中间锦鸡儿油酸脱氢酶(FAD2)基因克隆及酵母表达调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中间锦鸡儿(Caragana intermedia)广泛分布于我国西部、西北部干旱地区,具有改良土壤和保持水土等重要生态价值。为了在兼顾生态价值的同时创造更大的经济价值,结合中间锦鸡儿种子油脂含量较高的特点,对其脂肪酸生物合成进行研究,探讨内在的调控机理,对培育抗寒性强、油脂品质高的锦鸡儿优良新品种具有重要的意义和价值。本研究采用RT-PCR和RACE方法从中间锦鸡儿未成熟种子中克隆了多不饱和脂肪酸合成的关键酶——油酸脱氢酶(FAD2)基因;采用DNAMAN、DNAStar软件及http://www.us.expasy.Org、http://www.ch.embnet.org等网络资源分析了4个FAD2蛋白的二级结构特征、蛋白质修饰等生物学特性;通过定量PCR的方法研究了FAD2基因在组织中的表达谱,并将3个FAD2基因转化酵母,从mRNA、蛋白、产物三个水平对其进行表达、调控分析,初步探讨了其内在的调控机理。主要研究结果如下:
     1.从中间锦鸡儿未成熟种子中克隆了3个Δ12脂肪酸脱氢酶基因,分别命名为FAD2-2A、FAD2-1A和FAD2-1B(GenBank No. EF503621、EU433557、EU433558 )。对这三个基因以及本实验室前期研究过的中间锦鸡儿CaFAD2基因(GenBank No. AY957394,本文中命名为FAD2-2B)进行同源性比较分析可知,FAD2-1A与FAD2-1B同源性很高, FAD2-1A编码的前283个氨基酸与FAD2-1B蛋白的同源性高达98.9%,前者比后者多编码97个氨基酸,全长基因编码氨基酸的同源性为70.71%。FAD2-2A与FAD2-2B的氨基酸序列同源性也较高,为81.6%。FAD2-2B与FAD2-1A的氨基酸序列同源性最低,为64.7%。
     2.生物信息学分析表明,4个蛋白中只有FAD2-2B有信号肽,其余3个都没有信号肽剪切位点。二级结构FAD2-2A与FAD2-1A相似,以无规卷曲为主,含少量直链,间或有α螺旋;FAD2-2B与FAD2-1B相似,主要以无规卷曲和直链为主。4个蛋白是典型的膜结合蛋白,都有5~6个跨膜疏水区。在蛋白的稳定性方面,FAD2-2A蛋白半衰期是220h,其余的半衰期仅30h或31h;在蛋白翻译相对效率方面,FAD2-2B为1,其余3个均为5。FAD2-1A、FAD2-1B、FAD2-2A和FAD2-2B四个蛋白的棕榈酰化位点分别是5、4、8和9个。
     3、Southern检测结果表明,在中间锦鸡儿基因组中FAD2基因至少有4个拷贝。FAD2-2A、FAD2-1A、FAD2-1B三个基因的荧光定量PCR结果显示,FAD2-2A基因在根和发育中期、后期种子中低水平表达,在幼嫩的茎、叶以及发育早期的种子中高水平表达。FAD2-1A基因在根中的表达量最低,在种子发育早期、中期大量表达,在幼嫩叶子中表达水平也较高。FAD2-1B基因仅在种子发育中期大量表达,别的组织、发育阶段表达量都保持在本底水平。在不同组织以及种子的不同发育时期,FAD2-1A表达量的变化幅度最大,达到了近100倍,FAD2-1B次之,FAD2-2A的变化幅度最小。结合序列比对分析我们推断:FAD2-2A基因可能主要负责合成膜脂中亚油酸,FAD2-1A主要负责种子及叶子贮脂中亚油酸的合成,FAD2-1B负责种子贮脂中油酸去饱和作用。
     4、通过双酶切将FAD2-2A、FAD2-1A和FAD2-1B三个基因构建到酵母表达载体pYES2中转化酵母。20℃诱导表达菌株样品的定量PCR、SDS-PAGE以及脂肪酸含量三个层次的分析可见,FAD2-2A基因在诱导表达的前期转录水平迅速增加,后期表达量保持平稳,蛋白质、产物与转录水平变化趋势一致;FAD2-1A基因表达的3个层次上的变化趋势也一样,都是表达量逐渐升高,且升高速度在整个过程中比较均衡; FAD2-1B的三个表达层次都表现出初期少量表达,中期表达量迅速增加的趋势。
     5、进行15℃低温处理后,FAD2-2A、FAD2-1A表达量在三个层次都有明显升高,FAD2-1A的升高幅度比FAD2-2A小;FAD2-1B转录水平略有升高,但蛋白和产物水平都没有明显变化。在受到高温胁迫时,FAD2-2A、FAD2-1A基因表达在三个层次都表现出先升高后降低的趋势,FAD2-1B转录水平和产物水平都是先升高后降低,但蛋白水平无明显变化。
     6、三个处理温度下基因表达三个层次的分析表明,FAD2-2A、FAD2-1A在各处理条件下的表达调控可能主要通过转录调控机制实现。FAD2-1B基因在20℃条件下主要是转录水平调控,在低温条件下可能是通过转录和翻译调控来共同实现的,而高温条件下可能是通过转录、翻译以及翻译后三个层次进行调控的。
     7、在温度条件变化时,FAD2-2A基因感应外界条件变化的速度最快,最先出现表达量的变化,FAD2-1A次之,FAD2-1B最慢。
     本研究全面、完整的阐述了FAD2-2A、FAD2-1A和FAD2-1B 3个基因的表达规律,揭示了这三个基因内在的调控机理,为进一步开展中间锦鸡儿种子油脂品质的定向遗传改良,培育适合生物柴油等各种化工生产原料的新品种创造条件和提供理论基础。同时,也能为培育抗寒性强的锦鸡儿新品种奠定基础。
Caragana intermedia is widespread and is very important for ecological environment which can improve the soil and hold water at arid region of China northwest. In order to make more production,oleic acid desaturase (FAD2) gene which code the key enzyme of polyunsaturated fatty acid synthesis were cloned from young seed of C. intermedia by RACE. And they were expressed and analyzed in yeast. These studies found the rationale for C. intermedia genetics improvement and breeding the new fuchsins with good quality oil or cold resistance. The main results are as follows:
     1. Three full-lengthΔ12 fatty acid desaturases genes were cloned from pedo-seeds of C. intermedia., which named FAD2-2A(GenBank No. EF503621), FAD2-1A(GenBank No. EU433557) and FAD2-1B(GenBank No. EU433558 ), respectively. The sequence analysis of these three genes and fad2-2B gene(CaFAD2, GeneBank accession AY957394) which was cloned from caragana intermedia leaves by Wang Y.D. have done. The deduced first 283 amino acid sequences of Fad2-1A and fad2-1B showed high identity which was 98.9%, and the FAD2-1A protein is 97aa longer than FAD2-1B protein. The identity of FAD2-2A and FAD2-2B deduced amino acid sequences was 81.6%, and that of FAD2-2B and FAD2-1A was lowest 64.7%.
