大鼠前庭内侧核胆碱能受体和γ-氨基丁酸受体介导的钙离子荧光显像及信息转导机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分乙酰胆碱对大鼠前庭内侧核钙离子荧光强度的影响
     目的:探讨大鼠前庭内侧核胆碱能受体介导的细胞内游离钙离子水平的变化。方法:应用激光共聚焦显微镜离子显像技术对前庭内侧核离体脑片中被荧光颜料Fluo-3AM标记的细胞内游离钙离子浓度的变化进行实时监测。结果:大鼠前庭内侧核细胞对乙酰胆碱敏感,10-5~10-2 M乙酰胆碱可以浓度依赖性的引起细胞内游离钙离子浓度的增高,其中1mM是最大药效浓度。胆碱能M受体拮抗剂阿托品(1μM)可以使1mM乙酰胆碱引起的前庭内侧核神经元钙离子荧光的增强幅度降低55%,神经元胆碱能N受体的拮抗剂美加明(10μM)可以使1mM乙酰胆碱引起的前庭内侧核神经元钙离子荧光的增强幅度降低49%(n=5)。两种拮抗剂之间对前庭内侧核钙离子荧光的影响没有显著性差异(P>0.05)。结论:前庭内侧核胆碱能受体可以介导细胞内游离钙离子浓度的升高,呈浓度依赖性,并且,毒蕈碱受体和烟碱受体均参与了此效应。
     第二部分大鼠前庭内侧核毒蕈碱受体介导的钙离子荧光显像研究
     目的:探讨大鼠前庭内侧核中毒蕈碱受体对细胞内游离钙离子浓度的调控,及其调控机制。方法:应用激光共聚焦显微镜离子显像技术技术对前庭内侧核离体脑片中被荧光颜料Fluo-3AM标记的细胞内游离钙离子浓度的变化进行实时监测。结果: 5~100μM的传统的毒蕈碱受体的激动剂Muscarine chloride可以浓度依赖性的引起细胞内游离钙离子浓度的增高,50μM是最大药效浓度。该效应可以被thapsigargin明显抑制(P<0.01),而在无钙脑脊液或存在EGTA的情况下,该效应无明显变化(P>0.05)。并且,Muscarine chloride引起的细胞内游离钙离子浓度增高的效应可以被毒蕈碱m1和m3受体的特异性拮抗剂pirenzepine和4-DAMP明显抑制(P<0.05),而毒蕈碱m2和m4受体的特异性拮抗剂methoctramine和tropicamide无明显抑制作用(P>0.05)。结论:毒蕈碱受体通过前庭内侧核细胞内钙库对钙离子的释放介导细胞内游离钙离子浓度的升高。并且,此效应是通过毒蕈碱m1和m3亚型受体来实现的。
     第三部分大鼠前庭内侧核烟碱受体介导的钙离子荧光显像研究
     目的:探讨大鼠前庭内侧核中烟碱受体对细胞内游离钙离子浓度的调控,及其调控机制。方法:应用激光共聚焦显微镜离子显像技术对大鼠前庭内侧核离体脑片中被荧光颜料Fluo-3AM标记的细胞内游离钙离子浓度的变化进行实时监测。结果:10~500μM的传统的烟碱受体的激动剂nicotine可以浓度依赖性的引起细胞内游离钙离子浓度的增高,100μM是最大药效浓度。该效应可以被EGTA和nifedipine明显抑制(P<0.01),在无钙人工脑脊液中,该效应亦可被明显抑制(P<0.01)。但是,mibefradil及thapsigargin对nicotine引起的细胞内游离钙离子浓度增高的效应均无明显抑制作用(P>0.05)。此外,烟碱α4β2亚型受体的特异性拮抗剂Dihydro-β-erythroidine对nicotine引起的效应有明显的抑制作用(P<0.01) ,而烟碱α7亚型受体的拮抗剂methyllycaconitine则无明显效果(P>0.05)。结论:烟碱受体可以介导前庭内侧核细胞内钙离子水平呈浓度依赖性的升高,是通过细胞外钙离子内流来实现的,至少有L型电压门控钙离子通道的开放参与了此过程,并且,该效应是通过烟碱α4β2亚型受体实现的,而非烟碱α7亚型受体。
     第四部分大鼠前庭内侧核γ-氨基丁酸受体介导的钙离子荧光显像研究
     目的:探讨大鼠前庭内侧核中γ-氨基丁酸受体介导的细胞内游离钙离子浓度变化,以及对胆碱能受体效应的影响,并探讨其调控机制。方法:应用激光共聚焦显微镜离子显像技术对大鼠前庭内侧核离体脑片中被荧光颜料Fluo-3AM标记的细胞内游离钙离子浓度的变化进行实时监测。结果: 5μM、20μM、100μM、500μM GABA对前庭内侧核钙离子荧光强度没有显著性影响(P>0.05),对毒蕈碱受体激动剂muscarine chloride引起的前庭内侧核钙离子荧光强度变化也没有显著影响(P>0.05),而对100μM nicotine引起的前庭内侧核钙离子荧光强度的增强有明显的抑制作用(P<0.05),呈浓度依赖性,其中,100μM GABA可以达到最大抑制效应。GABAB受体选择性激动剂baclofen对50μM muscarine chloride和100μM nicotine引起的钙离子荧光增强均无明显抑制作用(P>0.05)。结论: GABA为抑制性神经递质,对前庭内侧核细胞内钙离子浓度没有直接的影响,但是可以对烟碱受体引起的细胞外钙离子的内流有抑制作用,并且该效应是通过GABA能A型受体来实现,机制可能是阻断电压门控钙离子通道的开放。
PART 1: An Increase in Intracelluar Free Calcium Ions by Cholinergic Receptors in Rat Medial Vestibular Nucleus
     Objective: To Study the modulations of intracellular free Ca2+ concentrations by cholinergic receptors in rat medial vestibular nucleus. Methods: The fluorescence intensity of medial vestibular nucleus in Fluo-3 AM loaded acute brainstem slices was detected by applying intracellular free Ca2+ measurement technique via confocal laser scanning microscope. Results: Acetylcholine was effective at increasing the fluorescence intensity of medial vestibular nucleus in a concentration dependent manner at a concentration range of 10-5~10-2 M, and the increase by acetylcholine was saturable with increasing concentrations of up to 1mM. The increase of intracelluar free calcium ions levels by 1mM acetylcholine could be inhibited by atropine and mecamylamine, and there is little difference between the inhibition between atropine and mecamylamine (P>0.05). Conclusion: The data provide the evidence that cholinergic receptors induce the increase of intracellular free Ca2+ levels, in a manner related to both muscarinic receptors and nicotinic receptors in rat medial vestibular nucleus.
     PART 2: An Increase in Intracelluar Free Calcium Ions by Muscarinic Receptors in Rat Medial Vestibular Nucleus
     Objective: To Study the modulations of intracellular free Ca2+ concentrations by muscarinic receptors in rat medial vestibular nucleus, and the mechanisms of the modulations. Methods: The fluorescence intensity of medial vestibular nucleus in Fluo-3 AM loaded acute brainstem slices was detected by applying intracellular free Ca2+ measurement technique via confocal laser scanning microscope. Results: Muscarine chloride (a general muscarinic cholinergic agonist) induced a marked increase of fluorescence intensity in medial vestibular nucleus in a concentration dependent fashion at a concentration range of 5~100μM, and the increase by muscarine chloride was saturable with increasing concentrations of up to 50μM. The enhancement of fluorescence intensity by muscarine chloride was significantly reduced by thapsigargin (P<0.01), rather than Ca2+ free artifical cerebrospinal fluid (ACSF) and EGTA (P>0.05). And the increase of fluorescence intensity was also significantly inhibited by pirenzepine and 4-DAMP (P<0.05), rather than methoctramine and tropicamide (P>0.05). Conclusion: The data provide the evidence that muscarinic receptors induce the increase of intracellular free Ca2+ levels through the Ca2+ release of intracellular Ca2+ stores rather than influx of extracellular Ca2+, in a manner related to m1 and m3 subtypes rather than m2 and m4 subtypes of muscarinic receptors in rat medial vestibular nucleus.
