盐霉素抑制肝癌细胞增殖、侵袭和转移的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨盐霉素对人肝癌细胞株增殖、侵袭和转移能力影响的作用机制。构建靶向c-Src基因的ShRNA慢病毒表达载体以稳定抑制c-Src基因的表达,建立稳定干扰c-Src基因的肝癌细胞株;研究c-Src基因稳定抑制对肝癌细胞株HepG2生物学特性及对盐霉素敏感性的影响及其机制。
     方法:1.MTT法检测盐霉素对肝癌细胞和正常肝细胞L02增殖的影响;倒置显微镜观察细胞形态改变;利用FITC标记的鬼笔环肽进行微丝荧光染色,激光共聚焦技术获得盐霉素作用下F-actin细胞骨架的形态变化;Transwell小室法测定盐霉素对肝癌细胞体外迁移、侵袭能力的变化。流式细胞术检测细胞周期和凋亡情况Western Blotting法检测盐霉素对肝癌细胞中Src/PI3K/Akt通路中相关蛋白表达的影响。
     2.采用慢病毒构建的靶向c-Src基因的ShRNA,感染HepG2肝癌细胞,利用Western Blotting方法鉴定胞内Src蛋白的敲减效率筛选建立稳定沉默株。实验分为六组:CON组(空白组,不作转染),NC组(阴性对照空白质粒转染组,HepG2-shVector转染组),KD组(HepG2-shSrc转染组),CON+Sal组(CON+4μM Salinomycin作用组),NC+Sal组(HepG2-shSrc+4μM Salinomycin),KD+Sal组(HepG2-shSrc+4μ M Salinomycin).MTT检测各组细胞的增殖情况;流式细胞术检测细胞周期、凋亡;Western Blotting检测Src. MDR1、Akt、cyclinD1. pro-Caspase-9蛋白的表达情况
     结果:1、MTT实验证实盐霉素抑制肝癌细胞的增殖,并呈现出时间、剂量依赖效应;而盐霉素对正常肝细胞L02的增殖抑制作用不明显。倒置显微镜显示肝癌细胞密度呈剂量依赖性降低,同时观察到凋亡细胞所具有的形态学改变。经过盐霉素(1μM和4μM)处理的肝癌细胞,迁移和侵袭实验中穿膜细胞数均明显低于对照组(P<0.05),且以F-actin为基础的微丝骨架结构发生紊乱。FCM(PI单染和AnnexinV-PI双染法)检测发现盐霉素作用于肝癌细胞24h后凋亡细胞数量呈剂量依赖性增加,G0/G1期细胞明显增多。Western Blotting显示盐霉素(4u M和8u M)作用肝癌细胞48h后,c-Src, Akt,Bcl-2, Bcatenin,c-myc,cyclinD1,survivin,MMP-2, MMP-9的表达水平降低;E-cadherin,Bad, Bax的表达水平增加,GSK-3β,caspase-9,caspase-3的活性增强,PARP的裂解增加(P<0.05).2. We stern Blott ing结果显示Lv-shRNA-Src对c-Src基因的表达有显著抑制作用,抑制效率达90%以上,与CON组和NC组相比差异具有统计学意义(P<0.05),而CON和NC组相比差异无统计学意义(P>0.05)。MTT实验证实盐霉素抑制CON, NC, KD三组细胞的增殖,并呈现出时间、剂量依赖效应。KD组细胞增殖活性低于CON,NC组(P<0.05),而CON,NC组比较差异无统计学意义(P>0.05)。与CON+Sal组、NC+Sal组、KD组相比,KD+Sal组细胞增殖活性明显降低,且随着时间延长,细胞的抑制作用增强(P<0.05),CON+Sal组细胞增殖抑制作用强于K D组(P<0.05),而CON+Sal组与NC+Sal组比较差异无统计学意义(P>0.05)。干预各组细胞48h后,KD组G0/G1期细胞比例增加高于CON、NC组(P<0.05),而CON、NC组相比差异无统计学意义(P>0.05)。与CON+Sal组细胞G0/G1期比例相比,KD+Sal组比例增高(P<0.05),而NC+Sal组细胞的G0/G1期比例变化不明显(P>0.05)。干预各组细胞48h后,与NC+Sal组相比,KD+Sal组细胞凋亡率增高(P<0.05)。与KD组相比,NC+Sal组及KD+Sal组细胞凋亡率增高(P<0.05)。与NC组相比,KD组、NC+Sal组细胞凋亡率增高(P<0.05)。干预各组细胞48h后,与NC组相比,KD组细胞MDR1、Akt的磷酸化水平(p-Akt(Ser473) p-Akt(Thr308))和cyclinD1蛋白表达量显著降低,而pro-Caspase-9蛋白表达水平虽然有所降低,但并不显著。与NC. NC+Sal、KD组相比,KD+Sal组细胞中MDR1、p-Akt(Ser473). p-Akt(Thr308)、Pro-Caspase-9和cvclinD1蛋白表达明显降低(P<0.05),而Ak t蛋白表达无明显改变(P>0.05)。
