,U46619(1*10~(-7)M)对isoprenaline(1*10~(-7)M)引起的e-NOS磷酸化有抑制作用,并且这一作用被Y27632部分翻转。
     2)在去除内皮的血管,isoprenaline和forskolin(两种增加细胞内cAMP水平的药物)均可引起血管浓度依赖性舒张;U46619(3*10~(-8)M,1*10~(-7)M,3*10~(-7)M)浓度依赖性地抑制上述两种药物的舒血管作用,并且这种抑制作用均被TP受体阻断剂S18886(0.3μM)阻断;Rho激酶抑制剂Y27632显著增强了被U46619抑制的舒血管效应;PDE3和PDE4抑制剂(cilostazol和rolipram),非选择性PDE抑制剂(IBMX)均部分翻转了U46619对血管舒张的抑制作用;但是,在没有U46619激活TP受体和Rho激酶的情况下,cilostazol和rolipram不能影响isoprenaline引发的血管舒张。cAMP测量结果显示,isoprenaline和forskolin均可引起血管组织内cAMP水平升高;U46619预处理抑制了这两种药物引起的cAMP浓度增加;并且这种抑制作用被PDE3、PDE4和Rho激酶抑制剂(cilostazol、rolipram和Y27632)所翻转。
     3)将内皮完好和去除内皮的大鼠离体主动脉环在硝酸甘油中预孵90分钟,均可以诱导血管产生“硝酸甘油耐受”,即血管对硝酸甘油的舒张反应减弱;新型PDE5抑制剂T 0156浓度依赖性地抑制了硝酸甘油耐受的形成,使产生耐受的血管舒张反应显著增强;在未产生耐受的血管,T 0156也能使舒张反应增强,但改变幅度要明显弱于产生耐受的血管;cGMP测量结果也显示,当血管发生耐受时,与非耐受情况下相比,cGMP浓度显著降低;T 0156作用结果使cGMP浓度明显增加,但耐受情况下cGMP浓度增加约为11.6倍,非耐受情况下增加约为6.6倍;在我们的实验条件下,TxA_2受体拮抗剂S18886,内皮素受体拮抗剂BQ610以及非选择性环氧合酶抑制剂indomethacin对硝酸甘油耐受的形成都没有影响。
     综上所述,通过本研究课题,可得出以下结论:
     1)TP受体激活可抑制isoprenaline的内皮依赖性舒张血管作用,这种抑制作用可能与Rho激酶被激活减少血管内皮细胞钙离子内流和磷酸化eNOS的水平,使eNOS活性降低,NO产生受抑有关;
     2)TP受体激活可抑制cAMP调节的非内皮依赖性血管舒张作用,这种抑制作用可能与Rho激酶被激活增强cAMP水解酶磷酸二酯酶的活性,降低cAMP浓度有关;
     3)PDE5活性升高使cGMP水平降低,这可能是硝酸甘油耐受情况下硝酸甘油舒张血管作用减弱的原因之一,新型PDE 5抑制剂T0156对硝酸甘油耐受的产生具有预防作用。
The second messengers,cyclic adenosine monophosphate(cAMP) and cyclic guanosine monophosphate(cGMP),are cyclic nucleotides and they play a key role in mediating a variety of cellular functions.In blood vessels,the intracellular level of both messengers is directly related to the relaxation of vascular smooth muscle cells(SMCs). The production of cAMP is catalyzed by adenylyl cyclase from ATP.Stimulation of theβ-adrenoceptor,a G-protein-coupled receptor on cell membrane,or an adenylyl cyclase activator forskolin leads to an increased accumulation of intracellular cAMP.Isoprenaline is a potentβ-adrenoceptor agonist which stimulates increase in the cAMP level and thus relaxes vascular smooth muscle of blood vessels.On the other hand,growing evidence shows that vascular endothelium cells also expressβ-adrenoceptors and their activation results in cAMP accumulation causing endothelium-dependent vascular relaxation through stimulation of endothelial NO biosynthesis.Similar to cAMP,guanylyl cyclase is the enzyme which catalyses the formation of cGMP from GTP and can be activated by endogenous NO and NO donors.In conduit arteries,NO production is mediated by endothelial NO synthase and NO is released from endothelial cells in response to acetylcholine and other endothelium-dependent dilators.Endothelium-derived NO diffuses readily to the adjacent vascular smooth muscle cells,where it stimulates soluble guanylyl cyclase and hence increases cGMP levels.NO donors such as sodium nitroprusside(SNP) and nitroglycerin(NTG) can release NO directly.Both cAMP and cGMP decrease the intracellular calcium concentration or calcium sensitivity in vascular smooth muscle cells, resulting in vasorelaxation.Phosphodiesterases(PDEs) are a diverse family of enzymes that hydrolyze cyclic nucleotides and inhibition of the PDE activity enhances vasodilatation mediated by cyclic nucleotides.
     NO donors are widely used to treat cardiovascular diseases such as arteriosclerosis, hypertension,coronary artery disease.However,the development of nitrate tolerance limits therapeutic value of nitrate drugs.Therefore,it is necessary to understand the mechanisms involved in the development of nitrate tolerance in order to attenuate or prevent nitrate tolerance.It is known that the production of thromboxane A_2 can be greatly enhanced in response to both physiological and pathological stimuli and this prostanoid activates the Rho/Rho kinase pathway through TP receptor,leading to a robust calcium-sensitizing effect or reduced NO release and hence increased vascular tone.However,it is unclear whether the activation of TP receptor could also negatively affect the cAMP-mediated vasodilatation.
     In the present study,rat carotid arteries from both sides were isolated and suspended in myograph for the measurement of isometric force and rat aortas were suspended in organ baths for recording changes in vessel tension.Primary culture of rat aortic endothelial cells was performed and changes in NO production and intracellular calcium concentration were measured using fluorescent dyes.Levels of relevant proteins in vascular tissues were detected by Western blot analysis.The tissue content of cyclic nucleotides in arteries were chemically assayed by using ELISA kits.We aimed to examine:(1) whether activation of TP receptors attenuates endothelium-derived NO-dependent relaxation induced by theβ-adrenoceptor isoprenaline in rat carotid arteries via a Rho kinase-dependent mechanism, (2) whether the activation of TP receptors inhibits endothelium-independent relaxation in response to cAMP-elevating agents in rat carotid arteries via the increased activity of type 3 or type 4 phosphodiesterase(PDE3,PDE4),and(3) whether the acute development of nitrate tolerance in isolated rat aortic rings exposed to NTG can be ameliorated by a new potent PDE5 inhibitor,TO 156 via increase of intracellular cGMP.The present study may be helpful to probe into the mechanism of vascular dysfunction in response to both physiological and pathological stimuli and provide theoretical significance for PDE5 inhibitors to increase therapeutic value of nitrate drugs by prevention of nitrate tolerance.