     PART 3: An Increase in Intracelluar Free Calcium Ions by Nicotinic Receptors in Rat Medial Vestibular Nucleus
     Objective: To Study the modulations of intracellular free Ca2+ concentrations by nicotinic receptors in rat medial vestibular nucleus, and the mechanisms of the modulations. Methods: The fluorescence intensity of medial vestibular nucleus in Fluo-3 AM loaded acute brainstem slices was detected by applying intracellular free Ca2+ measurement technique via confocal laser scanning microscope. Results: Fluorescence intensity of medial vestibular nucleus was markedly increased by nicotine (a general nicotinic cholinergic agonist) in a dose dependent manner at a concentration range of 10 to 500μM. and the increase by nicotine was saturable with increasing concentrations of up to 100μM. The enhancement of fluorescence intensity by nicotine was significantly reduced by EGTA, nifedipine and in Ca2+ free ASCF (P<0.01), but not in the presence of mibefradil or thapsigargin (P>0.05). The increase was also significantly reduced by Dihydro-β-erythroidine (P<0.01), rather than methyllycaconitine (P>0.05). Conclusion: The results suggest that nicotine increase intracellular free Ca2+ concentrations via the influx of extracellular Ca2+ at least across L-type voltage-gated Ca2+ channels rather than Ca2+ release from intracellular stores, in a manner related to theα4β2 subtype of nicotinic receptors, but notα7 subtype in rat medial vestibular nucleus.
     PART 4: A Change in Intracelluar Free Calcium Ions by GABAergic Receptors in Rat Medial Vestibular Nucleus
     Objective: To Study the modulations of intracellular free Ca2+ concentrations by GABAergic receptors in rat medial vestibular nucleus, and the mechanisms of the modulations. Methods: The fluorescence intensity of medial vestibular nucleus in Fluo-3 AM loaded acute brainstem slices was detected by applying intracellular free Ca2+ measurement technique via confocal laser scanning microscope. Results: 5~500μM GABA could not induce change of the intracellular free Ca2+ concentrations (P>0.05), or inhibit the increase of the intracellular free Ca2+ concentrations by 50μM muscarine chloride (P>0.05). GABA induced the inhibition of increase by 100μM nicotine in a dose dependent manner at a concentration range of 5 to 500μM (P<0.05), and the inhibition by GABA was saturable with increasing concentrations of up to 100μM. 1μM~100μM baclofen (a selective GABAB agonist) could not change the increase in intracellular free Ca2+ levels by 50μM muscarine chloride or 100μM nicotine (P>0.05). Conclusion: GABAergic receptors induce the inhibition of the increase in intracellular free Ca2+ concentrations by nicotinic receptors, in a manner related to GABAA subtype, though blocking L-type voltage-gated Ca2+ channels possibly in rat medial vestibular nucleus.
引文
1. Suarez C, Gonzalez del Rey C, Tolivia J, et al. Morphometric analysis of the vestibular complex in the rat. Laryngoscope, 1993,03(7):762-773.
    2. Barmack NH. Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull, 2003,60(5-6):511-541.
    3. Kawabata A, Sasa M, Kishimoto, et al. Effects of anti-vertigo drugs on medial vestibular nucleus neurons activated by horizontal rotation. Jpn J Pharmacol, 1991,55:101-106.
    4. Burke RE, Fahn S. Choline acetyltransferase activity of the principal vestibular nuclei of rat, studied by micropunch technique. Brain Res, 328:196-199.
    5. Tighilet B, Lacour M. Distribution of choline acetyltransferase immunoreactivity in the vestibular nuclei of normal and unilateral vestibular neurectomized cats. Eur J Neurosci, 1998,10(10):3115-3126.
    6. Calza L, Giardino L, Zanni M, et al. Muscarinic and gamma-aminobutyric acid-ergic receptor changes during vestibular compensation. A quantitative autoradiographic study of the vestibular nuclei complex in the rat. Eur Arch Otorhinolaryngol, 1992,249(1):34-39.
    7. Wamsley JK, Lewis MS, Young WS 3rd, Kuhar MJ. Autoradiographic localization of muscarinic cholinergic receptors in rat brainstem. J Neurosci, 1981,1(2):176-191.
    8. Kong WJ, Egg G, Hussl B, et al. Localization of chat-like immunoreactivity in the vestibular endorgans of the rat. Hear Res, 1994,75(1-2):191-200.
    9. Kong WJ, Hussl B, Thumfart WF, et al. Ultrastructural localization of ChAT-like immunoreactivity in the human vestibular periphery. Hear Res, 1998,119(1-2):96-103.
    10. Kong WJ, Scholtz AW, Hussl B, et al. Localization of efferent neurotransmitters in the inner ear of the homozygous Bronx waltzer mutant mouse. Hear Res,2002,167(1-2):136-155.
    11. Kong WJ, Guo CK, Zhang S, et al. The properties of ACh-induced BK currents in guinea pig type II vestibular hair cells. Hear Res, 2005,209(1-2):1-9.
    12. Torte-Hoba MP, Courjon JH, Leroy MH, et al. Acetylcholinesterase activity changes in medial vestibular complex after hemilabyrinthectomy in the rat. J Vestib Res, 1996,6(2):61-70.
    13. de Waele C, Muhlethaler M, Vidal PP. Neurochemistry of the central vestibular pathways. Brain Res Brain Res Rev, 1995,20(1):24-46.
    14. Felder CC. Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J, 1995,9(8):619-625.
    15. Rodriguze PR, Pascual J, Vilaro T, et al. Autoradiographic distribution of M1, M2, M3, and M4 muscarinic receptor subtypes in Alzheimer’s disease. Synapse, 1997, 26(4):341-350.
    16. Pauly JR. Nicotinic cholinergic receptor feficits in Alzheimer’s disease: Where’s the smoke? J Alzheimers Dis, 1999, 1(4,5): 221-230.
    17. Flynn DD, Ferrari DG, Levey AL, et al. Differential alterations in muscarinic receptor subtypes in Alzheimer’s disease: Implications for cholinergic-based therapies. Life Sci, 1995, 56(11,12) 869-876.
    18. Nordberg A, Alafuzoff L, Winblad B. Nicotinic and muscarinic subtypes in the human brain: Changes with aging and dementia. J Neurosci Res, 1992, 31(1): 103-110. Burke RE, Fahn S. Studies of somatosatin-induced barrel roation in rats. Regul Pept, 1983, 7(3):207-220.
    19. Burke RE, Fahn S. Studies of somatosatin-induced barrel roation in rats. Regul Pept, 1983, 7(3):207-220.
    20. Andre P, Pompeiano O, White SR. Role of muscarinic receptors in the celebellar control of the vestibulospinal reflex gain: cellular mechanisms. Acta Otolaryngol Suppl, 1995, 520(1):87-91.
    21. Ito J, Matsuoka I, Sasa M, et al. Electrophysiologic evidence for involvement of acetylcholine as a neurotransmitter in the lateral vestibular nucleus. Otolaryngol Head Neck Surg, 1981,89(6):1025-1029.
    22. Lloyd GK, Williams M. Neuronal nicotinic acetylcholine receptors asnoval drug targets. Journal of Pharmacol & Experiment Therapeutic, 2000, 292:461 - 467.
    23. Sun Y, Waller HJ, Godfrey DA, et al. Spontaneous activity in rat vestibular nuclei in brain slices and effects of acetylcholine agonists and antagonists. Brain Res, 2002, 26;934(1):58-68.
    24. de Waele C, Muhlethaler M, Vidal PP. Neurochemistry of the central vestibular pathways. Brain Res Brain Res Rev, 1995, 20(1):24-46.
    25. Phelan KD, Gallagher JP. Direct muscarinic and nicotinic receptor-mediated exciation of medial vestibular nucleus neurons in vitro. Synapse, 1992, 10:349-358.
    26. Djamgoz MA. Diversity of GABA receptors in vertebrate outer rentina. Trends Neurosci, 1995, 18:118-120.
    27. Rudolph U, Crestani F, Benke D, et al. Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature, 1999, 401(6755):796-800.
    28. Zakusov VV, Ostrovskaya RU, Bulayev VM. GABA-opiates interactions in the activity of analgesics. Arch Int Pharmacodyn Ther, 1983, 265 (1): 61-75.
    29.许艳,徐满英.伏核注射γ-氨基丁酸对大鼠伏核痛反应神经元放电的影响.中国疼痛医学杂志, 2005, 11(6): 349-353.
    30. Barber RP, Vaughn JE, Saito K, et al. GABAergic terminals are presynaptic to primary afferent terminals in the substantia gelatinosa of therat spinal cord. Brain Res, 1978, 141(1):35-55.
    31.常洁琴,崔广智.γ-氨基丁酸抗心律失常作用.中国药学杂志, 1994, 29(12):752.
    32. Erdo SL ,Wekerle L. GABAA type binding sites on membranes of spermatozoa. Life Sci, 1990, 47(13) :1147-1151.
    33.张辉,张玮,倪江,等. GABA抑制hCG诱发大鼠卵巢黄体细胞孕酮生成.基础医学与临床, 2004, 24(1) :40-43.
    34. Beaman-Hall CM, Wainer BH, Eves E, et al. Expression of glucocorticoid and mineralocorticoid receptors in an immortalized hippocampal neuronal cell line. Brain Res,1996, 726(1-2):141-152.