     结论:1、盐霉素能有效抑制人肝癌细胞增殖、迁移和侵袭,其作用机制可能与抑制Src/PI3K/Akt信号通路的活性有关。
     2.RNAi能有效抑制c-Src基因表达,抑制肝癌细胞增殖活性,诱导其凋亡,并增加其对盐霉素的敏感性,其机制可能与抑制MDR1和Src/PI3K/Akt信号通路活性及活化Caspase家族凋亡通路有关。
     目的:研究姜黄素在体外对膀胱癌EJ细胞的生长抑制作用和凋亡诱导效应,同时探讨姜黄素抗膀胱癌的分子机制。观察姜黄素联合PI3k抑制剂LY294002对人膀胱癌EJ细胞生长及凋亡的影响。
     方法1、采用MTT法测定不同浓度姜黄素(0-45μuM)经过24h和48h作用后,EJ细胞增殖的变化,同时观察细胞形态学改变。收集不同浓度姜黄素(0,12.5、25and50μM)作用24h后的EJ细胞,经流式细胞仪检测膀胱癌EJ细胞的DNA含量及凋亡细胞数。Westernblotting法测定不同浓度姜黄素(0,12.5、25and50μM)作用EJ细胞后,c-myc, Bcl-2家族,caspase家族及PI3K/Akt信号通路的凋亡相关蛋白的表达变化。2、用20μ M LY294002提前作用于EJ细胞1h,然后加入不同浓度的姜黄素(0,12.5、25and50μM)共同培养至24h。MTT法检测单独使用姜黄素(0,12.5、25an d50μ M). LY294002(20μM)及二者联合,对体外培养的膀胱癌EJ细胞的生长抑制作用;倒置显微镜观察细胞形态改变;流式细胞仪(AnnexinV-PI双染法)检测各组细胞凋亡率;Westernblotting法测定不同浓度姜黄素(25and50μM)单独或联合20μMLY294002作用EJ细胞后,凋亡相关蛋白caspase-9,-7,-3及PARP的表达变化。
     结果1、MTT、实验证实姜黄素以浓度及时间依赖的方式抑制EJ细胞的增殖。倒置显微镜显示EJ细胞密度呈剂量依赖性降低,同时观察到凋亡细胞所具有的形态学改变。FCM(PI单染和AnnexinV-PI双染法)检测发现姜黄素作用于EJ细胞24h后sub-G1峰及凋亡细胞数量呈剂量依赖性增加。Westernblotting显示不同浓度姜黄素(0,25and50μ M)作用EJ细胞后,c-myc, Bad, Bax的表达水平增加,PTEN, GSK-3β, c-Raf, caspase-9, caspase-7, caspase-3的活性增强,PARP的裂解增加和Bc1-2,Akt的表达水平降低。2、MTT实验证实姜黄素联合LY294002组明显抑制EJ细胞的增殖,优于LY294002、姜黄素单独作用组,具有浓度及时间依赖的特点。倒置显微镜显示不同浓度姜黄素联合LY294002组EJ细胞密度的降低和典型凋亡细胞形态的出现明显于LY294002、相应浓度的姜黄素单独作用组。FCM(AnnexinV-PI双染法)检测发现处理24h后,不同浓度姜黄素联合LY294002组凋亡的EJ细胞数量明显多于LY294002、相应浓度的姜黄素单独作用组,且呈剂量依赖性增加。Western Blotting显示不同浓度姜黄素联合LY294002组凋亡相关蛋白caspase-9,caspase-7, caspase-3的活性增强,PARP的裂解增加出现的时间早于相应浓度的姜黄素单独作用组。
     结论:1、姜黄素对膀胱癌EJ细胞具有增殖抑制作用和凋亡诱导效应。姜黄素能显著增加c-myc的表达,进而引起Bax的上调,Bcl-2的下调和caspase-9,-7,-3的增加。姜黄素抑制EJ细胞PI3K/Akt信号通路的激活,继之激活下游GSK-3β,caspase-9和Bad等多种促凋亡分子的表达,最终诱导EJ细胞凋亡发生。C-myc和PI3K/Akt信号通路在姜黄素诱导的膀胱癌EJ细胞的凋亡中起了重要的作用。2、LY294002与姜黄素单独应用均可抑制EJ细胞增殖LY294002能有效提高姜黄素体外对膀胱癌EJ细胞的抑制作用与单独用药组相比,联合用药组具有明显的时间依赖性协同增强EJ细胞凋亡的作用。二者联合用药增强诱导细胞凋亡主要是激活caspase家族,通过线粒体途径促进膀胱癌EJ细胞的凋亡裂解PARP来调控的。LY294002可提高姜黄素治疗膀胱癌的效果,为临床治疗膀胱癌提供新的思路和方法