     The present study demonstrated that:1) Isoprenaline induces endothelial-dependent vasorelaxation,which is blocked by eNOS inhibitor(L-NAME) and sGC inhibitor(ODQ). The relaxation to isoprenaline was concentration-dependently attenuated in rings pre-contracted with U46619(3*10~(-8)M,1*10~(-7)TM,3*10~(-7)M).Treatment with TP receptor antagonist(S18886,0.3μM) completely normalized isoprenaline-induced relaxation in the presence of U46619.In rings with endothelium contracted by phenylephrine plus U46619, treatment with Y27632 or HA 1077 partially,but significantly improved isoprenaline-induced relaxation.However,the inhibitors failed to influence relaxation in endothelium-denuded rings.Both inhibitors(Y27632 and HA 1077) failed to influence isoprenaline-evoked relaxation of rings with endothelium after inhibition of NO production by L-NAME or inhibition of sGC by ODQ.Imaging results with rat aortic endothelium cells showed that exposure to isoprenaline(1*10~(-7) M) caused a slow but constant rise in dichlorofluorescein fluorescence intensity which was almost abolished after pre-exposure to L-NAME.However,exposure to isoprenaline(1*10~(-7) M) caused a quicker rise in dichlorofluorescein fluorescence intensity and it was totally abolished in Ca2+ free PSS solution.But it increased sharply and significantly when CaC12(lmM) were administered. The rise in fluorescence intensity of both NO and Ca2+ was significantly inhibited by pretreatment with U46619(1*10~(-7) M),which were totally abolished by S18886(0.3μM) pretreatment.Pre-stimulation with Rho kinase inhibitor,Y27632 reversed the inhibitory effect on the dichlorofluorescein fluorescence intensity of NO and Ca2+ by U46619 in endothelial cells.Western blotting data demonstrated isoprenaline(1*10~(-7) M) induced phosphorylation of e-NOS at Ser1177 site which was significantly inhibited by U46619 (1*10~(-7) M).Pre-exposure to Y27632 partially reversed the inhibited phosphorylation.
     2) Cyclic AMP-elevating agents,isoprenaline and forskolin,induce concentration-dependently relaxation in carotid artery rings without endothelium.The relaxation to both agents was concentration-dependently attenuated in rings pre-contracted with U46619 compared to phenylephrine-constricted artery rings.The attenuated relaxation was totally blocked by pretreatment with TP receptor antagonist,S 18886(0.3μM).In rings contracted by phenylephrine plus U46619,treatment with Y27632 partially,but significantly improved cAMP-elevating agents-induced relaxation.Similarly,both PDE3 inhibitor cilostazol and PDE4 inhibitor rolipram and nonselective PDEs inhibitor IBMX improved the vascular relaxation in response to isoprenaline or forskolin.Inhibition of PDE5 with T0156 did not affect relaxation induced by the two cAMP-elevating agents. However,pretreatment with cilostazol or rolipram failed to alter the vasodilation to isoprenaline in endothelium-denuded rings contracted with only phenylephrine,cAMP level was much lower in U46619-pretreated carotid arteries in response to both isoprenaline and forskolin.PDE3,PDE4 and Rho kinase inhibitor(cilostazol,rolipram and Y 27632 respectivley) reversed the inhibited cAMP production by U46619.
     3) A vascular tolerance(attenuated relaxation) to the NO donor,nitroglycerin can be readily induced by pre-exposure to NTG in rat isolated thoracic arteries with and without endothelium.The inhibition of PDE5 with T0156 improved the reduced relaxation to NTG in tolerant arteries with much higher extent than in non-tolerant arteries,cGMP level was much lower in tolerant arteries than in non-tolerant arteries and T0156 increased cGMP level in response to 1μM NTG,11.6-fold in tolerant rings,6.6-fold in non-tolerant rings. Nitrate tolerance was not associated with changes in the activity of thromboxane A_2 receptors,COX-derived prostanoids,or endothelin A receptor under current experimental condition.
     In summary,the above-mentioned results demonstrate that:
     1) Activation of TP receptor attenuated the cAMP-mediated endothelium-dependent relaxation through stimulation of Rho kinase,which inhibited the activity of eNOS through reducing calcium influx and eNOS phosphorylation,thus leading decreased production of NO.
     2) Stimulation of TP receptor impairs vascular endothelium-independent relaxation to cAMP-elevating agents.This inhibited relaxation induced appeared to be through activation of Rho kinase by increasing activity of cAMP-hydrolyzing PDEs,leading to decreased cAMP level.
     3) The present pharmacological results also showed a significant contributing role of the increased PDE5 activity in the acute development of nitrate tolerance in rat aortas in vitro.T0156 was proved to be a useful drug in maintaining vasodilator responses to nitroglycerin,the effect of which are frequently attenuated upon continuous administration.
引文
[1]Budzyn K,Marley PD,Sobey CG.Targeting Rho and Rho-kinase in the treatment of cardiovascular disease.Trends Pharrnacol Sci,2006,27(2):97-104.
    [2]Sakurada S,Okamoto H,Takuwa,N,Sugimoto N,Takuwa Y.Rho activation in excitatory agonist-stimulated vascular smooth muscle.Am J Physiol Cell Physiol,2001,281(2):C571-C578.
    [3]Wakino S,Kanda T,Hayashi K.Rho/Rho kinase as a potential target for the treatment of renal disease.Drug News Perspect,2005,18(10):639-643.
    [4]Noma K,Oyama N,Liao JK.Physiological role of ROCKs in the cardiovascular system.Am J Physiol Cell Physiol,2006,290(3):C661-668.
    [5]Wilson DP,Susnjar M,Kiss E,Sutherland C,Walsh MP.Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of Ca~(2+) entry and Ca~(2+) sensitization:Rho-associated kinase-mexliated phosphorylation of MYPT1 at Thr~(-855),but not Thr~(-697).Biochem J,2005,389(Pt3):763-774.
    [6]Ming XF,Viswambharan H,Barandier C,Ruffieux J,Kalbuchi K,Rusconi S.Rho GTPase/Rho kinase negatively regulates Eendothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells.Mol Cell Biol,2002,22(24):8467-8477.