    35. Yu Z, Cheng G, Hu B. Mechanism of colchicine impairment on learning and memory, and protective effect of CGP36742 in mice. Brain Res, 1997, 750(1-2):53-58.
    36. Ong J, Kerr DI. GABA-receptors in peripheral tissues. Life Sci, 1990, 46(21):1489-1501.
    37. Furuya N, Yabe T, Koizumi T. Neurotransmitters regulating vestibular commissural inhibition in the cat .Acta Otolaryngol Suppl,1991,481:205-208.
    38. Vibert N, Beraneck M, Bantikyan A, et al. Vestibular compensation modifies the sensitivity of vestibular neurons to inhibitory amino acids. Neuroreport, 2000, 11:1921-1927.
    39. Yamanaka T, Him A, Cameron SA, et al. Rapid compensatory changes in GABA receptor efficacy in rat vestibular neurons after unilateral labyrinthectomy. J Physiol, 2000, 523:413-424.
    40. Yamamoto T, Yamanaka T, Matsunaga T. Effects of the neurosteroid dehydroepiandrosterone sulfate on medial vestibular nucleus neurons. Acta Otolaryngol, 1998, 118:185-191.
    1. Suarez C, Gonzalez del Rey C, Tolivia J, et al. Morphometric analysis of the vestibular complex in the rat. Laryngoscope, 1993,03(7):762-773.
    2. Barmack NH. Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull, 2003,60(5-6):511-541.
    3. Burke RE, Fahn S. Choline acetyltransferase activity of the principal vestibular nuclei of rat, studied by micropunch technique. Brain Res, 328:196-199.
    4. Tighilet B, Lacour M. Distribution of choline acetyltransferase immunoreactivity in the vestibular nuclei of normal and unilateral vestibular neurectomized cats. Eur J Neurosci, 1998,10(10):3115-3126.
    5. Calza L, Giardino L, Zanni M, et al. Muscarinic and gamma-aminobutyric acid-ergic receptor changes during vestibular compensation. A quantitative autoradiographic study of the vestibular nuclei complex in the rat. Eur Arch Otorhinolaryngol, 1992,249(1):34-39.
    6. Wamsley JK, Lewis MS, Young WS 3rd, et al. Autoradiographic localization of muscarinic cholinergic receptors in rat brainstem. J Neurosci, 1981,1(2):176-191.
    7. Clarke PB, Schwartz RD, Paul SM, et al. Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin. J Neurosci, 1985,5(5):1307-1315.
    8. Kawabata A, Sasa M, Kishimoto, et al. Effects of anti-vertigo drugs on medial vestibular nucleus neurons activated by horizontal rotation. Jpn J Pharmacol, 1991,55:101-106.
    9. Kong WJ, Egg G, Hussl B, et al. Localization of chat-like immunoreactivity in the vestibular endorgans of the rat. Hear Res, 1994,75(1-2):191-200.
    10. Kong WJ, Hussl B, Thumfart WF, et al. Ultrastructural localization of ChAT-like immunoreactivity in the human vestibular periphery. Hear Res, 1998,119(1-2):96-103.
    11. Kong WJ, Scholtz AW, Hussl B, et al. Localization of efferent neurotransmitters in the inner ear of the homozygous Bronx waltzer mutant mouse. Hear Res, 2002,167(1-2):136-155.
    12. Kong WJ, Guo CK, Zhang S, et al. The properties of ACh-induced BK currents in guinea pig type II vestibular hair cells. Hear Res, 2005,209(1-2):1-9.
    13. Torte-Hoba MP, Courjon JH, Leroy MH, et al. Acetylcholinesterase activity changes in medial vestibular complex after hemilabyrinthectomy in the rat. J Vestib Res, 1996,6(2):61-70.
    14. de Waele C, Muhlethaler M, Vidal PP. Neurochemistry of the central vestibular pathways. Brain Res Brain Res Rev, 1995,20(1):24-46.
    15. Felder CC. Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J, 1995,9(8):619-625.
    16. Chapman CA, Lacaille JC. Intrinsic theta-frequency membrane potential oscillations in hippocampal CA1 interneurons of stratum lacunosum-moleculare. J Neurophysiol, 1999,81(3):1296-1307.
    17. Godfrey D.A, Walier H.J. Sampling fluid from slice chambers by microsiphoning. J. Neurosci. Meth, 1992, 41:167-173.
    18. Grassi S, Malfagia C, Pettorossi V.E. Effects of metabotropic glutamate receptor block on the synapic transmission and plasticity in the rat medial vestibular nuclei. Neroscience, 1998, 87:159-169.
    19. Waller H.J, Godfrey D.A. Functional characteristics of spontaneously active neurons in rat dorsal cochlear nucleus in vitro. J. Neurophysiol, 1994, 71:467-478.
    20. Sun Y, Waller HJ, Godfrey DA, et al. Spontaneous activity in rat vestibular nuclei in brain slices and effects of acetylcholine agonists and antagonists. Brain Res, 2002 Apr 26;934(1):58-68.
    21. Wada MH. Detecting calcium response in cultured cells using the visible wave lenth Ca2+ probe, Fluo-3. Meridran Instruments Application, 1989:Note E-2
    22. Hegg CC, Lucero MT. Dopamine reduces odor- and elevated-K(+)-induced calcium responses in mouse olfactory receptor neurons in situ. J Neurophysiol, 2004:91(4):1492-1499.
    23. Nakamichi N, Ohno H, Nakamura Y, et al. Blockade by ferrous iron of Ca2+ influx through N-methyl-D-aspartate receptor channels in immature cultured rat cortical neurons. J Neurochem, 2002, 83(1):1-11.
    24. Fujino K, Oertel D. Cholinergic modulation of stellate cells in the mammalian ventral cochlear nucleus. J Neurosci. 2001, 21(18):7372-7383.
    25. Barmack NH, Baughman RW, Eckenstein FP, et al. Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retrograde and orthograde tracers. J Comp Neurol, 1992, 317:250-270.
    26. Tighilet B, Lacour M. Distribution of choline acetyltransferase immunoreactivity in the vestibular nuclei of normal and unilateral vestibular neurectomized cats. Eur. J. Neurosci, 1998, 10:3115–3126.
    27. Waele C D, Abitol M, Chat M, et al. Distribution of glutamatergic receptors and GAD mRNA-containing neurons in the vestibular nuclei of normal and hemilabyrinthectomized rats. Eur. J. Neurosci, 1993, 6:565-576.
    28. Kumoi K, Saito N, Tanaka C. Immunohistochemical localization ofγ-aminobutyric acid- and aspartate-containing neurons in the guinea pig vestibular nuclei. Brain Res, 1987, 416:22-23.
    29. López I, Wu J Y, Meza G. Immunocytochemical evidence for an afferent GABAergic neurotransmission in the guinea pig vestibular system. Brain Res, 1992,589:341-348.
    30. Reichenberger I, Straka H, Ottersen O P, et al. Distribution of GABA, glycine, and glutamate immunoreactivities in the vestibular nuclear complex of the frog. J. Comp. Neurol, 1997,377:149-164.
    31. Tighilet B, Lacour M. Gamma amino butyric acid (GABA) immunoreactivity in thevestibular nuclei of normal and unilateral vestibular neurectomized cats. Eur. J. Neurosci, 2001,13: 2255-2267.
    32. Li H Y, Godfrey T G, Godfrey D A, et al. Quantitative changes of amino acid distributions in the rat vestibular nuclear complex after unilateral vestibular ganglionectomy. J. Neurochem, 1996,66:1550-1564.
    33. Walberg F, Ottersen O P, Rinvik E. GABA, glycine, aspartate, glutamate and taurine in the vestibular nuclei: an immunocytochemical investigation in the cat. Exp. Brain Res, 1990,79:547-563.
    34. Yamanaka T, Sasa M, Matsunaga T. Glutamate as a primary afferent neurotransmitter in the medial vestibular nucleus as detected by in vivo microdialysis. Brain Res, 1997,762243-246.
    35. de Waele C, Muhlethaler M, Vidal PP. Neurochemistry of the central vestibular pathways. Brain Res Rev, 1995, 20:24-46
    36. Sun Y, Waller HJ, Godfrey DA, et al. Spontaneous activity in rat vestibular nuclei in brain slices and effects of acetylcholine agonists and antagonists. Brain Res, 2002, 934:58-68
    37. Ujihara H, Akaike A, Sasa M, et al. Electrophysiological evidence for cholinoceptive neyrons in the medial vestibular nucleus:studies on rat brain stem in vitro. Neurosci Lett, 1988, 93:231-235
    38. Phelan KD, Gallagher JP. Direct muscarinic and nicotinic receptor-mediated exciation of medial vestibular nucleus neurons in vitro. Synapse, 1992, 10:349-358
    39. Ujihara H, Akaike A, Sasa M, et al. Muscarinic regulation of spontaneously active medial vestibular neurons in vitro. Neurosci Lett, 1989, 106:205-210.