Objective:To investigate effects of salinomycin on the proliferative, invisive and metastatic abilities of hepatoma cell line in vitro and analyze the possible mechanisms. To construct lentivirus-mediated shRNA expression vector targeting c-Src and to establish stable hepatoma cell line HepG2. To explore the effect RNAi-mediated inhibition of c-Src gene on apoptosis and chemosensitivity to Salinomycin in hepatoma HepG2cells and its underlying mechanism.
     Methods:1、MTT was used for determining the proliferative abilities of hepatoma cells and human normal liver L02cells. Morphological changes were observed under the inverted phase-contrast microscope and photographed. Cell apoptosis was detected by Hoechst33258staining and flowcytometry analysis. The morphological alteration was observed by Hoechst33258staining. The cytoskeleton was observed using confocal laser scanning microscopy after F-actin staining by FITC-labeled phalloidin. The invasive and migratory abilities were detected by Transwell assay. Cell-cycle analysis was detected by flowcytometry. The relative protein expressions of Src/PI3K/Akt signal pathway were evaluated by Western Blotting.2、Lentiviral shRNA targeting c-Src was applied to construct stable knock-down hepatoma cell line HepG2, Western Blotting techniques were used to detect the alteration of protein level. HepG2cells were conventionally cultured and divided into6groups:control group (CON), negative control group (NC), RNAi c-Src group (KD), control combined with Salinomycin group (CON+Sal), negative control combined with Salinomycin group (NC+Sal), RNAi Src combined with Salinomycin group (KD+Sal). The proliferation of above mentioned HepG2cells was examined by MTT assay. Flow cytometry (FCM) was employed to detect the cell apoptosis and cell cycle. The protein expressions of MDRland Src/PI3K/Akt signal pathway were evaluated by Western Blotting.