    [7]Ming XF,Barandier C,Viswambharan H,Kwak BR,Mach F,Mazzolai L,Hayoz D,Ruffieux J,Rusconi S,Montani JP,Yang Z.Thrombin stimulates human endothelial arginase enzymatic activity via RhoA/ROCK pathway:implications for atherosclerotic endothelial dysfunction.Circulation,2004,110(24):708-3714.
    [8]Shiga N,Hirano K,Hirano M,Nishimura J,Nawata H,Kanaide H.Long-term inhibition of RhoA attenuates vascular contractility by enhancing endothelial NO production in an intact rabbit mesenteric artery.Circ Res,2005,96(9):1014-1021.
    [9]Somlyo,A.P and Somlyo,A.V.Signal transduction by G-proteins,Rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin Ⅱ.J.Physiol,2000,522(Pt2):177-85
    [10]Werstiuk ES,Lee RM.Vascular beta-adrenoceptor function in hypertension and in ageing.Can J Physiol Pharmacol,2000,78(6):433-52.
    [11] Callera GE, Yeh E, Tostes RC, Caperuto LC, Carvalho CR, Bendhack LM. Changes in the vascular beta-adrenoceptor-activated signalling pathway in 2Kidney-1 Clip hypertensive rats. Br J Pharmacol, 2004,141(7): 1151-1158.
    [12]Ferro A, Queen LR, Priest RM, Xu B, Ritter JM, Poston L, et al. Activation of nitric oxide synthase by beta 2-adrenoceptors in human umbilical vein endothelium in vitro. Br J Pharmacol, 1999,126(8): 1872-1880.
    [13]Ferro A, Coash M, Yamamoto T, Rob J, Ji Y, Queen L, et al. Nitric oxide-dependent P2-adrenergic dilatation of rat aorta is mediated through activation of both protein kinase A and Akt. Br J Pharmacol, 2004,143(3): 397-403.
    [14]Kang KB, van der Zypp A, Majewski H . Endogenous nitric oxide attenuates beta-adrenoceptor-mediated relaxation in rat aorta. Clin Exp Pharmacol Physiol, 2007, 34(1-2): 95-101.
    [15]Yao K, Xu B, Liu YP, Ferro A. Effects of adrenoceptor stimulation on endothelial nitric-oxide synthase phosphorylation of human umbilical vein endothelial cells. Acta Pharmacol Sin, 2003,24(3): 219-224.
    [16] Queen LR, Ji Y, Xu B, Young L, Yao K, Wyatt AW, et al. Mechanisms underlying beta2-adrenoceptor-mediated nitric oxide generation by human umbilical vein endothelial cells. J Physiol, 2006,576(Pt2): 585-94.
    [17]Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol, 2004,15(8): 1983-1992.
    [18]Triggle CR, Hollenberg M, Anderson TJ, Ding H, Jiang Y, Ceroni L, et al. The Endothelium in Health and Disease - A Target for Therapeutic Intervention. J. Smooth Muscle Res, 2003,39(6): 249-267.
    [19]Taddei S, Virdis A, Ghiadoni L, Salvetti G, Salvetti A. Endothelial dysfunction in hypertension. J Nephrol, 2000,13(3): 205-210.
    [20] Laufs U, Liao JK. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem,1998,273(37):24266-71.
    [21] Huang Y, Chan FL, Lau CW, Tsang SY, Chen ZY, He GW, Yao X. Roles of cyclic AMP and Ca -activated K channels in endothelium-independent relaxation by urocortin in the rat coronary artery. Cardiovasc Res, 2003,57(3):824-33.
    [22] Leung FP, Yao X, Lau CW, Ko WH, Lu L, Huang Y. Raloxifene relaxes rat intrarenal arteries by inhibiting Ca~(2+) influx. Am. J. Physiol. - Renal Physiol, 2005, 289(1): F137-F144.
    [23]Kwan HY, Leung PC, Huang Y, Yao X. Depletion of intracellular Ca~(2+) stores sensitizes the flow-induced Ca~(2+) influx in rat endothelial cells. Cir Res, 2003,92(3): 286-92.
    [24]Sheng JZ, Wang D, Braun AP. DAF-FM (4-amino-5-methylamino-2',7'-difluorofluorescein) diacetate detects impairment of agonist-stimulated nitric oxide synthesis by elevated glucose in human vascular endothelial cells: reversal by vitamin C and L-sepiapterin. J Pharmacol Exp Ther, 2005, 315(2):931-40.
    [25]Kojima H, Urano Y, Kikuchi K, Higuchi T, Hirata Y, Nagano T. Fluorescent indicators for imaging nitric oxide production. Angew Chem Int Ed Eng, 1999, 38(21): 3209-3212.
    [26] Leung HS, Yung LM, Leung FP, Yao X, Chen ZY, Ko WH, et al. Tamoxifen dilates porcine coronary arteries: roles for nitric oxide and ouabain-sensitive mechanisms. Br J Pharmacol, 2006,149(6): 703-11.
    [27]Hartell NA, Archer HE, Bailey CJ. Insulin-stimulated endothelial nitric oxide release is calcium independent and mediated via protein kinase B. Biochem Pharmacol, 2005, 69(5): 781-90.
    [28] Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regulatory Integrative Comp Physiol, 2003,284(1): 1-12.
    [29] Song Y, Zweier JL, and Xia Y. Heat-shock protein 90 augments neuronal nitric oxide synthase activity by enhancing Ca~(2+)/calmodulin binding. Biochem J, 2001, 355(Pt2): 357-360.
    [30] Zhang XP, Hintze TH. cAMP signal transduction induces eNOS activation by promoting PKB phosphorylation. Am J Physiol Heart Circ Physiol, 2006, 290(6):H2376-2384.
    [31]Ishizaki T, Uehata M, Tamechika I, Keel J, Nonomura K, Maekawa M, Narumiya S. Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol, 2000, 57(5): 976-83.
    [32]Asano T, Suzuki T, Tsuchiya M, Satoh S, Ikegaki I, Shibuya M, Suzuki Y, Hidaka H. Vasodilator actions of HA1077 in vitro and in vivo putatively mediated by the inhibition of protein kinase. Br J Pharmacol, 1989, 98(4): 1091-1100.
    [1]Lai A,Frishman WH.Rho-kinase inhibition in the therapy of cardiovascular disease.Cardiol Rev,2005,13(6):285-92.