     2. The four FAD2 proteins structure and features were analyzed by bioinformatics methods, such as DNAMAN, DNAStar software, and http://www.us.expasy.Org, http://www.ch.embnet.org internet means and so on. The results indicated that FAD2-2B had signal peptide and the others had not signal peptide cleaved sites. The secondary structure of FAD2-2A and FAD2-1A were similar and coil was main with little strand and helix. FAD2-2B and FAD2-1B secondary structure are coil and strand mainly. The four proteins were membrane-bound proteins and have five or six transmembrane domains, respectively. The half life of FAD2-2A protein was 220 h, and that of the others were 30 h or 31 h. FAD2-2B relative translation effectiveness was 1 and that of the other proteins were 5. The palmitoylation sites of FAD2-1A, FAD2-1B, FAD2-2A and FAD2-2B were 5, 4, 8, 9, respectively.
     3. Southern-blotting results indicated there are four copies of FAD2 gene in C. intermedia. genome at least, and these are coincident with the four FAD2 genes were cloned. The real-time PCR was performed to detect the relative expression levels of FAD2-2A, FAD2-1A and FAD2-1B mRNA. FAD2-2A transcript showed a low level in the root, middle-stage seeds and pre-mature seeds, and FAD2-2A was expressed more in the first-stage seeds and tender leaves than in the other tissues. FAD2-1A transcripts showed the lowest level in the root and the highest level in the first-stage and middle-stage seeds, and it was expressed abundantly in the tender leaves too. FAD2-1B was expressed abundantly in the middle-stage seeds and its transcript was very low in the other tissues. In all tissues the FAD2-1A transcript level changed most, and that of FAD2-2A changed lest. According to all of these, we deduced that FAD2-2A takes responsibility of desaturating oleic acid in the membrane lipid mainly; FAD2-1A is in charge of desaturating oleic acid in the store lipid of seeds and leaves; and FAD2-1B is in charge of desaturating oleic acid in the store lipid of seeds, too.
     4. The Expression vectors pYES2-FAD2-2A, pYES2-FAD2-1A and pYES2-FAD2-1B were constructed by double enzymes digesting and transformed yeast. The yeasts with pYES2-FAD2-2A, pYES2-FAD2-1A and pYES2-FAD2-1B were inducted to express the exogenous genes at 20℃and were treated by cold(15℃) and high temperature(30℃). FAD2-2A transcription increased quickly at first stage and then keep the high level with induction medium at 20℃. The change tendencies of FAD2-2A protein and fatty acid productions are similar with that of transcription. The transcription, protein and fatty acid productions of FAD2-1A increased gradually at the whole process. And that of FAD2-1B kept low level at the first stage and increased at the middle stage.
     5. When the yeasts were treated by low temperature, the expression of FAD2-2A and FAD2-1A increased obviously, and the FAD2-1B transcription increased a little.But the FAD2-1B protein and fatty acid production did not change. If the yeasts were treated by high temperature, the expression of FAD2-2A and FAD2-1A increased firstly and then decreased, but FAD2-1B protein did not change.
     6. The analysis results of real-time PCR, SDS-PAGE and fatty acid content suggested that FAD2-2A and FAD2-1A expression were regulated in transcript level with all three kinds of treating methods; FAD2-1B were regulated in transcript level with 20℃, were regulated at transcript and translation stages with cold, and at transcript, translation and after translation stages with high temperature treatment.
     7. FAD2-2A change was fastest to response to temperature and FAD2-1B was slowest. In this study, the FAD2 genes were researched from transcripts, translation and productions, the inherent regulating mechanism of the three genes were provided. All of these give the conditions and the theory guidance for Caragana intermedia gene engineering breeding to improve the seed oil quality.