     Results:1、The treatment of L02cells with salinomycin (0~8μmol/L) for24h and48h had no significant effects on cell viability. However, treatment of similar doses of salinomycin suppressed the growth of hepatoma cells in a time and concentration dependent manner. Salinomycin could lead to characteristic morphologieal changes of apoptosis in human hepatoma cells after24h and48h in a concentration dependent manner. Hepatoma cells was treated by salinomycin (1μmol/L,4μmol/L) for24h to detect the invasive and migratory abilities. Compared to that in the control group, the number of invasive and migratory cells was remarkably decreased (P<0.01), the structure of F-actin microfilament cytoskeleton was significantly changed. Salinomycin could also induce a cell cycle arrest of hepatoma cells at the phase of G0/G1. Marked changes in apoptotic morphology and apoptosis rates were clearly observed after salinomycin treatment. In addition, Immunoblot showed that salinomycin inhibited the activation of Src/PI3K/Akt pathway in a dose-dependent manner in hepatoma cells. Activation of GSK-3β, caspase-9, caspase-3, cleavage of PARP, upregulation of Bad, Bax, E-cadherin, downregulation of c-Src, Akt, Bcl-2, c-myc, cyclin Dl, survivin, MMP-2and MMP-9were also found in salinomycin-treated hepatoma cells.2、KD group had a significantly lower protein level of c-Src Src and MTT value than CON group and NC group (P<0.05), and had a higher apoptotic rate and larger percentage of G0/G1arrested cells and lower MDR1, Akt, cyclinDl expression than NC group (P<0.05). In KD+Sal group, MTT value was more lower and stronger caspase-9expression and lower MDR1, Akt, cyclinDl expression and larger percentage of G0/G1arrested cells than in KD group and NC+Sal group (P<0.05).
     Conclusion:1、The results suggested that the proliferative, invasive and migratory abilities of hepatoma cells can be inhibited by salinomycin, which may be related to blocking the Src/PI3K/AKT kinase cascade signaling pathway.2、RNAi could specifically supress c-Src gene expression, effectively inhibit the proliferation and increase G0/G1cell population and accelerate the apoptosis of HepG2cells, and enhance its chemosensitivity to Salinomycin. The mechanism may be related to the suppression of the activation of MDRland Src/PI3K/Akt pathway and the activation of Caspase signaling pathways.
     Objective:Cancer chemopreventive agent curcumin have been shown to possess inhibition cell growtlh and induction apoptosis properties in several types of cancer. However, the detailed molecular mechanisms of the compound remain far from clear in EJ bladder cancer cells. In order to explore the possible mechanism and offer experimental evidence of anti-cancer effcet of curcumin combined with LY294002, we investigated the anti-proliferation and apoptosis induction effcet of curcumin combined with LY294002on human bladder cancer cells.
     Methods:1. The effect of curcumin on EJ cells growth inhibition and apoptosis was detected by MTT assays and flow cytometry. The phosphorylation levels of PTEN, PDK1, Akt, GSK-3β, c-Raf, Bad and the expression levels of c-myc, Bax, Bcl-2, caspase-9, caspase-7, caspase-3, PARP by curcumin administration were examined by Western Blotting.2. After EJ cells were pretreated with the PI3k inhibitor LY294002(20μM) in complete medium for1h, and then various doses of Curcumin (0,12.5、25and50μM) was added to co-culture for the indicated time periods. The growth inhibition of curcumin and LY294002alone or in combination on bladder cancer EJ cells by MTT assay. Morphological changes were observed under the inverted phase-contrast microscope and photographed. Apoptotic rates of human EJ bladder carcinoma cells were determined by flow cytometry (FCM). Curcumin and LY294002alone or in combination regulated caspase-9、caspase-7、caspase-3and PARP protein expression in EJ cells by Western Blotting analysis.
     Results:1. Curcumin suppressed the growth of EJ cells in a time-and concentration-dependent manners. Immunoblot showed that curcumin increased expression levels of c-myc and inhibited the activation of PI3K/Akt pathway in a time-dependent manner in EJ cells. Activation of PTEN, GSK-3(3, c-Raf, caspase-9, caspase-7, caspase-3, cleavage of PARP, upregulation of Bad, Bax, downregulation of Akt, Bcl-2were also found in curcumin-treated EJ cells.2. EJ cells viability showed remarkable decrease in a concentration-and time-dependented manner in the curcumin (12.5,25and50μM)+LY294002(20μM) group as compared with curcumin (12.5,25and50μM)-treated control group or with LY294002(20μM) alone. Curcumin and LY294002could lead to characteristic morphologieal changes of apoptosis in human bladder carcinoma cells after24h including cellular rounding, shrinkage, chromatin condensation, and membrane blebbing, the appearance of membrane-associated apoptotic bodies and separation from neighboring cells. Combined treatment with LY294002and curcumin increased the percentage of apoptotic cell death in EJ cells as compared with either compound alone. The presenting time of the cleavage of caspase-9,-7,-3and PARP following the LY294002(20μM)/curcumin (25or50μM) combination administration is earlier than that of curcumin (25or50μM) alone treatment in EJ cells by Western Blotting analysis.