    [2]Gohla A,Schultz G,Offermanns S.Role for G(12)/G(13) in agonist-induced vascular smooth muscle cell contraction.Circ Res,2000,87(3):221-7.
    [3]Gohla A,Offermanns S,Wilkie TM,Schultz G.Differential involvement of Galphal 2and Galphal3 in receptor-mediated stress fiber formation.J Biol Chem,1999,274(25):17901-7.
    [4]Sakurada S,Okamoto H,Takuwa,N,Sugimoto N,Takuwa Y.Rho activation in excitatory agonist-stimulated vascular smooth muscle.Am J Physiol Cell Physiol,2001,281(2):C571-C578.
    [5]Wilson DP,Susnjar M,Kiss E,Sutherland C,Walsh MP.Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of Ca~(2+) entry and Ca~(2+) sensitization:Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr~(-855),but not Thr~(-697).Biochem J,2005,389(Pt3):763-774.
    [6]Budzyn K,Marley PD,Sobey CG.Targeting Rho and Rho-kinase in the treatment of cardiovascular disease.Trends Pharmacol Sci,2006,27(2):97-104.
    [7]Wakino S,Kanda T,Hayashi K.Rho/Rho kinase as a potential target for the treatment of renal disease.Drug News Perspect,2005,18(10):639-643.
    [8]Noma K,Oyama N,Liao JK.Physiological role of ROCKs in the cardiovascular system.Am J Physiol Cell Physiol,2006,290(3):C661-668.
    [9]Ming XF,Viswarnbharan H,Barandier C,Ruffieux J,Kaibuchi K,Rusconi S.Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells.Mol Cell Biol,2002,22(24):8467-8477.
    [10]Shiga N,Hirano K,Hirano M,Nishimura J,Nawata H,Kanaide H.Long-term inhibition of RhoA attenuates vascular contractility by enhancing endothelial NO production in an intact rabbit mesenteric artery.Circ Res,2005,96(9):1014-1021.
    [11]Rose RJ.,Liu H.,Palmer D.,Maurice DH.Cyclic AMP-mediated regulation of vascular smooth muscle cell cyclic AMP phosphodiesterase activity.Br J Pharmacol,1997,122(2),233-240.
    [12]Werstiuk ES,Lee RM.Vascular beta-adrenoceptor function in hypertension and in ageing.Can J Physiol Pharmacol,2000,78(6):433-52
    [13]Callera GE,Yeh E,Tostes RC,Capcruto LC,Carvalho CR,Bendhack LM.Changes in the vascular beta-adrenoceptor-activated signalling pathway in 2Kidney-1Clip hypertensive rats.Br J Pharmacol,2004,141(7):1151-1158.
    [14]Bender AT.,Beavo JA.Cyclic nucleotide phosphodiesterases:molecular regulation to clinical use.Pharmacol Rev,2006,58(3),488-520.
    [15]Boswell-Smith V.,Spina D.,Page CP.Phosphodiesterase inhibitors.Br J Pharmacol,2006,147 Suppl 1,S252-257.
    [16]Huang Y,Chan FL,Lau CW,Tsang SY,Chen ZY,He GW,Yao X.Roles of cyclic AMP and Ca -activated K channels in endothelium-independent relaxation by urocortin in the rat coronary artery.Cardiovasc Res,2003,57(3):824-33.
    [17]Liu C,Tazzeo T,Janssen LJ.Isoprostane-induced airway hyperresponsiveness is dependent on internal Ca~(2+) handling and Rho/ROCK signaling.Am J Physiol Lung Cell Mol Physiol,2006,291(6):L1177-1184.
    [18]Somlyo,A.P and Somlyo,A.V.Signal transduction by G-proteins,Rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin Ⅱ.J.Physiol,2000,522(Pt2):177-85.
    [19]Somlyo AP,Somlyo AV.Ca~(2+) sensitivity of smooth muscle and nonmuscle myosin Ⅱ:modulated by G proteins,kinases and myosin phosphatase.Physiol.Rev,2003,83(4):1325-1358.
    [20]Davies SP,Reddy H,Caivano M,Cohen P.Specificity and mechanism of action of some commonly used protein kinase inhibitors.Bioehem J,2000,351(Pt1):95-105.
    [21]Ishizaki T,Uehata M,Tamechika I,Keel J,Nonomura K,Maekawa M,Narumiya S.Pharmacological properties of Y-27632,a specific inhibitor of rho-associated kinases.Mol Pharmacol,2000,57(5):976-83.
    [22]Eto M,Kitazawa T,Yazawa M,Mukai H,Ono Y,Brautigan DL.Histamine-induced vasoconstriction involves phosphorylation of a specific inhibitor protein for myosin phosphatase by protein kinase C alpha and delta isoforms.J Biol Chin,2001,276(31):29072-8.
    [23]Herbert JM,Augereau JM,Gleye J,Maffrand JP.Chelerythrine is a potent and specific inhibitor of protein kinase C.Biochem Biophys Res Commun,1990,172(3):993-9.
    [24]Lugnier C.Cyclic nucleotide phosphodiesterase(PDE) superfamily:a new target for the development of specific therapeutic agents.Pharmacol Thor,2006,109(3),366-398.
    [25]Mochida H.,Takagi M.,Inoue H.,Noto T.,Yano K.,Fujishige K.,Sasaki T.,Yuasa K.,Kotera J.,Omori K.,Kikkawa K.Enzymological and pharmacological profile of T-0156, a potent and selective phosphodiesterase type 5 inhibitor. Eur J Pharmacol, 2002,456(1-3), 91-98.
    [1] Kukovetz WR., Holzmann S., Schmidt K. Cellular mechanisms of action of therapeutic nitric oxide donors. Eur Heart J, 1991,12 Suppl E: 16-24.
    [2] MacPherson JD., Gillespie TD., Dunkerley HA., Maurice DH., Bennett BM. Inhibition of phosphodiesterase 5 selectively reverses nitrate tolerance in the venous circulation. J Pharmacol Exp Ther, 2006,317(1): 188-195.
    [3] Chen XL., Rembold CM. Nitroglycerin relaxes rat tail artery primarily by lowering Ca~(2+) sensitivity and partially by repolarization. Am J Physiol, 1996, 271(3 pt 2): H962-H968.
    [4] Munzel T., Daiber A., Mulsch A. Explaining the phenomenon of nitrate tolerance. Circ.Res, 2005,97(7): 618-628.