引文
[1]牛西午,柠条研究,北京:科学出版社, 2003, 1-2
    [2] Azam M M, Waris A, Nahar N M. Prospects and potential of acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenergy, 2005, 29: 293-302
    [3] Ma F and Hanna M A. Biodiesel production: a review. Bioresource Technology, 1999, 70:1-15
    [4] K?rbitz W. Biodiesel production in Europe and North Amerrica, an encouraging prospect. Renew Energy, 1999, 16: 1078-1083
    [5]王涛.中国主要生物质燃料油木本能源植物资源概况与展望.科技导报, 2005, 25(3): 12-14
    [6]赵宗保,华艳艳,刘波.中国如何突破生物柴油产业的原料瓶颈.中国生物工程杂志, 2005, 25(11): 1-6
    [7]沈珺珺,迟晓元,赵宗保,等.生物柴油的研究进展.中国生物工程杂志, 2006, 26(11): 87-90
    [8]贾虎森,许亦农.生物柴油利用概况及其在中国的发展思路.植物生态学报, 2006, 30:221-230
    [9] Mittelbach M. Diesel fuel derived from vegetable oils, VI: specifications and quality control of biodiesel. Bioresource Technology, 2006, 56: 7-11
    [10]巫淼鑫,邬国英,韩瑛,等. 6种食用植物油及其生物柴油重脂肪酸成分的比较研究.中国油脂, 2003, 28(12): 65-67
    [11]罗艳,刘梅.开发木本油料植物作为生物柴油原料的研究.中国生物工程杂志, 2007, 27(7): 68-74
    [12]王赞,高新中,韩建国等.柠条锦鸡儿表型多样性研究.草地学报, 2006, 14(3): 201-205
    [13]薛亮.柠条遗传育种的基础研究.安徽农业科学, 2006, 34(11): 2404-2405
    [14]王洪新,胡志昂,钟敏,等.毛乌素沙地锦鸡儿种群种子蛋白多样性及其生物学意义.生态学报, 1994, 14 (4) : 372-380
    [15]宋俊双,高洪文,王赞,等.三种锦鸡儿属植物表型多样性分析.草业学报, 2005, 14 (3) : 123-130
    [16]王洪新,胡志昂,钟敏,等.毛乌素沙地锦鸡儿种群形态变异.生态学报, 1994, 14 (4) : 366-370
    [17]周永刚,王洪新,胡志昂.毛乌素沙地中间锦鸡儿群体繁育系统的变化.植物学报, 2001, 43 (12) : 1307-1309
    [18]周永刚,王洪新,胡志昂.植物内种子蛋白多样性与繁育系统.植物学报, 2000, 42 (9) : 910-912
    [19]魏伟,王洪新,胡志昂,等.毛乌素沙地柠条群体分子生态学初步研究: RAPD证据.生态学报, 1999, 19 (1) : 16-22
    [20] Ma C C, Gao Y B, Liu H F, et al. Interspecific transition among Caragana microphylla, C. davazamciiand C. korshinskii along geographic gradient I. Ecological and RAPD evidence. Acta Botanica Sinica, 2003, 45 (10) : 1218-1227
    [21]郭爱龙,张海升,高晓霞,等. 4种锦鸡儿灌木材微观构造、纤维形态和化学成份的分析研究.内蒙古林学院学报(自然科学版), 1998, 20(1): 13-17
    [22]薛富.柠条制浆造纸的探讨.内蒙古林业, 2002, 6:8
    [23]许凤,孙润仓,詹怀宇.防沙治沙灌木生物资源的综合利用.造纸科学与技术, 2004, 23(1): 17-20
    [24]刘家琼.柠条、花棒生理特性的研究.林业科技通讯, 1980(6):12
    [25]张振万,杨淑性.陕西锦鸡儿属植物.西北植物研究, 1983(3): 21-31
    [26]安守芹,张称意,王玉魁,等.四种沙生植物营养器官的比较解剖研究.中国草地, 1996(3): 30-36
    [27]曹宛虹,张新英.锦鸡儿属6种沙生植物次生木质部解剖.植物学报, 1991, 33(3): 181-187
    [28]常朝阳,张明理.锦鸡儿属植物幼茎及叶的解剖结构及其生态适应性.植物研究, 1997, 17(1): 65-71
    [29]张利平,王新平,刘立超.沙坡头主要建群植物油蒿和柠条的气体交换特征研究.生态学报, 1998,18(2): 133-137
    [30]王邦锡,黄久常,王辉.不同生长季节光照强度和温度对柠条叶片光合作用和呼吸作用的影响.中国沙漠, 1996, 16(2): 145-148
    [31]周海燕,张景光,龙利群,等.脆弱生态带典型区域几种锦鸡儿属优势灌木的光合特征.中国沙漠, 2001, 21(3): 227-231
    [32]杨文斌,任建民,杨茂仁,等.柠条锦鸡儿沙柳蒸腾速率与水分关系分析.内蒙古林业科技, 1995, 3:1-6
    [33]段永红,李素清,牛西午等.锦鸡儿属植物4个种的核型分析.武汉植物学研究, 2006, 24(5): 413-417
    [34]周其兴,杨永平,张明理.锦鸡儿属植物14个种类的核型.植物研究, 2002, 22(4): 492-496
    [35]宋俊双,王赞,孙桂芝,高洪文.柠条锦鸡儿的组织培养.草地学报, 2007, 15(1): 66-69
    [36]杨明博,杨劼,杨九艳,臧春鑫.鄂尔多斯高原不同降雨量地区中间锦鸡儿(Caragana davazamcii Sancz)种群的ISSR遗传分析.植物生理学通讯, 2006, 42(3): 411-416
    [37]宋俊双,王赞,高洪文.三种锦鸡儿遗传多样性ISSR分析(简报).草地学报, 2006, 14(4): 384-386
    [38]王赞,高洪文,韩建国.柠条锦鸡儿DNA提取及AFLP反应体系的建立.草地学报, 2005, 13(2): 126-129
    [39]汪阳东,李春秀,齐力旺,张守攻.中间锦鸡儿fad2基因片段克隆,反义表达载体构建及遗传转化初步研究.林业科学研究, 2007, 20(1): 6-9
    [40]汪阳东,齐力旺,李春秀,张守攻.中间锦鸡儿油酸脱氢酶基因的克隆与反义表达.江西农业大学学报, 2007, 29(2): 241-245
    [41]汪阳东.中间锦鸡儿油酸脱氢酶基因(CaFAD2)克隆与功能鉴定.中国林业科学研究院博士论文, 2007, 1-104
    [42]卢善发.植物脂肪酸的生物合成与基因工程.植物学通报, 2000, 17(6): 481-491
    [43] Kodama H, Horiguchi G, Nishiuchi T et al. Fatty acid desaturation during chilling acclimation is one of the factors involved in conferring low-temperature tolerance to young tobacco leaves. Plant Physiology, 1995, 107:1177-1185
    [44] Kodama H, Hamada T, Horiguchi G et al. Genetic enhancement of cold tolerance by expression of a gene for chloroplastω-3 fatty acid desaturase in transgenic tobacco. Plant Physiology, 1994, 105: 601-605
    [45] Lyons J M. Chilling injury in plants, Ann Rev Plant Physiology, 1973, 24:445-528
    [46] Somerville C. Direct tests of the role of membrane lipid composition in low-temperature -induced photoinhibition and chilling sensitivity in plants and cyanobacteria, The Proceedings of the National Academy of Sciences USA, 1995, 92(14):6215-6218
    [47] Nishida I. and Murata N., Chilling sensitivity in plants and cynobacteria: the crucial contribution of membrane lipids. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 541-568
    [48] Murata N. and Los D.A., Membrane fluidity and temperature perception, Plant Physiology, 1997, 115(3):875-879
    [49] de Mendoza D and Cronan JE, Thermal regulation of membrane fluidity in bacteria. Trends Biochemistry Science, 1983, 8:49-52
    [50] Russell NJ, Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends Biochemistry Science, 1984, 3:108-112
    [51] de Mendoza D, Grau R and Cronan JE et al, Biosynthesis and function of membrane lipids. In Bacillus subtilis and Other ram-Positive Bacteria: Physiology, Biochemistry and Molecular Biology. Losick, R., Sonenshein, A.L., and Hoch, J.A., Washington, DC: American Society for Microbiology Press, 1993, pp. 411-425