    40. Calza L, Giardino L, Zanni M, et al. Muscarinic and gamma-aminobutyric acid-ergic receptor changes during vestibular compensation. A quantitative autoradiographic study of the vestibular nuclei complex in the rat. Eur Arch Otorhinolaryngol, 1992, 249:34-39.
    41. Pedigo NW Jr, Brizzee KR. Muscarinic cholinergic receptors in area postrema and brainstem areas regulating emesis. Brain Res Bull, 1985, 14:169-177.
    42. Armstrong DM, Saper CB, Levey AI, et al. Distribution of cholinergic neurons in rat brain: demonstrated by the immunocytochemical localization of choline acetyltransferase. J Comp Neurol, 1983,216(1):53-68.
    43. Satoh K, Armstrong DM, Fibiger HC. A comparison of the distribution of central cholinergic neurons as demonstrated by acetylcholinesterase pharmacohistochemistry and choline acetyltransferase immunohistochemistry. Brain Res Bull, 1983,11(6):693-720.
    44. Barmack NH, Baughman RW, Eckenstein FP, et al. Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retrograde and orthograde tracers. J Comp Neurol. 1992, 317(3):250-270.
    45. Carpenter MB, Chang L, Pereira AB, et al. Comparisons of the immunocytochemical localization of choline acetyltransferase in the vestibular nuclei of the monkey and rat. Brain Res, 1987, 418(2):403-408.
    46. Burke RE, Fahn S. Studies of somatosatin-induced barrel roation in rats. Regul Pept, 1983, 7(3):207-220.
    47. Fukushima M, Kitahara T, Takeda N, et al. Role of cholinergic mossy fibers in medical vestibular and prepositus hypoglossal nuclei in vestibular compensation, Neuroscience, 2001, 102(1):159-166.
    48. Andre P, Pompeiano O, White SR. Role of muscarinic receptors in the celebellar control of the vestibulospinal reflex gain: cellular mechanisms. Acta Otolaryngol Suppl, 1995, 520(1):87-91.
    49. Matsuoka I, Ito J, Takahashi H, et al. Experimental vestibular pharmacology a minireview with special reference to neuroactive substances and antivertigo drugs. Acta otolaryngol, 1985, Supp 1419:62-70.
    50. Taylor P. Agens acting at the neuromuscular jumction and autonomic ganglia. In the pharmacological basis of therapeutics, A goodman-Gilman, TH Rall, AS Nies, and P Taylor, eds.(New York: Pergamon Press), 1990a:166-186.
    51. Taylor P. Cholinergic agonists. In the pharmacological basis of therapeutics, A goodman-Gilman, TH Rall, AS Nies, and P Taylor, eds.(New York: Pergamon Press), 1990b:122-149.
    52. Lindstrom J, Anand R, Gerzanich V, et al. Structure and function of neuronal nicotinic acetylcholine receptors. Prog Brain Res, 1996;109:125-137.
    53. Itier V, Bertrand D. Neuronal nicotinic receptors: from protein structure to function. FEBS Lett, 2001, 504(3):118-125.
    54. Leonard S, Bertrand D. Neuronal nicotinic receptors: from structure to function. Nicotine Tob Res, 2001, 3(3):203-223.
    55. Patrick J, Boulter J, Deneris E, et al. Structure and function of neuronal nicotinic acetylcholine receptors deduced from cDNA clones. Prog Brain Res, 1989, 79:27-33.
    56. Weiland S, Bertrand D, Leonard S. Neuronal nicotinic acetylcholine receptors: from the gene to the disease. Behav Brain Res, 2000 Aug;113(1-2):43-56.
    57. Bertrand D, Galzi JL, Devillers-Thiery A, et al. Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal alpha 7 nicotinic receptor. Proc Natl Acad Sci U S A, 1993, 1:90.
    58. Seguela P, Wadiche J, Dineley-Miller K, et al. Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci, 1993, 13(2):596-604.
    59. Berg DK, Conroy WG. Nicotinic alpha 7 receptors: synaptic options and downstream signaling in neurons. J Neurobiol, 2002, 53(4):512-523.
    60. Rathouz MM, Berg DK. Synaptic-type acetylcholine receptors raise intracellular calcium levels in neurons by two mechanisms. J Neurosci, 1994, 14(11 Pt 2):6935-6945.
    61. Rathouz MM, Vijayaraghavan S, Berg DK. Elevation of intracellular calcium levels in neurons by nicotinic acetylcholine receptors. Mol Neurobiol, 1996, 12(2):117-131.
    1. Rodriguze PR, Pascual J, Vilaro T, et al. Autoradiographic distribution of M1, M2, M3, and M4 muscarinic receptor subtypes in Alzheimer’s disease. Synapse, 1997, 26(4):341-350.
    2. Pauly JR. Nicotinic cholinergic receptor feficits in Alzheimer’s disease: Where’s the smoke? J Alzheimers Dis, 1999, 1(4,5): 221-230.
    3. Flynn DD, Ferrari DG, Levey AL, et al. Differential alterations in muscarinic receptor subtypes in Alzheimer’s disease: Implications for cholinergic-based therapies. Life Sci, 1995, 56(11,12) 869-876.
    4. Nordberg A, Alafuzoff L, Winblad B. Nicotinic and muscarinic subtypes in the human brain: Changes with aging and dementia. J Neurosci Res, 1992, 31(1): 103-110.
    5. Burke RE, Fahn S. Studies of somatosatin-induced barrel roation in rats. Regul Pept, 1983, 7(3):207-220.
    6. Andre P, Pompeiano O, White SR. Role of muscarinic receptors in the celebellar control of the vestibulospinal reflex gain: cellular mechanisms. Acta Otolaryngol Suppl, 1995, 520(1):87-91.
    7. Ito J, Matsuoka I, Sasa M, et al. Electrophysiologic evidence for involvement of acetylcholine as a neurotransmitter in the lateral vestibular nucleus. Otolaryngol Head Neck Surg, 1981,89(6):1025-1029.
    8. Chapman CA, Lacaille JC. Intrinsic theta-frequency membrane potential oscillations in hippocampal CA1 interneurons of stratum lacunosum-moleculare. J Neurophysiol. 1999,81(3):1296-307.
    9. Godfrey DA, Walier HJ. Sampling fluid from slice chambers by microsiphoning. J. Neurosci. Meth, 1992, 41:167-173.
    10. Grassi S, Malfagia C, Pettorossi VE. Effects of metabotropic glutamate receptor blockon the synapic transmission and plasticity in the rat medial vestibular nuclei. Neroscience, 1998, 87:159-169.
    11. Waller HJ, Godfrey DA. Functional characteristics of spontaneously active neurons in rat dorsal cochlear nucleus in vitro. J. Neurophysiol, 1994, 71:467-478.
    12. Sun Y, Waller HJ, Godfrey DA, et al. Spontaneous activity in rat vestibular nuclei in brain slices and effects of acetylcholine agonists and antagonists. Brain Res, 2002, 934(1):58-68.
    13. Wada MH. Detecting calcium response in cultured cells using the visible wave lenth Ca2+ probe, Fluo-3. Meridran Instruments Application, 1989, Note E-2
    14. Hegg CC, Lucero MT. Dopamine reduces odor- and elevated-K(+)-induced calcium responses in mouse olfactory receptor neurons in situ. J Neurophysiol, 2004, 91(4):1492-1499.
    15. Nakamichi N, Ohno H, Nakamura Y, et al. Blockade by ferrous iron of Ca2+ influx through N-methyl-D-aspartate receptor channels in immature cultured rat cortical neurons. J Neurochem, 2002 , 83(1):1-11.
    16. Suarez C, Gonzalez del Rey C, Tolivia J, et al. Morphometric analysis of the vestibular complex in the rat. Laryngoscope, 1993, 103(7):762-773.
    17. Fujino K, Oertel D. Cholinergic modulation of stellate cells in the mammalian ventral cochlear nucleus. J Neurosci, 2001, 21(18):7372-7383.
    18. Hammer R, Berrie CP, Birdsall NJ, et al. Pirenzepine distinguishes between different subclasses of muscarinic receptors. Nature, 1980 , 283(5742):90-92.
    19. Bonner TI, Buckley NJ, Young AC, et al. Identification of a family of muscarinic acetylcholine receptor genes. Science, 1987, 237(4814):527-532.
    20. Felder CC. Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J, 1995, 9(8):619-625.
    21. Jones SV. Muscarinic receptor subtypes: modulation of ion channels. Life Sci, 1993, 52(5-6):457-464.
    22. Bonner TI. The molecular basis of muscarinic receptor diversity. Trends Neurosci, 1989, 12(4):148-151.
    23. Brauner-Osborne H, Brann MR. Pharmacology of muscarinic acetylcholine receptor subtypes (m1-m5): high throughput assays in mammalian cells. Eur J Pharmacol, 1996, 295(1):93-102.