    [5] Sydow K., Daiber A., Oelze M., Chen Z., August M., Wendt M., Ullrich V., Mulsch A., Schulz E., Keaney JF., Stamler JS., Munzel T. Central role of mitochondrial aldehyde dehydrogenase and reactive oxygen species in nitroglycerin tolerance and cross-tolerance. J Clin Invest, 2004,113(3): 482-489.
    [6] Dikalov S., Fink B., Skatchkov M., Sommer O., Bassenge E. Formation of reactive oxygen species in various vascular cells during glyceryltrinitrate metabolism. J Cardovasc Pharmacol Ther, 1998, 3(1): 51-62.
    [7] Munzel T., Giaid A., Kurz S., Stewart DJ., Harrison DG Evidence for a role of endothelin 1 and protein kinase C in nitroglycerin tolerance. Proc Natl Acad Sci U S A, 1995, 92(11):5244-5248.
    [8] Kurz S., Hink U., Nickenig G., Borthayre AB., Harrison DG, Munzel T. Evidence for a causal role of the renin-angiotensin system in nitrate tolerance. Circulation, 1999, 99(24):3181-3187.
    [9] Yamashita T, Kawashima S, Ohashi Y, Ozaki M, Rikitake Y, Inoue N, et al. Mechanisms of reduced nitric oxide/cGMP-mediated vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase. Hypertension, 2000, 36(1):97-102.
    [10]Soff GA, Cornwell TL, Cundiff DL, Gately S, Lincoln TM. Smooth muscle cell expression of type I cyclic GMP-dependent protein kinase is suppressed by continous exposure to nitrovasodilators, theophylline, cyclic GMP and cyclic AMP. J Clin Invest, 1997, 100(10):2580-7.
    [11]Gerzanich V, Ivanov A, Ivanova S, Yang JB, Zhou H, Dong Y, et al. Alternative splicing of cGMP-dependent protein kinase I in angiotensin-hypertension. Circ Res, 2003, 93(9):805-12.
    [12] Bender AT., Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev, 2006, 58(3):488-520.
    [13]Pagani ED., VanAller GS., O'Connor B., Silver PJ. Reversal of nitroglycerin tolerance in vitro by the cGMP-phosphodiesterase inhibitor zaprinast. Eur J Pharmacol, 1993, 243(2): 141-147.
    [14]Kim D., Rybalkin SD., Pi X., Wang Y., Zhang C, Munzel T., Beavo JA., Berk BC, Yan C. Upregulation of phosphodiesterase 1A1 expression is associated with the development of nitrate tolerance. Circulation, 2001,104(19):2338-2343.
    [15]Mochida H., Takagi M., Inoue H., Noto T., Yano K., Fujishige K., Sasaki T., Yuasa K., Kotera J., Omori K., Kikkawa K. Enzymological and pharmacological profile of T-0156, a potent and selective phosphodiesterase type 5 inhibitor. Eur J Pharmacol, 2002,456(1-3):91-98.
    [16] Huang Y, Chan FL, Lau CW, Tsang SY, Chen ZY, He GW, Yao X. Roles of cyclic AMP and Ca -activated K channels in endothelium-independent relaxation by urocortin in the rat coronary artery. Cardiovasc Res, 2003, 57(3):824-33.
    [17]Coskun B., Soylemez S., Parlar AL, Tulga Ulus A., Fehmi Katircioglu S., Akar F. Effect of resveratrol on nitrate tolerance in isolated human internal mammary artery. J Cardiovasc Pharmacol, 2006,47(3): 437-445.
    [18]Ghatta S., Hemmer RB., Uppala S., O'Rourke ST. Role of endogenous hydrogen peroxide in the development of nitrate tolerance. Vascul Pharmacol, 2007, 46(4): 247-252.
    [19]Cawley SM, Sawyer CL., Brunelle KF., van der Vliet A., Dostmann WR. Nitric oxide-evoked transient kinetics of cyclic GMP in vascular smooth muscle cells. Cell Signal, 2007,19(5):1023-1033.
    [20]Kass DA., Takimoto E., Nagayama T., Champion HC. Phosphodiesterase regulation of nitric oxide signaling. Cardiovasc Res, 2007, 75(2):303-314.
    [21]Boswell-Smith V., Spina D., Page CP. Phosphodiesterase inhibitors. Br J Pharmacol, 2006,147 Suppl 1:S252-257.
    [22]Yanaka N., Kotera J., Ohtsuka A., Akatsuka H., Imai Y, Michibata H., Fujishige K., Kawai E., Takebayashi S., Okumura K., Omori K. Expression, structure and chromosomal localization of the human cGMP-binding cGMP-specific phosphodiesterase PDE5A gene. Eur J Biochem, 1998,255(2):391-399.
    [23] Lin CS., Chow S., Lau A., Tu R., Lue TF. Human PDE5A gene encodes three PDE5 isoforms from two alternate promoters. Int J Impot Res, 2002,14(1): 15-24.
    [24] De Garavilla L., Pagani ED., Buchholz RA., Dundore R., Bode DC, Volberg ML., Jackson KN., Pratt P., Silver PJ. Zaprinast, but not dipyridamole, reverses hemodynamic tolerance to nitroglycerin in vivo. Eur J Pharmacol, 1996, 313(1-2): 89-96.
    [25]Zoraghi R., Corbin JD., Francis SH. Phosphodiesterase-5 Gln817 is critical for cGMP, vardenafil, or sildenafil affinity: its orientation impacts cGMP but not cAMP affinity. J Biol Chem, 2006,281(9):5553-5558.
    [26]Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther, 2006, 109(3): 366-398.
    [27] Rose RJ., Liu H., Palmer D., Maurice DH. Cyclic AMP-mediated regulation of vascular smooth muscle cell cyclic AMP phosphodiesterase activity. Br J Pharmacol, 1997, 122(2):233-240.
    [28]Miilsch A., Oelze M., Kloss S., Mollnau H., Topfer A., Smolenski A., Walter U., Stasch JP., Warnholtz A., Hink U., Meinertz T., Munzel T. Effects of in vivo nitroglycerin treatment on activity and expression of the guanylyl cyclase and cGMP-dependent protein kinase and their downstream target vasodilator-stimulated phosphoprotein in aorta. Circulation, 2001, 103(17):2188-2194.
    [29]Omura T., Matsumoto T., Nakae I., Takahashi M., Kinoshita M. Two possible mechanisms underlying nitrate tolerance in monkey coronary arteries. Clin Exp Pharmacol Physiol, 2001,28(4):259-265.