    [52] Suutari M and Laakso S, Microbial fatty acids and thermal adaptation. Critical Reviews inMicrobiology, 1994, 20(4): 285-328
    [53] de Mendoza D, Klages UA and Cronan JE, Thermal regulation of membrane fluidity in Escherichia coli. Effects of overproduction of beta-ketoacyl-acyl carrier protein synthase I. Journal Biology Chemistry, 1983, 258: 2098-2101
    [54] Fulco AJ, The biosynthesis of unsaturated fatty acids by bacilli. I. Temperature induction of the desaturation reaction. Journal Biology Chemistry, 1969, 244: 889-895
    [55] Fujii DK and Fulco AJ, Biosynthesis of unsaturated fatty acids by bacilli. Hyperinduction and modulation of desaturase synthesis. Journal Biology Chemistry, 1977, 252: 3660-3670
    [56] Miquel M., James D. Jr., Dooner H. and Browse J. Arabidopsis requires polyunsaturated lipids for low-temperature survival, Proceed of National Academy Science, USA, 1993, 90(13): 6208-6212
    [57]刘星辉,佘文琴,张惠斌,龙眼、荔枝叶片膜脂脂肪酸与耐寒性的研究,福建农业大学学报, 1996, 25(3):297-301
    [58] Jiang HM and Gao KS, Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom phaeodactylum tricornutum (bacillariophyceae). Journal of Phycology, 2004, 40(4): 651-654
    [59] Quinn PJ, Models for adaptative changes in cell membranes. Biochemical Society Transactions, 1983, 11: 329-330
    [60] Cossins AR ed., In Temperature Adaptation of Biological Membranes, Portland Press, London and Chapel Hill, 1994, pp. 107-118
    [61] Heppard E P, Kinney A J, Stecca K L and Miao G H. Developmental and Growth Temperature Regulation of Two Different Microsomalω-6 Desaturase Genes in Soybeans. Plant Physiology, 1996, 110: 311-319
    [62] Aid F, Kesri-Benhsaine G, Demandre C and Mazilak P, Modification of the biosynthesis of rape lipid molecular species by heat shock. Phytochemistry, 1998, 47: 1195-1200
    [63] Berberich T, Harada M, Sugawara K, et al. Two maize genes encodingω-3 fatty acid desaturase and their differential expression to temperature. Plant Molecular Biology, 1998, 36 : 297-306
    [64] Los D A, Murata N. Structure and expression of fatty acid desaturases. Biochimica et Biophysica Acta, 1998, 1394: 3-15
    [65]杭晓敏,唐涌濂,柳向龙.多不饱和脂肪酸的研究进展.生物工程进展, 2001, 21 (4):18-20
    [66] Barre. Potential of evening primrose, borage, black currant, and fungal oils in human health. Annals of Nutrition and Metabolism, 2001, 45(2): 47-57
    [67]陈峰,姜悦.微藻生物技术.北京:中国轻工业出版社, 1999, 214-219
    [68]谢禄山,谭晓风.乙酰辅酶A羧化酶基因研究综述.中南林学院学报, 2005, 25(4): 89-95
    [69] Gengenbach. Transgenic plants expressing maize acetyl CoA carboxylase gene and method of altering oil content. United States Patent, 6, 222, 099, 2001-4-24
    [70] Roesler K R, Shorrosh B S, Ohlrogge J B, et al. Structure and expression of an Arabidopsis acetyl-coenzyme A carboxylase gene. Plant Physiology, 1994, 105: 611-617
    [71] Gornicki P, Faris J, King I, et al. Plastid-localized acetyl-CoA carboxylase of bread wheat is encode by a single gene on each of the three ancestral chromosome sets. The Proceedings of the National Academy of Sciences USA, 1997, 94:14179-14184
    [72] Hansen and von Wettstein- Knowles P. The barley genes Acl1 and Acl3 encoding acyl carrier proteins I and III are located on different chromosomes. Molecular and General Genetics, 1991, 229: 467-478
    [73] Hlousek-Radojcic A, Post-Beittenmiller D and Ohlrogge D. Expression of constitutive and tissue specific acyl carrier protein isoforms in Arabidopsis. Plant Physiology, 1992, 98: 206-214
    [74] Shintani D K and Ohlrogge J B. The characterization of a mitochondrial acyl carrier protein isoform isolated from Arabidopsis thaliana. Plant Physiology, 1994, 104:1221-1229
    [75] Scherer D E and Knauf V C. Isolation of a cDNA clone for the acyl carrier protein-I of spinach. Plant Molecular Biology, 1987, 9: 127-134
    [76] Schmid K M and Ohlrogge J B. A root acyl carrier protein-II from spinach is also expressed in leaves and seeds. Plant Molecular Biology, 1990, 15: 765-778
    [77] Jaworski J G, Clough R C, Barnum S R. A cerulenin insensitive short chain 3-ketoacyl-acyl carrier protein synthase in Spinacia loeracea leaves. Plant Physiology, 1989, 90: 41-44
    [78] Ohlrogge J B, Browse J and Somerville C R. The genetics of plant lipids. Biochimica et Biophysica Acta, 1991, 1082:1-26
    [79] Mackintosh R W, Hardie D G and Slabas A R. A new assay procedure to study the induction ofβ-ketoacyl-ACP synthase I and II, and the complete purification ofβ-ketoacyl-ACP synthase I from developing seeds of oil seed rape (Brassica napus). Biochimica et Biophysica Acta, 1989, 1002: 114-124
    [80] Siggaard-Andersen M, Kauppinen S and von Wettstein-Knowles P. Primary structure of a cerulenin bindingβ-ketoacyl acyl carrier protein synthase from barley chloroplasts. The Proceedings of the National Academy of Sciences USA, 1991, 88:4114-4118.