    24. Blin N, Yun J, Wess J. Mapping of single amino acid residues required for selective activation of Gq/11 by the m3 muscarinic acetylcholine receptor. J Biol Chem, 1995, 270(30):17741-17748.
    25. Hille B. Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci, 1994, 17(12):531-536.
    26. Rathouz MM, Vijayaraghavan S, Berg DK. Acetylcholine differentially affects intracellular calcium via nicotinic and muscarinic receptors on the same population of neurons. J Biol Chem, 1995, 270(24):14366-14375.
    27. Power JM, Sah P. Nuclear calcium signaling evoked by cholinergic stimulation in hippocampal CA1 pyramidal neurons. J Neurosci, 2002, 22(9):3454-3462.
    28. Smith MR et al. Regulation of firing response gain by calcium-dependent mechanisms in vestibular nucleus neurons. J-Neurophysiol, 2002, 87(4): 2031-2042.
    29. Henzi V, MacDermott AB. Characteristics and function of Ca(2+)- and inositol
    1,4,5-trisphosphate-releasable stores of Ca2+ in neurons. Neuroscience, 1992,
    46(2):251-273.
    30. Tsien RW, Tsien RY. Calcium channels, stores, and oscillations. Annu Rev Cell Biol, 1990,6:715-760.
    31. Berridge MJ. Neuronal calcium signaling. Neuron, 1998, 21(1):13-26.
    32. Sharp AH, McPherson PS, Dawson TM, et al. Differential immunohistochemical localization of inositol 1,4,5-trisphosphate- and ryanodine-sensitive Ca2+ release channels in rat brain. J Neurosci, 1993, 13(7):3051-63.
    33. Caulfield MP. Muscarinic receptors--characterization, coupling and function.Pharmacol Ther, 1993, 58(3):319-379.
    34. Irving AJ, Collingridge GL. A characterization of muscarinic receptor-mediated intracellular Ca2+ mobilization in cultured rat hippocampal neurones. J Physiol, 1998, 511 ( Pt 3):747-759.
    35. Allen TG, Brown DA. M2 muscarinic receptor-mediated inhibition of the Ca2+ current in rat magnocellular cholinergic basal forebrain neurones. J Physiol, 1993, 466:173-189.
    36. Yan Z, Surmeier DJ. Muscarinic (m2/m4) receptors reduce N- and P-type Ca2+ currents in rat neostriatal cholinergic interneurons through a fast, membrane-delimited, G-protein pathway. J Neurosci, 1996, 16(8):2592-2604.
    37. Stewart AE, Yan Z, Surmeier DJ, et al. Muscarine modulates Ca2+ channel currents in rat sensorimotor pyramidal cells via two distinct pathways. J Neurophysiol, 1999, 81(1):72-84.
    1. Lloyd GK, Williams M. Neuronal nicotinic acetylcholine receptors asnoval drug targets. Journal of Pharmacol & Experiment Therapeutic, 2000, 292:461 - 467.
    2. Sun Y, Waller HJ, Godfrey DA, et al. Spontaneous activity in rat vestibular nuclei in brain slices and effects of acetylcholine agonists and antagonists. Brain Res, 2002, 26;934(1):58-68.
    3. de Waele C, Muhlethaler M, Vidal PP. Neurochemistry of the central vestibular pathways. Brain Res Brain Res Rev, 1995, 20(1):24-46.
    4. Chapman CA, Lacaille JC. Intrinsic theta-frequency membrane potential oscillations in hippocampal CA1 interneurons of stratum lacunosum-moleculare. J Neurophysiol, 1999,81(3):1296-1307.
    5. Godfrey DA, Walier HJ. Sampling fluid from slice chambers by microsiphoning. J Neurosci Meth, 1992, 41:167-173.
    6. Grassi S, Malfagia C, Pettorossi VE. Effects of metabotropic glutamate receptor block on the synapic transmission and plasticity in the rat medial vestibular nuclei. Neroscience, 1998, 87:159-169.
    7. Waller HJ, Godfrey DA. Functional characteristics of spontaneously active neurons in rat dorsal cochlear nucleus in vitro. J Neurophysiol, 1994, 71:467-478.
    8. Wada MH. Detecting calcium response in cultured cells using the visible wave lenth Ca2+ probe, Fluo-3. Meridran Instruments Application, 1989, Note E-2
    9. Hegg CC, Lucero MT. Dopamine reduces odor- and elevated-K(+)-induced calcium responses in mouse olfactory receptor neurons in situ. J Neurophysiol, 2004, 91(4):1492-1499.
    10. Nakamichi N, Ohno H, Nakamura Y, et al. Blockade by ferrous iron of Ca2+ influx through N-methyl-D-aspartate receptor channels in immature cultured rat corticalneurons. J Neurochem, 2002, 83(1):1-11.
    11. Suarez C, Gonzalez del Rey C, Tolivia J, et al. Morphometric analysis of the vestibular complex in the rat. Laryngoscope, 1993, 103(7):762-773.
    12. Fujino K, Oertel D. Cholinergic modulation of stellate cells in the mammalian ventral cochlear nucleus. J Neurosci, 2001, 21(18):7372-7383.
    13. Lindstrom J, Anand R, Gerzanich V, et al. Structure and function of neuronal nicotinic acetylcholine receptors. Prog Brain Res, 1996;109:125-137.
    14. Itier V, Bertrand D. Neuronal nicotinic receptors: from protein structure to function. FEBS Lett, 2001, 504(3):118-125.
    15. Leonard S, Bertrand D. Neuronal nicotinic receptors: from structure to function. Nicotine Tob Res, 2001, 3(3):203-323.
    16. Patrick J, Boulter J, Deneris E, et al. Structure and function of neuronal nicotinic acetylcholine receptors deduced from cDNA clones. Prog Brain Res, 1989, 79:27-33.
    17. Weiland S, Bertrand D, Leonard S. Neuronal nicotinic acetylcholine receptors: from the gene to the disease. Behav Brain Res, 2000 , 113(1-2):43-56.
    18. Bertrand D, Galzi JL, Devillers-Thiery A, et al. Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal alpha 7 nicotinic receptor. Proc Natl Acad Sci U S A, 1993, 1:90.
    19. Seguela P, Wadiche J, Dineley-Miller K, et al. Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci, 1993, 13(2):596-604.
    20. Berg DK, Conroy WG. Nicotinic alpha 7 receptors: synaptic options and downstream signaling in neurons. J Neurobiol, 2002, 53(4):512-523.
    21. Rathouz MM, Berg DK. Synaptic-type acetylcholine receptors raise intracellular calcium levels in neurons by two mechanisms. J Neurosci, 1994, 14(11 Pt 2):6935-6945.
    22. Rathouz MM, Vijayaraghavan S, Berg DK. Acetylcholine differentially affectsintracellular calcium via nicotinic and muscarinic receptors on the same population of neurons. J Biol Chem, 1995, 270(24):14366-14375.
    23. Letz B, Schomerus C, Maronde E, Korf HW, Korbmacher C. Stimulation of a nicotinic ACh receptor causes depolarization and activation of L-type Ca2+ channels in rat pinealocytes. J Physiol, 1997, 499 ( Pt 2):329-340.
    24. Oikawa H, Nakamichi N, Kambe Y, et al. An increase in intracellular free calcium ions by nicotinic acetylcholine receptors in a single cultured rat cortical astrocyte. J Neurosci Res, 2005, 79(4):535-544.
    25. Sharma G, Vijayaraghavan S. Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc Natl Acad Sci U S A, 2001, 98(7):4148-4153.
    26. Phelan KD, Gallagher JP. Direct muscarinic and nicotinic receptor-mediated exciation of medial vestibular nucleus neurons in vitro. Synapse, 1992, 10:349-358
    1. Djamgoz MA. Diversity of GABA receptors in vertebrate outer rentina. Trends Neurosci, 1995, 18:118-120.
    2. Joachim B , Andreas F. GABAC receptors. Trends Neurosci , 1995, 18(12) :515 - 519.
    3.张道启,杨雄里. GABAC受体及其功能特性.生命科学, 1997, 9(4) :158 - 161.
    4.魏继业,王海龙,杨雄里.新型γ-氨基丁酸受体: GABAC受体.生理科学进展, 1995, 26(1):7-11.
    5. Rudolph U, Crestani F, Benke D, et al. Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature, 1999, 401(6755):796-800.
    6. Zakusov VV, Ostrovskaya RU, Bulayev VM. GABA-opiates interactions in the activity of analgesics. Arch Int Pharmacodyn Ther, 1983, 265 (1) :61-75.