    [30] Hink U., Oelze M., Kolb P., Bachschmid M., Zou MH., Daiber A., Mollnau H., August M., Baldus S., Tsilimingas N., Walter U., Ullrich V, Munzel T. Role for peroxynitrite in the inhibition of prostacyclin synthase in nitrate tolerance. J Am Coll Cardiol, 2003, 42(10):1826-1834.
    [31]Zou MH. Peroxynitrite and protein tyrosine nitration of prostacyclin synthase. Prostaglandins Other Lipid Mediat, 2007, 82(1-4): 119-127.
    [1] Brunton L. On the use of nitrite amyl in angina pectoris. Lancet, 1867, ii:97-8.
    [2] Sydow K, Daiber A, Oelze M, Chen Z, August M, Wendt M, et al. Central role of mitochondrial aldehyde dehydrogenase and reactive oxygen species in nitroglycerin tolerance and cross-tolerance. J. Clin. Invest, 2004,113:482-9.
    [3] Chen Z, Stamler JS. Bioactivation of nitroglycerin by the mitochondrial aldehyde dehydrogenase. Trends Cardiovasc Med, 2006,16:259-65.
    [4] Ghatta S, Hemmer RB, Uppala S, O'Rourke ST. Role of endogenous hydrogen peroxide in the development of nitrate tolerance. Vascul Pharmacol, 2007,46:247-52.
    [5] Kim D, Rybalkin SD, Pi X, Wang Y, Zhang C, Munzel T, et al. Upregulation of Phosphodiesterase 1A1 expression is associated with the development of nitrate tolerance. Circulation, 2001,104:2338-43
    [6] Munzel T, Li H, Mollnau H, Hink U, Matheis E, Hartmann M, et al. Effects of long-term nitroglycerin treatment on endothelial nitric oxide synthase (NOS III) gene expression, NOS III-mediated superoxide production, and vascular NO bioavailability. Circ Res, 2000, 86:E7-12.
    [7] Fung HL. Biochemical mechanism of nitroglycerin action and tolerance: is this old mystery solved? Annu Rev Pharmacol Toxicol, 2004,44:67-85.
    [8] Hashimoto S, Kobayashi A. Clinical pharmacokinetics and pharmacodynamics of glyceryl trinitrate and its metabolites. Clin Pharmacokinet, 2003,42:205-21.
    [9] Meah Y, Brown BJ, Chakraborty S, Massey V. Old yellow enzyme: reduction of nitrate esters, glycerin trinitrate, and propylene 1,2-dinitrate. Proc Natl Acad Sci U S A, 2001, 98: 8560-5.
    [10]Doel JJ, Godber BL, Goult TA, Eisenthal R, Harrison R. Reduction of organic nitrites to nitric oxide catalyzed by xanthine oxidase: possible role in metabolism of nitrovasodilators. Biochem Biophys Res Commun, 2000,270: 880-5.
    [11] Chen Z, Zhang J, Stamler JS. Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc Natl Acad Sci U S A, 2002, 99: 8306-11.
    [12] McDonald BJ, Bennett BM. Cytochrome P-450 mediated biotransformation of organic nitrates. Can J Physiol Pharmacol, 1990,68:1552-7.
    [13]McGuire JJ, Anderson DJ, McDonald BJ, Narayanasami R, Bennett BM. Inhibition of NADPH-cytochrome P450 reductase and glyceryl trinitrate biotransformation by diphenyleneiodonium sulfate. Biochem Pharmacol, 1998, 56: 881-93.
    [14]Feelisch M, Noack EA. Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol, 1987, 139: 19-30.
    [15] Aniya Y, Uehara N, Ishii C, Suenaga T, Wada N, Matsuzaki T, et al. Evaluation of nitric oxide formation from nitrates in pig coronary arteries. Jpn J Pharmacol, 1996, 71: 101-7.
    [16]Kurz MA, Boyer TD, Whalen R, Peterson TE, Harrison DG. Nitroglycerin metabolism in vascular tissue: role of glutathione S-transferases and relationship between NO and NO2-formation. Biochem J, 1993, 292: 545-50.
    [17]Minamiyama Y, Takemura S, Yamasaki K, Hai S, Hirohashi K, Okada S. Continuous treatment with organic nitrate affects hepatic cytochrome P450. Redox Rep, 2004, 9:360-4.
    [18]Minamiyama Y, Takemura S, Akiyama T, Imaoka S, Inoue M, Funae Y, et al. Isoforms of cytochrome P450 on organic nitrate-derived nitric oxide release in human heart vessels. FEBS Lett, 1999,452:165-9.
    [19]Yuan R, Sumi M, Benet LZ. Investigation of aortic CYP3Abioactivation of nitroglycerin in vivo. J Pharmacol Exp Ther, 1997,281:1499-505.
    [20] Bennett BM, McDonald BJ, Nigam R, Long PG, Simon WC. Inhibition of nitrovasodilator- and acetylcholine-induced relaxation and cyclic GMP accumulation by the cytochrome P-450 substrate,7-ethoxyresorufin. Can J Physiol Pharmacol, 1992, 70: 1297-303.
    [21] Mackenzie IS, Maki-Petaja KM, McEniery CM, Bao YP, Wallace SM, Cheriyan J, et al. Aldehyde dehydrogenase 2 plays a role in the bioactivation of nitroglycerin in humans. Arterioscler Thromb Vasc Biol, 2005,25:1891-5.
    [22]DiFabio J, Ji Y, Vasiliou V, Thatcher GR, Bennett BM. Role of mitochondrial aldehyde dehydrogenase in nitrate tolerance. Mol Pharmacol, 2003, 64:1109-16.
    [23]Seth P, Fung HL. Biochemical characterization of a membraneboundenzyme responsible for generating nitric oxide from nitroglycerin in vascular smooth muscle cells. Biochem Pharmacol, 1993,46: 1481-6.
    [24]Feelisch M, Kelm M. Biotransformation of organic nitrates to nitric oxide by vascular smooth muscle and endothelial cells. Biochem Biophys Res Commun.1991; 180:286-93
    [25] Parker JD, Parker JO. Nitrate therapy for stable angina pectoris.N Engl J Med, 1998, 338:520-31.
    [26] Lincoln TM, Dey N, Sellak H. Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J Appl Physiol, 2001,91:1421-30.