     Conclusion:1.These findings esteblish a mechanistic linkup or interaction between c-myc, Bax, Bad, Bcl-2, caspase cascades, PI3K/Akt pathway and curcumin-induced apoptosis of EJ cells, suggest that c-myc and PI3K/Akt signaling pathway plays an important roles in curcumin-induced apoptosis of EJ bladder cancer cells.2. Curcumin or LY294002could significantly inhibit the growth of human EJ bladder carcinoma cells, LY294002could effectively increase the growth inhibition of curcumin in EJ cells in vitro. The curcumin and LY294002can all induce human EJ carcinoma cells apoptosis. When the two drugs combined, the inductive effect for cell apoptosis became more obvious, which suggest a possible underlying molecular mechanism Where by curcumin and LY294002could induce the apoptosis signaling pathway in human EJ bladder carcinoma cells by caspase family protein activation and cleavage of PARP protein through mitochondrion-dependent pathway. LY294002could enhance the anti-tumor effect of curcumin, which provide the new thread and methods for the clinical thrapy of bladder cancer.
引文
[1]Siegel R, Naishadham D, Jemal A. Cancer statistics,2012. CA. Cancer J. Clin,62:10-29,2012.
    [2]Yang L, Parkin DM, Ferlay J. Estimates of cancer incidence in China for 2000 and projections for 2005.Cancer Epidemiol. Biomarkers Prev,14:243-250,2005.
    [3]中华人民共和国卫生部.第三次全国死因调查主要情况.北京:卫生部新闻发布会,2008.
    [4]El-Serag HB. Hepatocellular carcinoma. N.Engl. J. Med,365:1118-1127,2011.
    [5]Padhya KT, Marrero JA, Singal AG. Recent advances in the treatment of hepatocellular carcinoma. Curr Opin Gastroenterol,2013.Epub ahead of print.
    [6]Cornella H, Alsinet C, Villanueva A.Molecular pathogenesis of hepatocellular carcinoma,35: 821-5,2011.
    [7]Blechacz B, Mishra L.Hepatocellular carcinoma biology. Recent Results Cancer Res,190:1-20, 2013.
    [8]SangroB, MazzolliniG, PrietoJ. Future therapies for hepatocellular carcinoma. Eur J Gastroenterol Hepatol,17:515-21,2005.
    [9]AvilaMA, BerasainC, SangroB, PrietoJ.New therapies for hepatoeellular carcinoma. Oneogene, 25:3566-54,2006.
    [10]HuiKM.Current approaches in the transeriptional-guided genetherapy of human hepatocellular careinoma.Curr Opin Mol Ther,9:375-84,2007.
    [11]Fire AZ. WITHDRAWN:Gene silencing by double-stranded RNA, Cell Death and Differentiation,14:1998-2012,2007.
    [12]Pagano C, Soardo G, Esposito W, et al. Plasma adiponectin is decreased in nonalcoholic fatty liver disease.Eur J Endocrinol,152:113-118,2005.
    [13]Ajuwon KM, Spurlock ME. Adiponectin inhibits LPS-induced NF-kappaB activation and IL-6 production and increases PPARgamma2 expression in adipocytes. Am J Physiol Regul Integr Comp Physiol,288:1220-1225,2005.
    [14]Lieber CS, Leo MA, Mak KM. Acarbose attenuates experimental non-alcoho steatohepatitis. Biochem Biophys Res Commun,315:699-703,2004.