    [81] Slabas A R and Fawcett T. The biochemistry and molecular biology of plant lipid biosynthesis. Plant Molecular Biology, 1992, 19:169-191
    [82] Clough R C, Matthis A L, Barnum S R, Jaworski J G. Purification and characterization of 3-ketoacyl-acyl carrier protein synthase III from spinach/ a condensing enzyme utilizing acetyl-Coenzyme-A to initiate fatty acid synthesis. Journal of Biological Chemistry, 1992, 267:20992-20998
    [83] Reith M. Aβ-ketoacyl-acyl carrier protein synthase III gene(fadH) is encoded on the chloroplast genome of the red alga Porphyra umbilicalis. Plant Molecular Biology, 1993, 21: 185-189
    [84]Gulliver B S, Slabas A R. A cetoacyl-acyl carrier protein synthase from avocado: its purification characterization and clear resolution from acetyl CoA: ACP transacylase. Plant Molecular Biology, 1994, 25:179-191
    [85] Verwoert I I, van der Linden K H, Nijkamp H J, Stuitje A R. Developmental specific expression and organelle targeting of the Escherichia coli fadD gene, encoding malonyl coenzyme A-acyl carrier protein transacylase in transgenic rape and tobacco seeds. Plant Molecular Biology, 1994, 26: 189-202
    [86] Harwood J L. Fatty acid metabolism. Annual Review of Plant Physiology and Plant Molecular Biology, 1988, 39:101-138
    [87]Slabas A R, Chase D, Nishida I, et al. Molecular cloning of higher-plant 3-oxoacyl-(acyl carrier protein) reductase. Biochemical Journal, 1992, 283: 321-326
    [88] Kater M M, Koningstein G M, Nijkamp H J J, Stuitje A R. cDNA cloning and expression of Brassica napus enoyl-acyl carrier protein reductase in Escherichia coli. Plant Molecular Biology, 1991, 17:895-909
    [89] Knutzon D S, Bleibaum J L, Nelsen J, et al. Isolation and characterization of two safflower oleoyl-acyl carrier protein thioesterase cDNA clones. Plant Physiology, 1992, 100: 1751-1758
    [90] Hellyer A, Slabas A. Acyl-[acyl-carrier-protein] thioesterase from oil seed rape: purification and characterization. In: Plant Lipid Biochemistry, Structure and Utilization, Quinn P J, Harwood J L eds. Portland Press Limited, London, 1990, 160-162.
    [91] Dormann P, Voelker T A, Ohlrogge J B. Cloning and expression in Escherichia coli of a novel thioesterase from Arabidopsis thaliana specific for long chain acyl-acyl carrier proteins. Archives of Biochemistry and Biophysics, 1995, 316: 612-618
    [92] Fukuchi-Mizutani, Savin K, Cornish E, et al. Senescence-induced expression of a homologue ofΔ9 desaturase in rose petals. Plant Molecular Biology, 1995, 29:627-635
    [93] Mizutani M, Tasaka Y, Tanaka Y, et al. Characterization ofΔ9 acyl-lipid desaturase homologues from Arabidopsis thaliana. Plant Cell Physiology, 1998, 39: 247-253
    [94] Itoh R, Toda K, Takahashi H, et al.Δ9-fatty acid desaturase gene containing a carboxyl-terminal cytochrome b5 domain form the red alga Cyanidioschyzon merolae. Current Genetics, 1998, 33: 165-170
    [95] Sayanova O, Smith M A , Lapinskas P, et al. Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels ofΔ6-desaturated fatty acids in transgenic tobacco. The Proceedings of the National Academy of Sciences USA, 1997, 94: 4211-4216
    [96] Sperling P, Schmidt H and Heinz E. A cytochrome-b5-containing fusion protein similar to plant acyl lipid desaturases. European Journal of Biochemistry, 1995, 232: 798-805
    [97] Girke T, Schmidt H, Zahringer U, et al. Identification of a novelΔ6-acyl-group desaturase by targeted gene disruption in Physcomitrella patens. Plant Journal, 1998, 15 : 39-48
    [98] Chung C H, Kim J L, Lee YC, Choi YL. Cloning and characterization of a seed-specificω-3 fatty acid desaturase cDNA from Perilla f rutescens. Plant and Cell Physiology, 1999, 40: 114-118
    [99] Kachroo A, Venugopal S C, Lapchyk L, et al. Oleic acid levels regulated by glycerolipid metabolism modulate defense gene expression in Arabidopsis, The Proceedings of the National Academy of Sciences USA, 2004, 101(14): 5152–5157
    [100] Mckeon T A and Stumpf P K. Purificatoin and characterization of the stearoyl-acyl carrier protein desaturase and the Acyl–acyl carrier protein thioesterase from maturing seeds of safflower. Journal of Biological Chemistry, 1982, 257 (20): 1214-1217
    [101] Shanklin J, Somerville C. Stearoyl-CoA desaturase from higher plants is structurally unrelated to the animal and fungal homologs. The Proceedings of the National Academy of Sciences USA, 1991, 88: 2510-2514
    [102] Thompson G A, Scherer D E, Aken S F, et al. Primary structures of the precursors and mature forms of stearoyl-acyl carrier protein desaturase form safflower embryos and requirement of ferredoxin for enzyme activity. The Proceedings of the National Academy of Sciences USA, 1991, 88: 2578-2582
    [103] Nishida I, Beppu T, Matsuo T, Murata N, Nucleotide sequence of a cDNA clone encoding a precursor to stearoyl-(acyl-carrier-protein) desaturase from spinach, Spinacia oleracea., Plant Molecular Biology, 1992, 19(4): 711-713