    [27]Kleschyov AL, Mollnau H, Oelze M, Meinertz T, Huang Y, Harrison DG, et al. Spin trapping of vascular nitric oxide using colloid Fe(II)-diethyldithiocarbamate. Biochem Biophys Res Commun, 2000,275:672-677.
    [28]Kleschyov AL, Oelze M, Daiber A, Huang Y, Mollnau H, Schulz E, et al. Does nitric oxide mediate the vasodilator activity of nitroglycerin? Circ Res, 2003,93:e104-12.
    [29]Laursen JB, Mulsch A, Boesgaard S, Mordvintcev P, Trautner S, Gruhn N, et al. In vivo nitrate tolerance is not associated with reduced bioconversion of nitroglycerin to nitric oxide. Circulation, 1996, 94:2241-7.
    [30] Ma SX, Schmid PG Jr, Long JP. Noradrenergic mechanisms and the cardiovascular actions of nitroglycerin. Life Sci, 1994, 55:1595-603.
    [31]Zanzinger J, Czachurski J, Seller H. Impaired modulation of sympathetic excitability by nitric oxide after long-term administration of organic nitrates in pigs. Circulation, 1998,97:2352-8.
    [32]Munzel T, Bassenge E. Long-term Angiotensin-Converting Enzyme Inhibition With High-Dose Enalapril Retards Nitrate Tolerance in Large Epicardial Arteries and Prevents Rebound Coronary Vasoconstriction In Vivo. Circulation, 1996,93:2052-8.
    [33]Gori T, Parker JD. The puzzle of nitrate tolerance: pieces smaller than we thought? Circulation, 2002,106:2404-8.
    [34] Mollnau H, Wendt M, Szocs K, Lassegue B, Schulz E, Oelze M, et al. Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res, 2002, 90:E58-65.
    
    [35]Kusama N, Kajikuri J, Watanabe Y, Suzuki Y, Katsuya H, Itoh T. Characteristics of attenuated endothelium-dependent relaxation seen in rabbit intrapulmonary vein following chronic nitroglycerine administration. British Journal of Pharmacology, 2005, 145:193-202.
    [36]Kurz S, Hink U, Nickenig G, Borthayre AB, Harrison DG, Miinzel T. Evidence for a Causal Role of the Renin-Angiotensin System in Nitrate Tolerance. Circulation, 1999, 99:3181-7.
    [37] Miinzel T, Harrison DG Evidence for a role of oxygen-derived free radicals and protein kinase C in nitrate tolerance. J Mol Med, 1997,75:891-900.
    [38] Miinzel T, Giaid A, Kurz S, Stewart DJ, Harrison DG Evidence for a role of endothelin 1 and protein kinase C in nitroglycerin tolerance. Proc Natl Acad Sci U S A, 1995, 92:5244-8.
    [39]Maki S, Miyauchi T, Sakai S, Kobayashi T, Maeda S, Takata Y,et al. Endothelin-1 expression in hearts of transgenic hypertensive mice overexpressing angiotensin II. J Cardiovasc Pharmacol, 1998,31:S412-6.
    [40] Parker JD. Nitrate tolerance, oxidative stress, and mitochondrial function: another worrisome chapter on the effects of organic nitrates. J Clin Invest, 2004,113:352-4.
    [41]Daiber A, Oelze M, Sulyok S, Coldewey M, Schulz E, Treiber N, et al. Scharffetter-Kochanek K, Miinzel T. Heterozygous deficiency of manganese superoxide dismutase in mice (Mn-SOD+/-): a novel approach to assess the role of oxidative stress for the development of nitrate tolerance. Mol Pharmacol, 2005,68:579-88.
    [42]Yamashita T, Kawashima S, Ohashi Y, Ozaki M, Rikitake Y, Inoue N, et al. Mechanisms of reduced nitric oxide/cGMP-mediated vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase.. Hypertension, 2000,36:97-102.
    [43]Soff GA, Cornwell TL, Cundiff DL, Gately S, Lincoln TM. Smooth muscle cell expression of type I cyclic GMP-dependent protein kinase is suppressed by continous exposure to nitrovasodilators, theophylline, cyclic GMP and cyclic AMP. J Clin Invest, 1997,100:2580-7.
    [44]Teede H, van der ZA, Majewshi H. Gender difference in protein kinase G-mediated vasorelaxation of rat aorta. Clin Sci, 2001,100:473-9.
    [45]Gerzanich V, Ivanov A, Ivanova S, Yang JB, Zhou H, Dong Y, et al. Alternative splicing of cGMP-dependent protein kinase I in angiotensin-hypertension. Circ Res, 2003, 93:805-12.
    [46]MacPherson JD, Gillespie TD, Dunkerley HA, Maurice DH, Bennett BM. Inhibition of phosphodiesterase 5 selectively reverses nitrate tolerance in the venous circulation. J Pharmacol Exp Ther, 2006, 317:188-95.
    [47]Stroes E, Hijmering M, van Zandvoort M, Wever R, Rabelink TJ, van Faassen EE. Origin of superoxide production by endothelial nitric oxide synthase. FEBS Lett, 1998, 438:161-4.
    [48] Wang EQ, Lee WI, Fung HL. Lack of critical involvement of endothelial nitric oxide synthase in vascular nitrate tolerance in mice. Br J Pharmacol, 2002,135:299-302.
    [49]Hink U, Oelze M, Kolb P, Bachschmid M, Zou MH, Daiber A, et al. Role for peroxynitrite in the inhibition of prostacyclin synthase in nitrate tolerance. J Am Coll Cardiol, 2003,42:1826-34.
    [50]Kusama N, Kajikuri J, Yamamoto T, Watanabe Y, Suzuki Y, Katsuya H, et al. Reduced hyperpolarization in endothelial cells of rabbit aortic valve following chronic nitroglycerine administration Br J Pharmacol, 2005,146:487-97.
    [51] Von der Weid PY, Coleman HA. Reduced vascular reactivity after chronic nitroglycerine administration: EDHF mechanism is also downregulated. Br J Pharmacol, 2005,146:479-80.
    [52]Abrams J. Interactions between organic nitrates and thiol groups. Am J Med, 1991, 91:106S-112S.
    
    [53]Boesgaard S. Thiol compounds and organic nitrates. Dan Med Bull, 1995,42:473-84.
    [54]Boesgaard S, Petersen JS, Aldershvile J, Poulsen HE, Flachs H. Nitrate tolerance: effect of thiol supplementation during prolonged nitroglycerin infusion in an in vivo rat model. J Pharmacol Exp Ther, 1991,258:851-6.