    [15]Kendziorra E, Ahlborn K, Spitzner M, Rave-Frank M, Silencing of the Wnt transcription factor TCF4 sensitizes colorectal cancer cells to (chemo-) radiotherapy. Carcinogenesis, 32:1824-31,2011.
    [16]No M, Choi EJ, Kim IA.Targeting HER2 signaling pathway for radiosensitization:alternative strategy for therapeutic resistance. Cancer Biol Ther,8:2351-61,2009.
    [17]Guerreiro AS, Fattet S, Kulesza DW, Atamer A, A sensitized RNA interference screen identifies a novel role for the PI3K p110γ isoform in medulloblastoma cell proliferation and chemoresistance. Mol Cancer Res,9:925-35,2011.
    [18]Song X, Wang JB, Yin DL, Yang HY, Liu LX, Jiang HC. Down-regulation of lung resistance related protein by RNA interference targeting survivin induces the reversal of chemoresistances in hepatocellular carcinoma. Chin Med J (Engl).122:2636-42,2009.
    [19]Koldehoff M, Kordelas L, Beelen DW, El maagacli AH. Small interfering RNA against BCR-ABL transcripts sensitize mutated T3151 cells to nilotinib.Haematologica,95:388-397,2010.
    [20]Gerolami R, Ueh R, Faivre J, etal, Herpesimplex virus thymidine kinase-mediated suicidegene therapy for hepatocellular carcinoma using HIV-1-derived lentiviral veetors. J Hepatol,40:291-7,2004.
    [21]Follenzi A, GuPta S.The promise of lentiviral gene therapy for liver cancer.Hepatol,40:337-40, 2004.
    [22]C ockrell A S,K afri T.Gene delivery by lentivirus vectors. Mol Biotechnol,36:184-204,2007.
    [23]Numnum TM, Makhija S, Lu B. Improved anti-tumor therapy based upon infectivity-enhanced adenoviral delivery of RNA interference in ovarian carcinoma cell lines.Gynecol Oncol,108:34-41,2008.
    [24]Jung CR, Yoo J, Jang YJ. Adenovirus-Mediated Transfer of siRNA Against PTTG1 Inhibits Liver Cancer Cell Growth In Vitro and In Vivo. Hepatology,43:1042-1052,2006.
    [25]Huang S, Zhang F, Miao L, et al. Lentiviral -mediated Smad4 RNAi induced anti-proliferation by p16 up-regulation andapoptosis by caspase 3 down-regulation in hepatoma SMMC-7721 cells. Oncol Rep,20:1053-1059,2008.
    [26]李俊,孙倍成,邓蕾,等.针对人IKKα、IKKβ基因RNA干扰慢病毒质粒的构建及其对人肝癌细胞生长的影响.江苏医药,2009,35(1):75-77.
    [27]Tang H, Tang XY, Liu M, et al. Targeting alpha-fetoprotein represses the proliferation of hepatoma cells via regulation of the cell cycle. Clin Chim Acta,394:81-88,2008.
    [28]Feitelson MA, Sun B, Satiroglu Tufan NL, et al. Genetic mechanisms of hepatocarcinogenesis. Oncogene,21:2593-2604,2002.
    [29]Zhang S, Yang JH, Guo CK, et al. Gene Silencing of TKTL1 by RNAi inhibits cell proliferation in human hepatoma cells. Cancer Lett,253:108-114,2007.
    [30]Sun T, Zhao N, Zhao XL, et al. Expression and functional significance of twist1 in hepatocellular carcinoma:Its role in vasculogenic mimicry. Hepatology,50:1-12,2009.
    [31]Salvi A, Arici B, Portolani N, et al. In vitro c -met inhibition by antisense RNA and plasmid-based RNAi down-modulates migration and invasion of hepatocellular carcinima cells. Int J Oncol,31:451-460,2007.
    [32]陆彬彬,殷咏梅,王朝霞,等.人血管内皮生长因子SHRNA真核表达载体对肝癌细胞系SMMC-7721的增殖影响.南京医科大学学报(自然科学版),26:403-406,2006.