    [104] Yukawa Y, Takaiwa F, Shoji K, et al. Structure and expression of two seed-specific cDNA clones encoding stearoyl-acyl carrier protein desaturase from sesame, Sesamum indicum L.. Plant Cell Physiology, 1996, 37(2): 201-205
    [105]张羽航,鲍时翔,郑学勤,等.脂肪酸脱饱和酶的研究进展,生物技术通报, 1998, (4): 1-9
    [106] Lighter J, Wu J and Browse J. A mutant of Arabidopsis with increased level of stearic acid. Plant Physiology, 1994, 106: 1443-1451
    [107] Tong L, Shu M P, Wu Y D, et al. Characterization of a New Stearoyl-acyl Carrier Protein Desaturase Gene from Jatropha curcas., Biotechnology Letters. 2006, 28(9): 657-662
    [108] Lindqvist Y, Huang W, Schneider G, Shanklin J. Crystal structure ofΔ9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron protein. EMBO J, 1996, 15: 4081-4092
    [109] Cahoon E B, Lindqvist Y, Schneider G, Shanklin J. Redesign of soluble fatty acid desaturases from plants for altered substrate specificity and double bond position. The Proceedings of the National Academy of Sciences USA, 1997, 94 : 4872-4877
    [110] Slocombe S P, Piffanelli P, Fairbairn D, et al. Temporal and tissue-specific regulation of a Brassica napus stearoyl-acyl carrier protein desaturase gene. Plant Physiology, 1994, 104: 1167-1176
    [111] Nishiuchi T, Hamada T, Kodama H, Iba K. Wounding changes the spatial expression pattern of the Arabidopsis plastidω3 fatty acid desaturase gene (FAD7) through different signal transduction pathways. Plant Cell, 1997, 9: 1701-1712
    [112] Kirsch C, Takamiya-Wik M, Reinold S, et al. Rapid, transient and highly localized induction of plastidialω3 fatty acid desaturase mRNA at fungal infection sites in Petroselinum crispum. The Proceedings of the National Academy of Sciences USA, 1997, 94: 2079-2084
    [113] James D W, Lim E, Keller J, et al. Directed tagging of the Arabidopsis FATTY ACID ELONGATIONI (FAEI) gene with maize transposon activator. Plant cell, 1995, 7:309-319
    [114] Dittrich F, Zajonc D, Huhne K, et al. Fatty acid elongation in yeast-biochemical characteristics of the enzyme system and isolation of elongation-defective mutants. European Journal of Biochemistry, 1998, 252: 477-485
    [115] Barrett P B and Harwood J L. Characterization of fatty acid elongase enzymes from germinating pea seeds. Phytochemistry, 1998, 48:1295-1304
    [116] Lassner M W, Lardizabal K and Metz J G. A jojobaβ-ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell, 1996, 8: 281-292
    [117] Millar A A and Kunst L. Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant Journal, 1997, 12:121-131
    [118] Todd J, Post-Beittenmiller D and Jaworshi J G. KCSl encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant Journal, 1999, 17: 119-130
    [119] Barret P, Delourme R, Renard M, et al. A rape seed FAE1 gene is linked to the E1 locus associated with variation in the content of erucic acid. Theoretical and Applied Genetics, 1998, 96:177-186
    [120] Clemens S, Kunst L. Isolation of a Brassica napus cDNA encoding 3-ketoacyl-CoA synthase, a condensing enzyme involved in the biosynthesis of very long chain fatty acids in seeds. Plant Physiology, 1997, 115:313-314
    [121] Ishizaki-Nishizawa O, Fujii T, Azuma M, et al. Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nature Biotechnology, 1996, 14 : 1003-1006
    [122] Kirsch C, Hahlbrock K, Somssich I E. Rapid and transient induction of a parsley microsomal delta 12 fatty acid desaturase mRNA by fungal elicitor. Plant Physiology, 1997a, 115: 283-299
    [123] Hamada T, Kodama H, Takeshita K, et al. Characterization of transgenic tobacco with an increasedα-linolenic acid level. Plant Physiology, 1998, 118: 591-598
    [124]戴晓峰,肖玲,武玉花等.植物脂肪酸去饱和酶及其编码基因研究进展.植物学通报, 2007, 24(1):105-113
    [125] Ohlrogge J and Browse J. Lipid biosynthesis. Plant Cell, 1995, 7:957–970
    [126] Schwartzbeck J L, Jung S K, Abbott A G, et al. Endoplasmic oleoyl-PC desaturase references the second double bond. Phytochemistry, 2001, 57: 643–652
    [127] Wallis JG, Browse J. Mutants of Arabidopsis reveal many roles for membrane lipids. Progress in Lipid Research, 2002, 41: 254-278
    [128] Dyer JM, Mullen RT. Immunocytological localization of two plant fatty acid desaturases in the endoplasmic reticulum. FEBS Letters, 2001, 494:44-47
    [129] Okuley J, Lightner J, Feldmann K, et al. Arabidopsis FAD2 Gene Encodes the Enzyme That 1sEssential for Polyunsaturated Lipid Synthesis, The Plant Cell, 1994, 6: 147-158
    [130] Pirtle IL, Kongcharoensuntorn W, Nampaisansuk M, et al. Molecular cloning and functional expression of the gene for a cotton Delta-12 fatty acid desaturase (FAD2). Biochimica et Biophysica Acta. 2001, 1522(2): 122-129
    [131] Mikkilineni V and Rocheford TR. Sequence variation and genomic organization of fatty acid desaturase-2 (fad2) and fatty acid desaturase-6 (fad6) cDNAs in maize. Theoretical and Applied Genetics, 2003, 106(7): 1326-1332
    [132] Tao F, Zhu SW, Fan J and Cheng BJ. Cloning and sequence analysis of maize FAD2 gene. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao, 2006, 32(6): 649-656
    [133] BelóA, Zheng P, Luck S et al. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Molecular Genetics and Genomics: MGG, 2008, 279(1):1-10