    7.许艳,徐满英.伏核注射γ-氨基丁酸对大鼠伏核痛反应神经元放电的影响.中国疼痛医学杂志, 2005, 11(6) :349-353.
    8. Barber RP, Vaughn JE, Saito K, et al . GABAergic terminals are presynaptic to primary afferent terminals in the substantia gelatinosa of therat spinal cord. Brain Res, 1978, 141(1):35-55.
    9.常洁琴,崔广智.γ-氨基丁酸抗心律失常作用.中国药学杂志, 1994, 29(12):752.
    10. Erdo SL ,Wekerle L. GABAA type binding sites on membranes of spermatozoa. Life Sci, 1990, 47(13) :1147-1151.
    11.张辉,张玮,倪江,等. GABA抑制hCG诱发大鼠卵巢黄体细胞孕酮生成.基础医学与临床, 2004, 24(1) :40-43.
    12. Beaman-Hall CM, Wainer BH, Eves E, et al. Expression of glucocorticoid and mineralocorticoid receptors in an immortalized hippocampal neuronal cell line. Brain Res,1996, 726(1-2):141-152.
    13. Yu Z, Cheng G, Hu B. Mechanism of colchicine impairment on learning and memory, and protective effect of CGP36742 in mice. Brain Res, 1997, 750(1-2):53-58.
    14. Ong J, Kerr DI. GABA-receptors in peripheral tissues. Life Sci, 1990, 46(21):1489-1501.
    15. Furuya N, Yabe T, Koizumi T. Neurotransmitters regulating vestibular commissural inhibition in the cat .Acta Otolaryngol Suppl,1991,481:205-208.
    16. Ito M, Highstein SM, Fukuda J. Cerebellar inhibition of the vestibulo-ocular reflex in rabbit and cat and its block age by picrotoxin. BrainRes, 1970, 17:524-526.
    17. Vibert N, Beraneck M, Bantikyan A, et al. Vestibular compensation modifies the sensitivity of vestibular neurons to inhibitory amino acids. Neuroreport, 2000, 11:1921-1927.
    18. Yamanaka T, Him A, Cameron SA, et al. Rapid compensatory changes in GABA receptor efficacy in rat vestibular neurons after unilateral labyrinthectomy. J Physiol, 2000, 523:413-424.
    19. de Waele C, Muhlethaler M, Vidal PP. Neurochemistry of the central vestibular pathways. Brain Res Rev, 1995, 20:24-46.
    20. Yamamoto T, Yamanaka T, Matsunaga T. Effects of the neurosteroid dehydroepiandrosterone sulfate on medial vestibular nucleus neurons. Acta Otolaryngol, 1998, 118:185-191.
    21. Chapman CA, Lacaille JC. Intrinsic theta-frequency membrane potential oscillations in hippocampal CA1 interneurons of stratum lacunosum-moleculare. J Neurophysiol. 1999,81(3):1296-307.
    22. Godfrey DA, Walier HJ. Sampling fluid from slice chambers by microsiphoning. J. Neurosci. Meth, 1992, 41:167-173.
    23. Grassi S, Malfagia C, Pettorossi VE. Effects of metabotropic glutamate receptor block on the synapic transmission and plasticity in the rat medial vestibular nuclei. Neroscience, 1998, 87:159-169.
    24. Waller HJ, Godfrey DA. Functional characteristics of spontaneously active neurons in rat dorsal cochlear nucleus in vitro. J. Neurophysiol, 1994, 71:467-478.
    25. Sun Y, Waller HJ, Godfrey DA, Rubin AM. Spontaneous activity in rat vestibular nuclei in brain slices and effects of acetylcholine agonists and antagonists. Brain Res. 2002, 934(1):58-68.
    26. Wada MH. Detecting calcium response in cultured cells using the visible wave lenth Ca2+ probe, Fluo-3. Meridran Instruments Application, 1989,Note E-2.
    27. Hegg CC, Lucero MT. Dopamine reduces odor- and elevated-K(+)-induced calcium responses in mouse olfactory receptor neurons in situ. J Neurophysiol. 2004, 91(4):1492-1499.
    28. Nakamichi N, Ohno H, Nakamura Y, et al. Blockade by ferrous iron of Ca2+ influx through N-methyl-D-aspartate receptor channels in immature cultured rat cortical neurons. J Neurochem, 2002,83(1):1-11.
    29. Suarez C, Gonzalez del Rey C, Tolivia J, et al. Morphometric analysis of the vestibular complex in the rat. Laryngoscope, 1993, 103(7):762-773.
    30. Fujino K, Oertel D. Cholinergic modulation of stellate cells in the mammalian ventral cochlear nucleus. J Neurosci. 2001, 21(18):7372-7383.
    31. Whiting PI. The GABAA receptor gene family: new targets for therapeutic intervention. Neurochem Int, 1999, 34(5) :387 - 390.
    32. Rudolph U, Crestani F, Mohler H. GABA(A) receptor subtypes: dissecting their pharmacological functions. Trends Pharmacol Sci, 2001, 22(4):188-194
    33. Hill DR, Bowery NG. 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature, 1981,290(5802):149-152.
    34. Kaupmann K, Huggel K, Heid J, et al. Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature, 1997, 386(6622):239-246.
    35. Jensen BL. Somatic development in cleidocranial dysplasia. Am J Med Genet, 1990:
    35 (1) :692-274.
    36. McKernan RM, Whiting PJ . Which GABAA-receptor subtypes really occur in thebrain? Trends Neurosci, 1996, 19 (4) :139– 143
    37. Vidal PP, Vibert N, Serafin M, et al. Intrinsic physiological and pharmacological properties of central vestibular neurons. Adv Otorhinolaryngol, 1999, 55:26-81.
    38. Reichenberger I, Straka H, Ottersen OP, et al. Distribution of GABA, glycine, and glutamate immunoreactivities in the vestibular neuclear complex of the frog. J Comp Neurol, 1997, 377(2):149-164.
    39. Holstein GR, Martinelli GP, Cohen B. L-bacolofen-sensitive GABAB binding sites in the medial vesibualr nucleus localized by immunocytochemisty. Brain Res, 1992, 581(1):175-180.
    40. de Waele C, Abitbol M, Chat M, et al. Distribution of glutamatergic receptors and GAD mRNA-containing neurons in the vestibular nucli of normal and hemilabyrinthectomized rats. Eur J Neurosci, 1994, 6(4)565-576.
    41.汪绪武,孔维佳.大鼠前庭内侧核γ-氨基丁酸受体mRNA的表达.第三军医大学学报, 2005, 27(21): 2124-2138.
    42.汪绪武,孔维佳.γ-氨基丁酸A受体对在体前庭内侧核神经元调控的电生理研究.中华耳鼻咽喉头颈外科杂志, 2005, 40(11): 830-834.
    43. Smith PF, Darlington CL, Hubbard JI. Evidence for inhibitory amino acid receptor on guinea pig medial vestibular nucleus neurons in vitro. Neurosci Lett, 1991, 121:244-246.
    44. Dutia MB, Johnston AR, McQuen DA. Tonic activity of rat medial vestibular nucleus in vitro and its inhibition by GABA. Exp Brain Res, 1992, 84:466-472.
    45. Sargent EW, Paige GD. The primate vestibulo-ocular reflex during combined linear and angular head motion. Exp. Brain Res, 87:75–84.
    46. Furuya N, Koizumi T. Neurotransmitters of vestibular commissural inhibition in the cat. Acta Otolaryngol (Stockh.), 118: 64–69.
    47. Him A, Johnston AR, Yau JL, et al. Tonic activity and GABA responsiveness of medial vestibular nucleus neurons in aged rats. Neuroreport, 2001, 12(18):3965-3968.
    48. Magnusson AK, Ulfendahl M, Tham R. Early compensation of vestibulo-oculomotor symptoms after unilateral vestibular loss in rats is related to GABA(B) receptors function. Neuroscience, 2002,111(3):625-634.
    49. Xiao J, Wang Y, Wang SR. Effects of glutamatergic, Cholinergic and gabaergic antagonists on tectal cells in toads. Neuroscience, 1990, 90(3):1061-1067.
    50. Mouginot D, Gahwiler BH. Characterization of synaptic connections between cortex and deep nuclei of the rat cerebellum in vitro. Neuroscience, 1995, 64(3):699-712.
    1. Barmack NH, Fredette BJ, Mugnaini E. Parasolitary nucleus: a source of GABAergic vestibular information to the inferior olive of rat and rabbit. J Comp Neurol, 1998, 392:352–372.
    2. Blazquez P, Partsalis A, Gerrits NM, et al. Input of anterior and posterior semicircular canal interneurons encoding head-velocity to the dorsal Y group of the vestibular nuclei. J Neurophysiol, 2000, 83:2891–2904.