    [55] Levy WS, Katz RJ, Wasserman AG Methionine restores the venodilative response to nitroglycerin after the development of tolerance. J Am Coll Cardiol, 1991,17:474-9.
    [56]Dupuis J, Lalonde G, Lemieux R, Rouleau JL.Tolerance to intravenous nitroglycerin in patients with congestive heart failure: role of increased intravascular volume, neurohumoral activation and lack of prevention with N-acetylcysteine. J Am Coll Cardiol, 1990, 16:923-31.
    [57]Munzel T, Mollnau H, Hartmann M, Geiger C, Oelze M, Warnholtz A, et al. Effects of a nitrate-free interval on tolerance, vasoconstrictor sensitivity and vascular superoxide production. J Am Coll Cardiol, 2000, 36:628-34.
    [58]Boesgaard S, Aldershvile J, Poulsen HE, Loft S, Anderson ME, Meister A. Nitrate tolerance in vivo is not associated with depletion of arterial or venous thiol levels. Circ Res, 1994,74:115-20.
    [59]Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res, 1994,74:1141-8.
    [60]Zanzinger J, Zheng X, Bassenge E. Endothelium dependent vasomotor responses to endogenous agonists are potentiated following ACE inhibition by a bradykinin dependent mechanism. Cardiovasc Res, 1994,28:209-14.
    [61]Abou-Mohamed G, Johnson JA, Jin L, El-Remessy AB, Do K, Kaesemeyer WH, Caldwell RB, Caldwell RW. Roles of superoxide, peroxynitrite, and protein kinase C in the development of tolerance to nitroglycerin. J Pharmacol Exp Ther, 2004, 308:289-99.
    [62]Munzel T, Hink U, Yigit H, Macharzina R, Harrison DG, Mulsch A. Role of superoxide dismutase in in vivo and in vitro nitrate tolerance. Br J Pharmacol, 1999,127:1224-30.
    [63] Klein H, Pich S, Lindert S, Nebendahl K, Niedmann P, Kreuzer H. Combined treatment with vitamin E and C in experimental myocardial infarction in pigs. Am Heart J, 1989, 118:667-73.
    [64]Watanabe H, Kakihana M, Ohtsuka S, Sugishita Y. Randomized, Double-Blind, Placebo-Controlled Study of Supplemental Vitamin E on Attenuation of the Development of Nitrate Tolerance. Circulation, 1997, 96:2545-50.
    [65]Watanabe H, Kakihana M, Ohtsuka S, Sugishita Y. Randomized, Double-Blind, Placebo-Controlled Study of Ascorbate on the Preventive Effect of Nitrate Tolerance in Patients With Congestive Heart Failure. Circulation, 1998,97:886-91.
    [66]Riemersma R, Wood D, Macintyre C, Elton R, Gey K, Oliver M. Low plasma vitamin E and C and increased risk of angina in Scottish men. Ann N Y Acad Sci, 1989, 570:291-95.
    [67] Thomas GR, DiFabio JM, Gori T, Parker JD. Once daily therapy with isosorbide-5-mononitrate causes endothelial dysfunction in humans: evidence of a free-radical-mediated mechanism. J Am Coll Cardiol, 2007,49:1289 -95.
    [68]Bassenge E, Fink N, Skatchkov M &Fink B. Dietary supplement with vitamin C prevents nitrate tolerance. J. Clin.Invest, 1998,102:67-71.
    [69] Gori T, Burstein JM, Ahmed S, Miner S, Al-Hesayen A, Kelly S, et al. Folic acid prevents nitroglycerin-induced nitric oxide synthase dysfunction and nitrate tolerance. Circulation, 2001,4:1119-23.
    [70]Bellisarii FI, Gallina S, Zimarino M, De Caterina R. Mechanisms of nitrate tolerance: potential roles of folate. Eur J Clin Invest, 2003, 33:933-40.
    [71] Abou-Mohammed G, Kaesemeyer WH, Caldwell RB, Caldwell RW. Role of 1-arginine in the vascular actions and development of tolerance to nitroglycerin. Br J Pharmacol, 2000,130:211-8.
    [72] Otto A, Fontaine J, Tschirhart E, Fontaine D, Berkenboom G. Rosuvastatin treatment protects against nitrate-induced oxidative stress in eNOS knockout mice: implication of the NAD(P)H oxidase pathway. Br J Pharmacol, 2006,148:544-52.
    [73]Coskun B, Soylemez S, Parlar AI, Tulga Ulus A, Fehmi Katircioglu S, Akar F. Effect of resveratrol on nitrate tolerance in isolated human internal mammary artery. J Cardiovasc Pharmacol, 2006,47:437-45.
    [74]Watanabe H, Kakihana M, Ohtsuka S, S u gishita Y. Preventive effects of carvedilol on nitrate tolerance-a randomized, double-blind, placebo-controlled comparative study between carvedilol and arotinolol. J Am Coll Cardiol, 1998,32:1201-6.
    [75] Parker JD, Parker AB, Farrell B, Parker JO. The effect of hydralazine on the development of tolerance to continuous nitroglycerin. J Pharmacol Exp Ther, 1997, 280:866-75.
    [76]O'Rourke ST, Hammad H, Delagrange P, Scalbert E, Vanhoutte PM. Melatonin inhibits nitrate tolerance in isolated coronary arteries. Br J Pharmacol, 2003,139:1326-32.
    [77]Wakatsuki A. & Okatani Y. Melatonin protects against the free radical-induced impairment of nitric oxide production in the human umbilical artery. J. Pineal Res, 2000,28:172-8.
    [78]Pagani ED, VanAller GS, O'Connor B, Silver PJ. Reversal of nitroglycerin tolerance in vitro by the cGMP-phosphodiesterase inhibitor zaprinast. Eur J Pharmacol, 1993, 243:141-7.
    [79]Friebe A, and Koesling D. Mechanism of YC-1-induced activation of soluble guanylyl cyclase. Mol. Pharmacol, 1998,53:123-7.
    [80] O'Reilly DA, McLaughlin BE, Marks GS, Brien JF, Nakatsu K. YC-1 enhances the responsiveness of tolerant vascular smooth muscle to glyceryl trinitrate. Can J Physiol Pharmacol, 2001,79:43-48.
    [81]Stasch JP, Alonso-Alija C, Apeler H, Dembowsky K, Feurer A, Minuth T, et al. Pharmacological actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41-8543: in vitro studies. Br J Pharmacol, 2002,135:333-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700