    [134] Tang G Q, Novitzky W P, Griffin H C, et al. Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation. The Plant Journal, 2005, 44, 433-446
    [135] Li L, Wang X, Gai J and Yu D. Isolation and characterization of a seed-specific isoform of microsomal omega-6 fatty acid desaturase gene (FAD2-1B)from soybean. DNA sequence: the journal of DNA sequencing and mapping, 2008, 19(1):28-36
    [136] Kishore K, Sinha SK, Kumar R, et al. Isolation and characterization of microsomal omega-6-desaturase gene (fad2-1)from soybean. Indian journal of experimental biology, 2007, 45(4):390-397
    [137] Li L, Wang X, Gai J and Yu D. Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean. Journal of Plant Physiology, 2007, 164(11): 1516-1526
    [138] Hernandez M L, Mancha M and Martinez-Rivas J M. Molecular cloning and characterization of genes encoding two microsomal oleate desaturases (FAD2) from olive. Phytochemistry, 2005, 66(12): 1417-1426
    [139] Rolletschek H, Borisjuk L, Sánchez-García A et al. Temperature-dependent endogenous oxygen concentration regulates microsomal oleate desaturase in developing sunflower seeds. Journal of experimental botany, 2007, 58(12):3171-3181
    [140] Rodríguez-Vargas S, Sánchez-García A, Martínez-Rivas JM et al. Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Applied and environmental microbiology, 2007, 73(1):110-116
    [141] Kim MJ, Kim H, Shin JS et al. Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5’-UTR intron. Molecular genetics and genomics:MGG, 2006, 276(4):351-368
    [142] Fofana B, Cloutier S, Duguid S et al. Gene expression of stearoyl-ACP desaturase and delta 12 fatty acid desaturase 2 is modulated during seed development of flax( Linum usitatissimum), Lipids, 2006, 41(7):705-712
    [143] Sapitnitskaya M, Maul P, McCollum GT et al. Postharvest heat and conditioning treatments activate different molecular responses and reduce chilling injuries in grapefruit. Journal of experimental botany, 2006,57(12):2943-2953
    [144] Patel M, Jung S, Moore K et al. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theoretical and applied genetics, 2004, 108(8): 1492-1502
    [145] Jadhav A, Katavic V, Marillia EF et al. Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene. Metabolic engineering, 2005, 7(3):215-220
    [146] Yang M and Xu Y. Oleate accumulation, induced by silencing of microsomal omega-6 desaturase, declines with leaf expansion in transgenic tobacco.Journal of plant physiology, 2007, 164(1):23-30
    [147] Ohara O, Dorit R L and Gilbert W. One-sided polymerase chain reaction: The amplification of cDNA. The Proceedings of the National Academy of Sciences USA, 1989, 86: 5673-5677
    [148]邬珺超,蒋滢. cDNA末端快速扩增技术的研究进展.氨基酸和生物资源, 2003, 25(1): 25-31
    [149] Loh E Y, Elliotl J F, Cwila S, et al. Polymerase chain reaction with single-sided specificity: analysis of T cell receptor d chain. Science, 1989, 243: 217-220
    [150] Edwards J B D M, Delort J and Mallet J. Oligodeoxyribonucleotide ligation to single-stranded cDNAs: a new tool for cloning 5’ends of mRNA and for constructing cDNA libraries by in vitro amplification. Nucleic Acids Research, 1991, 19(19): 5227-5232
    [151] Frohman M A, Dush M K and Martin G R, Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. The Proceedings of the National Academy of Sciences USA, 1988, 85: 8998-9002
    [152] Akowitz A and Manuelidis L. A novel cDNA/PCR strategy for efficient cloning of small amounts of undefined RNA. Gene, 1989, 81: 295-306
    [153] Troutt A B, Mcheyzer-Williams M G, Pulendran B and Nossal G J V. Ligation-anchored PCR: A simple amplification technique with single-sided specificity. The Proceedings of the National Academy of Sciences USA, 1992, 89: 9823-9825
    [154]陈渝萍,薛社普.应用改进的SSP-抑制PCR技术扩增cDNA片段旁侧序列.基础医学与临床(Basic Medical Sciences and Clinics), 1999, 19(4): 87-91
    [155] Liu XW and Gorovsky M A. Mapping the 5’and 3’ends of Tetrahymena thermophila mRNAs using RNA ligase mediated amplification of cDNA ends (RLM-RACE). Nucleic Acids Research, 1993, 21(21): 4954-4960
    [156] Schaefer B C. Resolution in rapid amplification of cDNA ends: New strategies for polymerase chain reaction cloning of full-length cDNA ends. Analytical Biochemistry, 1995, 227: 255-273
    [157] Maruyama I N, Rakow T L and Maruyama H I. cRACE: a simple method for identification of the 5’end of mRNAs. Nucleic Acids Research, 1995, 23: 3796-3797
    [158]陈士怡,徐洪基.酵母遗传学.北京:科学出版社,1989, 1-2
    [159]刘擎,余龙.酵母:一种模式生物.生命的化学, 2000, 2 (2): 61-65
    [160] Hitzeman R A, Hagie F E, Levine H L, et al. Expression of human gene for interferon in yeast. Nature, 1981, 293: 717-722
    [161] Gellissen G, Melber K, Janowicz Z A, et al. Hetrologous gene espression in yeast. Journal of General and Molecular Microbiology, 1991, 62: 79-93
    [162] Hinnen A, Buxton F, Chandhrui B, et al. Gene expression in recombinant yeast. In Smith A(Ed)Gene expression in recombinant organisms. New York: Marcel Dekker, 1994, 121-193.