    3. Brodal A. The vestibular nuclei in the macaque monkey. J Comp Neurol, 227 (1984): 252–266.
    4. Frederickson CJ, Trune DR. Cytoarchitecture and saccular innervation of nucleus y in the mouse. J Comp Neurol, 1986, 252: 302–322.
    5. Bello S, Paige GD, Highstein SM. The squirrel monkey vestibulo-ocular reflex and adaptive plasticity in yaw, pitch, and roll. Exp Brain Res, 1991, 87:57–66.
    6. Carpenter MB, Cowe RJ. Connections and oculomotor projections of the superior vestibular nucleus and cell group‘y’. Brain Res, 1985, 336:265–287.
    7. Zeeuw CID, Gerrits NM, Voogd J, et al. The rostral dorsal cap and ventrolateral outgrowth of the rabbit inferior olive receive a GABAergic input from dorsal group Y and the ventral dentate nucleus. J Comp Neurol ,1994,341:420–432.
    8. Wentzel PR, Wylie DR, Ruigrok TJ, et al. Olivary projecting neurons in the nucleus prepositus hypoglossi, group y and ventral dentate nucleus do not project to the oculomotor complex in the rabbit and the rat. Neurosci, Lett, 1995, 190: 45–48.
    9. Arts MP, Zeeuw CI De, Lips J, et al. Effects of nucleus prepositus hypoglossi lesions on visual climbing fiber activity in the rabbit flocculus. J Neurophysiol, 2000, 84:2552–2563.
    10. Barmack NH, Fagerson M, Errico P. Cholinergic projection to the dorsal cap of the inferior olive of the rat, rabbit and monkey, J Comp Neurol, 1993,328:263–281.
    11. Zeeuw CI De, Wentzel P, Mugnaini E. Fine structure of the dorsal cap of the inferior olive and its GABAergic and non-GABAergic input from the nucleus prepositus hypoglossi in rat and rabbit. J Comp Neurol, 1993,327:63–82.
    12. McFarland JL, Fuchs AF. Discharge patterns in nucleus prepositus hypoglossi and adjacent medial vestibular nucleus during horizontal eye movement in behaving Macaques. J Neurophysiol, 1992, 68: 319–332.
    13. Ono S, Kushiro K, Zakir M, et al. Properties of utricular and saccular nerve-activated vestibulocerebellar neurons in cats. Exp Brain Res, 2000, 134:1–8.
    14. Zhang X, Zakir M, Meng H, et al. Convergence of the horizontal semicircular canal and otolith afferents on cat single vestibular neurons. Exp Brain Res, 2001,140:1–11.
    15. Angelaki DE, Dickman JD. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses. J Neurophysiol, 2000, 84:2113–2132.
    16. Newlands SD, Kevetter GA, Perachio AA. A quantitative study of the vestibular commissures in the gerbil. Brain Res, 1989, 487 :152– 157.
    17. Uchino Y, Sato H, Zakir M, et al. Commissural effects in the otolith system. Exp Brain Res, 2001, 136:421–430.
    18. Büttner-Ennever JA, Horn AKE, Graf W, et al. Modern concepts of brainstem anatomy—from extraocular motoneurons to proprioceptive pathways. Neurobiol, 2002, 956:75–84.
    19. Graf W, McCrea RA, Baker R. Morphology of posterior canal related secondary vestibular neurons in rabbit and cat. Exp Brain Res, 1983, 52:125–138.
    20. Bacskai T, Szekely G, Matesz C. Ascending and descending projections of the lateral vestibular nucleus in the rat. Acta Biol, 2002, 53:7–21.
    21. Buisseret-Delmas C, Compoint C, Delfini C, et al. Organisation of reciprocal connections between trigeminal and vestibular nuclei in the rat. J Comp Neurol, 1999,
    409: 153–168.
    22. Fukushima K, Kaneko CRS, Fuchs AF. The neuronal substrate of integration in the oculomotor system. Prog Neurobiol, 1992, 39: 609–639.
    23. Shiroyama T, Kayahara T, Yasui Y, et al. The vestibular nuclei of the rat project to the lateral part of the thalamic parafascicular nucleus (centromedian nucleus in primates). Brain Res, 1995, 704:130–134.
    24. Shiroyama T, Kayahara T, Yasui Y, et al. Projections of the vestibular nuclei to the thalamus in the rat: a Phaseolus vulgaris leucoagglutinin study. J Comp Neurol, 1999, 407:318–332.
    25. Akbarian S, Grüsser OJ, Guldin WO. Thalamic connections of the vestibular cortical fields in the squirrel monkey (Saimiri sciureus). J Comp Neurol, 1992, 326:423–441.
    26. Fukushima K. Corticovestibular interactions: anatomy, electrophysiology and functional considerations. Exp Brain Res, 1997, 117:1–16.
    27. Akbarian S, Grusser OJ, Guldin WO. Corticofugal projections to the vestibular nuclei in squirrel–monkeys—further evidence of multiple cortical vestibular fields. J Comp Neurol, 1993, 332:89–104.
    28. Nishiike S, Guldin WO, B?urle J. Corticofugal connections between the cerebral cortex and the vestibular nuclei in the rat. J Comp Neurol, 2000, 420:363–372.
    29. Epema AH, Gerrits NM, Voogd J. Secondary vestibulocerebellar projections to the flocculus and uvulo-nodular lobule of the rabbit:a study using HRP and double fluorescent tracer techniques. Exp Brain Res, 1990, 80:72–82.
    30. Barmack NH, Baughman RW, Eckenstein FP. Cholinergic innervation of the cerebellum of rat, rabbit, cat and monkey as revealed by choline acetyltransferase activity and immunohistochemistry. J Comp Neurol, 1992, 317:233–249.
    31. Barmack NH, Baughman RW, Eckenstein FP,et al. Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retrograde and orthograde tracers. J Comp Neurol, 1992, 317:250–270.
    32. Rose PK, Wainwright K, Neuber-Hess M. Connections from the lateral vestibular nucleus to the upper cervical spinal cord of the cat: a study with the anterograde tracer PHA-L. J Comp Neurol, 1992, 321: 312–324.
    33. Kaufmann H, Biaggioni I, Voustianiouk A, et al. Vestibular control of sympathetic activity—an otolith-sympathetic reflex in humans. Exp Brain Res, 2002, 143:463–469.
    34. Rossiter CD, Hayden NL, Stocker SD, et al. Changes in outflow to respiratory pump muscles produced by natural vestibular stimulation. J Neurophysiol, 1996, 76:3274–3284.
    35. Yates BJ, Jakus J, Miller AD. Vestibular effects on respiratory outflow in the decerebrate cat. Brain Res, 1993, 629:209–217.
    36. Yates BJ, Grélot L, Kerman IA, et al. Organization of vestibular inputs to nucleus tractus solitarius and adjacent structures in cat brain stem. Am J Physiol. Regul Integr Comp Physiol, 1994, 267:974–983.
    37. Lutherer LO, Williams JL, Everse SJ. Neurons of the rostral fastigial nucleus are responsive to cardiovascular and respiratory challenges. J Auton Nerv Syst, 1989, 27:101–112.
    38. Ruggiero DA, Mtui EP, Otake K, et al. Vestibular afferents to the dorsal vagal complex: substrate for vestibular-autonomic interactions in the rat. Brain Res, 1996, 743 : 294–302.
    39. Bradley DJ, Ghelarducci B, Noce ALa, et al. Autonomic and somatic responses evoked by stimulation of the cerebellar uvula in the conscious rabbit. Exp Physiol. 1990, 75 :179–186.
    40. Silva-Carvalho L, Paton JFR, Goldsmith GE, et al. The effects of electrical stimulation of lobule IXb of the posterior cerebellar vermis on neurones within the rostral ventrolateral medulla in the anaesthetised cat. J Auton Nerv Syst, 1991, 36:97–106.
    41. Dichgans J, Schmidt CL, Graf W. Visual input improves the speedometer function of the vestibular nuclei in the goldfish. Exp. Brain Res, 1973, 18:319–322.
    42. Giolli RA, Torigoe Y, Blanks RHI, et al. Projections of the dorsal and lateral terminal accessory optic nuclei and of the interstitial nucleus of the superior fasciculus (posterior fibers) in the rabbit and rat. J Comp Neurol, 1988, 277:608–620.
    43. Oyster CW, Simpson JI, Takahashi ES, et al. Retinal ganglion cells projecting to the rabbit accessory optic system. J Comp Neurol, 1980, 190:49–61.
    44. Watanabe S, Kato I, Sato S, et al. Direct projection from the nucleus of the optic tract to the medial vestibular nucleus in the cat. Neurosci Res, 1993, 17: 325–329.