    [163] Kojo H, Greenberg B D, Sugino A. Yeast 2μm plasmid DNA replication in vitro: Origin and direction. The Proceedings of the National Academy of Sciences USA, 1981, 78: 7261-7265
    [164]郑敏,张飞雄,刘丽.酵母表达系统表达外源基因的研究进展.首都师范大学学报, 1999, 20(4: 73-78
    [165] Phaff H J. Biology of yeasts other than Saccharomyces, In: Demain A L, Salomon N A. (Eds) Biology of industrial microorganism. Benjamin Cummings: Menlo Park(CA), 1985, 537-562
    [166] Fleer R, Yeh P, Ammellal N et al. Stable multicopy vectors for high-level secretion of recombinant human serum albumin by kluyveromyces yeasts. Bio/Technology, 1991, (9): 968-975
    [167] Cregg J M, Vedick T S, Raschke W C. Recent advances in the expression of foreign genes in Pichia Pastoris. Bio/technology, 1993(11): 905-910
    [168] Cregg J M, Madden K R, Barringer K J et al. Functional characterization of the two alcohol oxidase gene formthe yeast Pichia Pastoris. Molecular and Cellular Biology, 1989, 9:1316-1323
    [169] Ledeboer A M, Edens L, Maat J, et al. Molecular cloning and characterization of gene coding for methanol oxidase in Hansenula Polymorpha. Nucleic Acids Research, 1985, 13: 3063-3082
    [170] Gellissen G, Janoowicz Z A, Merckelbach A, et al. Heterologous gene expression in Hansenula Polymorpha: efficient secretion of glucoamylase. Bio/Technology, 1991, 9: 291-295
    [171] F·奥斯伯等著,颜子颖,王林海译.精编分子生物学实验指南(M).北京:科学出版社, 1998
    [172]陈玉梅.酿酒酵母工程菌研究进展.生物工程进展, 1993, 13 (1): 11-16
    [173]宋宏新,李敏康.酵母分子生物学理论及应用研究进展.西北轻工业学院学报, 2001, 19(4): 78-83
    [174] West R W J, Yocum R R and Ptashne M. Saccharomyces cerevisiae GAL1-GAL10 Divergent Promoter Region: Location and Function of the Upstream Activator Sequence UAS. Molecular and Cellular Biology, 1984(4):2467-2478
    [175] Giniger E, Barnum S M and Ptashne M. Specific DNA Binding of GAL4, a Positive Regulatory Protein of Yeast. Cell, 1985(40):767- 774
    [176] Guthrie, C and Fink G R. Guide to Yeast Genetics and Molecular Biology. In Methods in Enzymology, 1991, Vol.194.(J.N. Abelson and M.I. Simon,eds.) Academic Press, San Diego, CA
    [177]张平武,李育阳.新型酵母表达系统的研究.生物技术通讯. 1999, 10(4): 306-309
    [178]李柱刚,马荣才,曹鸣庆,崔崇士.芸薹属作物油酸脱饱和酶基因(FAD2)拷贝数和序列变异分析. 2004, 12(5): 515-520
    [179] Meinnel T, Peynot P and Giglione C. Processed N-termini of mature proteins in higher Eukaryotes and their major contribution to dynamic proteomics. Biochimie, 2005, 87, 701-712
    [180] Zhou F, Xue Y, Yao X and Xu Y. CSS-Palm: palmitoylation site prediction with a clustering and scoring strategy (CSS). Bioinformatics, 2006, 22(7): 894-896
    [181] Bijlmakers M J and Marsh M. The on-off story of protein palmitoylation. Trends in Cell Biology, 2003, 13(1):32-42
    [182] Dietrich L E and Ungermann C. On the mechanism of protein palmitoylation. European Molecular Biology Organization, 2004, 5(11): 1053-1057
    [183] El-Husseini Ael-D and Bredt D S. Protein palmitoylation: A regulator of neuronal development and function. Nature Reviews Neuroscience, 2002, 3(10): 791-802
    [184] Linder M E and Deschenes R J. New insights into the mechanisms of protein palmitoylation. Biochemistry, 2003, 42(15): 4311-4320
    [185] Smotrys J E and Linder M E. Palmitoylation of intracellular signaling proteins: Regulation and function. Annual Review of Biochemistry, 2004, 73: 559-587
    [186] Kleuss C and Krause E. Galpha(s) is palmitoylated at the N-terminal glycine. European Molecular Biology Organization, 2003, 22(4): 826-832
    [187] Kang R, Swayze R, Lise M F, et al. Presynaptic trafficking of synaptotagmin I is regulated by protein palmitoylation. Journal of Biological Chemistry, 2004, 279(48): 50524-50536
    [188] Schneider A, Lander H, Schulz G, et al. Palmitoylation is a sorting determinant for transport to the myelin membrane. Journal of Cell Science, 2005, 118(Pt 11): 2415-2423
    [189] van Itallie C M, Gambling T M, Carson J L and Anderson J M. Palmitoylation of claudins is required for efficient tight-junction localization. Journal of Cell Science, 2005, 118(Pt 7): 1427-1436
    [190] Sudo Y, Valenzuela D, Beck-Sickinger A G, et al. Palmitoylation alters protein activity: Blockade of G(o) stimulation by GAP-43. European Molecular Biology Organization, 1992, 11(6): 2095-2102
    [191] Vázquez P, Roncero I, Blázquez E and Alvarez E. Substitution of the cysteine 438 residue in the cytoplasmic tail of the glucagon-like peptide-1 receptor alters signal transduction activity. Journal of Endocrinology, 2005, 185(1): 35-44
    [192] Caron J M, Vega L R, Fleming J, et al. Single site alpha-tubulin mutation affects astral microtubules and nuclear positioning during anaphase in Saccharomyces cerevisiae: Possible role for palmitoylation of alpha-tubulin. Molecular Biology of the Cell, 2001, 12(9):2672-2687
    [193] Yik J H, Saxena A, Weigel J A and Weigel P H. Nonpalmitoylated human asialoglycoprotein receptors recycle constitutively but are defective in coated pit-mediated endocytosis, dissociation, and delivery of ligand to lysosomes. Journal of Biological Chemistry, 2002, 277(43): 40844-40852
    [194] Wang D A and Sebti S M. Palmitoylated cysteine 192 is required for RhoB tumor-suppressive and apoptotic activities. Journal of Biological Chemistry, 2005, 280(19) :19243-19249
    [195] ten Brinke A, Vaandrager A B, Haagsman H P, Ridder A N, van Golde L M and Batenburg J J. Structural requirements for palmitoylation of surfactant protein C precursor. Biochemical Journal, 2002, 361(Pt 3):663-671
    [196] Fukata M, Fukata Y, Adesnik H, et al. Identification of PSD-95 palmitoylating enzymes. Neuron, 2004, 44(6): 987-996
    [197] Huang K, Yanai A, Kang R, et al. Huntingtin-interacting protein HIP14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins. Neuron, 2004, 44(6):977-986
    [198] Patrick S C, Darwin W R, Covello P S and Reed D W. Functional expression of the extraplastidial Arabidopsis thaliana oleate desaturase gene(FAD2) in Saccharomyces cerevisiae. Plant Physiology, 1996, 111: 223-226
    [199] Sakai H and Kajiwara S. Cloning and functional characterization of a delta 12 fatty acid desaturase gene from the basidiomycete lentinula edodes. Molecular Genetics and Genomics, 2005, 273(4): 336-341
    [200]张洪涛,单雷,全先庆,等.花生Δ12脂肪酸脱氢酶基因AhFAD2B在酿酒酵母中的表达及功能分析.花生学报, 2006, 35(1): 1-7
    [201] Kargiotidou A, Deli D, Galanopoulou D, Tsaftaris A and Farmaki T. Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton(Gossypium hirsutum). Journal of Experimental Botany. 2008 May 2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700