    45. Mustari MJ, Fuchs A, Kaneko CRS, et al. Anatomical connections of the primate pretectal nucleus of the optic tract. J Comp Neurol, 1994, 349:111–128.
    46. Ilg UJ, Hoffmann KP. Responses of neurons of the nucleus of the optic tract and the dorsal terminal nucleus of the accessory optic tract in the awake monkey. Eur J Neurosci., 1996,8: 92–105.
    47. Bankoul S, Neuhuber WL. A cervical primary afferent input to vestibular nuclei as demonstrated by retrograde transport of wheat germ agglutinin-horseradish peroxidase in the rat. Exp. Brain Res, 1990, 79 :405–411.
    48. McKelvey-Briggs DK, Saint-Cyr JA, Spence SJ, et al. A reinvestigation of the spinovestibular projection in the cat using axonal transport techniques. Anat Embryol, 1989, 180: 281–291.
    49. Prihoda M, Hiller MS, Mayr R. Central projections of cervical primary afferent-fibers in the guinea-pig—an Hrp and Wga/Hrp tracer study. J Comp Neurol, 1991, 308: 418–431.
    50. Tabuchi T, Umetani T, Yamadori T. Corticonuclear and corticovestibular projections from the uvula in the albino rat: differential projections from sublobuli of the uvula. Brain Res, 1989, 492:176–186.
    51. Wylie DR, DeZeeuw CI, DiGiorgi PL, et al. Projections of individual Purkinje-cells of identified zones in the ventral nodulus to the vestibular and cerebellar nuclei in the rabbit. J Comp Neurol, 1994, 349: 448–463.
    52. Andersson G, Oscarsson O. Climbing fiber microzones in cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus. Exp Brain Res, 1978, 32: 565–579.
    53. Kaufmann H, Biaggioni I, Voustianiouk A, et al. Vestibular control of sympathetic activity—an otolith-sympathetic reflex in humans. Exp Brain Res, 2002, 143: 463–469.
    54. Waele CDe, Abitol M, Chat M, et al. Distribution of glutamatergic receptors and GAD mRNA-containing neurons in the vestibular nuclei of normal and hemilabyrinthectomized rats. Eur Neurosci, 1993, 6 :565–576.
    55. Reichenberger I, Straka H, Ottersen OP, et al. Distribution of GABA, glycine, and glutamate immunoreactivities in the vestibular nuclear complex of the frog. J Comp Neurol, 1997, 377: 149–164.
    56. Tighilet B, Lacour M. Gamma amino butyric acid (GABA) immunoreactivity in the vestibular nuclei of normal and unilateral vestibular neurectomized cats. Eur J Neurosci, 2001, 13: 2255–2267.
    57. Li HY, Godfrey TG, Godfrey DA, et al. Quantitative changes of amino acid distributions in the rat vestibular nuclear complex after unilateral vestibular ganglionectomy. J Neurochem, 1996, 66: 1550–1564.
    58. Yamanaka T, Sasa M, Matsunaga T. Glutamate as a primary afferent neurotransmitter in the medial vestibular nucleus as detected by in vivo microdialysis. Brain Res, 1997, 762:243–246.
    59. Tighilet B, Lacour M. Distribution of choline acetyltransferase immunoreactivity in the vestibular nuclei of normal and unilateral vestibular neurectomized cats. Eur J Neurosci, 1998, 10: 3115–3126
    60. Furuya N, Koizumi T. Neurotransmitters of vestibular commissural inhibition in the cat. Acta Otolaryngol (Stockh.), 1998, 118: 64–69.
    61. Popper P, Rodrigo JP, Alvarez JC, et al. Expression of the AMPA-selective receptor subunits in the vestibular nuclei of the chinchilla. Mol. Brain Res, 1997, 44:21–30.
    62. Smith PF, Darlington CL. The contribution of N-methyl-daspartate receptors to lesion-induced plasticity in the vestibular nucleus. Prog Neurobiol, 1997, 53: 517–531.
    63. Uno Y, Horii A, Uno A, et al. Quantitative changes in mRNA expression of glutamate receptors in the rat peripheral and central vestibular systems following hypergravity. J Neurochem, 2002, 81:1308–1317.
    64. Sans N, Sans A, Raymond J. Regulation of NMDA receptor subunit mRNA expression in the guinea pig vestibular nuclei following unilateral labyrinthectomy. Eur J Neurosci, 1997, 9:2019–2034.
    65. Kinney GA, Peterson BW, Slater NT. The synaptic activation of N-methyl-d-aspartate receptors in the rat medial vestibular nucleus. J Neurophysiol, 1994, 72: 1588–1595.
    66. deWaele C, Sarafin M, Khateb A, et al. Medial vestibular nucleus in the guninea-pig: apamin-induced rhythmic burst firing—an in vitro and in vivo study. Exp Brain Res, 1993, 95:213–222.
    67. Capocchi G, Torre GD, Grassi S, et al. NMDA receptor-mediated long term modulation of electrically evoked field potentials in the rat medial vestibular nuclei, Exp Brain Res, 1992, 90:546–550.
    68. Maruta J, Simpson JI, Raphan T, et al. Orienting otolithocular reflexes in the rabbit during static and dynamic tilts and off-vertical axis rotation. Vision Res, 2001, 41:3255–3270.
    69. Sargent EW, Paige GD. The primate vestibulo-ocular reflex during combined linear and angular head motion. Exp Brain Res, 1991, 87:75–84.
    70. Erickson RG, Barmack NH. A comparison of the horizontal and vertical optokinetic reflexes of the rabbit. Exp Brain Res, 1980, 40:448–456.
    71. Schor RH, Miller AD. Vestibular reflexes in neck and forelimb muscles evoked by roll tilt. J Neurophysiol, 1981, 46:167–178.
    72. Gdowski GT, Boyle R, McCrea RA. Sensory processing in the vestibular nuclei during active head movements. Arch Ital Biol, 2000, 138:15–28.
    73. Cullen KE, McCrea RA. Firing behavior of brain-stem neurons during voluntary cancellation of the horizontal vestibuloocular reflex 1 Secondary vestibular neurons. J Neurophysiol, 1993, 70: 828–843.
    74. Roy JE, Cullen KE. Passive activation of neck proprioceptive inputs does not influence the discharge patterns of vestibular nuclei neurons. Vestibul Labyrinth Health Dis, 2001, 942:486–489.
    75. Cass SP, Goshgarian HG, Vestibular compensation after labyrinthectomy and vestibular neurectomy in cats. Otolaryngol Head Neck Surg, 1991, 104:14–19.
    76. Takeda N, Igarashi M, Koizuka I, et al. Recovery of the otolith-ocular reflex after unilateral deafferentation of the otolith organs in squirrel monkeys. Acta Otolaryngol (Stockh.), 1990, 110:25–30.
    77. Zennou-Azogui Y, Borel L, Lacour M, et al. Recovery of head postural control following unilateral vestibular neurectomy in the cat Neck muscle activity and neuronal correlates in Deiters’nuclei. Acta Otolaryngol (Stockh.) 1993, 113 (Suppl. 509):1–19.
    78. Halmagyi GM, Curthoys IS, Cremer PD, et al. The human horizontal vestibulo-ocular reflex in response to high-acceleration stimulation before and after unilateral vestibular neurectomy. Exp Brain Res, 1990, 81:479–490.
    79. Monsell EM, Brackmann DE, Linthicum JFH. Why do vestibular destructive procedures sometimes fail? Otolaryngol Head Neck Surg, 1988, 99:472–479.
    80. DeWaele C, Vibert N, Baudrimont M, et al. NMDA receptors contribute to the resting discharge of vestibular neurons in the normal and hemilabyrinthectomized guinea pig. Exp Brain Res, 1990, 81:125–133.
    81. Lucot JB. Effects of serotonin antagonists on motion sickness and its suppression by 8-OH-DPAT in cats. Pharmacol Biochem Behav, 1990, 37:283–287.
    82. Ris L, Godaux E. Neuronal activity in the vestibular nuclei after contralateral or bilateral labyrinthectomy in the alert guinea pig. J Neurophysiol, 1998, 80:2352–2367.
    83. Smith PF, Curthoys IS. Neuronal activity in the contralateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy. Brain Res, 1988, 444: 295–307.
    84. Smith PF, Darlington CL. Neurochemical mechanisms of recovery from peripheral vestibular lesions (vestibular compensation). Brain Res Rev, 1991, 16:117–133.
    85. Barmack NH, Qian ZY, Kim HJ, et al. Activitydependent distribution of protein kinase C in rat cerebellar Purkinje cells following unilateral labyrinthectomy. Exp. Brain Res, 2001, 141:6–20.
    86. Barmack NH, Qian ZY, et al. Regional and cellular distribution of protein kinase C in rat cerebellar Purkinje cells. J Comp Neurol, 2000, 427:235–254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700