    [33]MartinG.S. The hunting of the Src. Nat Rev Mol Cell Biol,2:467-475,2001.
    [34]Gu J, Gu X. Natural history and functional divergence of protein tyrosine kinases. Gene, 317:49-57,2003.
    [35]J. S. Nam, Y. Ino, M. Sakamoto, and S. Hirohashi, Src family kinase inhibitor PP2 restores the E-cadherin/catenin cell adhesion system in human cancer cells and reduces cancer metastasis, Clinical Cancer Research, vol.8, no.7, pp.2430-2436,2002.
    [36]A. M. L. Coluccia, D. Benati, H. Dekhil, A. De Filippo, C. Lan, and C. Gambacorti-Passerini, SKI-606 decreases growth and motility of colorectal cancer cells by preventing pp60(c-Src)-dependent tyrosine phosphorylation of β-catenin and its nuclear signaling, Cancer Research, 66:2279-2286,2006.
    [37]L. Gonz'alez, M. T. Agull 'o-Ortu-no, J. M. Garc'ia-Mart'inez. Role of c-Src in human MCF7 breast cancer cell tumorigenesis. Journal of Biological Chemistry,281:20851-20864,2006.
    [38]Chen J. Is Src the key to understanding metastasis and developing new treatments for colon cancer? Nat Clin Pract Gastroenterol Hepatol,5(6):306-307,2008.
    [39]Nam JS, Ino Y, SakamotoM, Hirohashi S.2002. Src family kinase inhibitor PP2 restores the Ecadherin/catenin cell adhesion system in human cancer cells and reduces cancermetastasis.Clin Cancer Res 8:2430-2436.
    [40]Sun CK,Man K,Ng KT,et al. Proline2rich tyrosine kinase2 (Pyk2) promotes proliferation and invasiveness of hepatocellular carcinoma cells through c2Src/ERK activation.Carcinogenesis, 29:2096-2102,2008.
    [41]Coluccia AM, Benati D, DekhilH,De Filippo A, LanC,Gambacorti-PasseriniC. SKI-606 decreases growth and motility of colorectal cancer cells by preventing pp60(c-Src)-dependent tyrosine phosphorylation of beta-catenin and its nuclear signaling. Cancer Res,66:2279-86, 2006.
    [42]Gonza'lez L, Agullo'-Ortun-o MT, Garcia-Martinez JM. Role of c-Src in human MCF7 breast cancer cell tumorigenesis. J Biol Chem,281:20851-20864,2006.
    [43]Summy JM, Gallick GE. Treatment for advanced tumors:SRC reclaims center stage. Clin Cancer Res,12:1398-1401,2006.
    [44]Kopetz S, Shah AN, Gallick GE. Src continues aging:Current and future clinical directions. Clin Cancer Res,13:7232-7236,2007.
    [45]Wu J, Chen C, Zhao KN.Phosphatidylinositol 3-kinase Signaling as a Therapeutic Target for Cervical Cancer. Curr Cancer Drug Targets,13:143-56,2013.
    [46]Chen T, George JA, Taylor CC. Src tyrosine kinase as a chemotherapeutic target:Is there a clinical case? Anticancer Drugs,17:123-131,2006.
    [47]Wheeler DL, lida M, Kruser TJ, Nechrebecki MM, Dunn EF, Armstrong EA, Huang S, Harari PM. Epidermal growth factor receptor cooperateswith Src family kinases in acquired resistance to cetuximab. Cancer Biol Ther,8:696-703,2009.
    [48]Mark S Duxbury, MA, MRCS, Hiromichi Ito.siRNA Directed Against c-Src Enhances Pancreatic Adenocarcinoma Cell Gemcitabine Chemosensitivity. J Am Coll Surg,198: 953-959,2004.
    [49]Ischenko I, Camaj P, Seeliger H. Inhibition of Src tyrosine kinase reverts chemoresistance toward 5-fluorouracil in human pancreatic carcinoma cells:an involvement of epidermal growth factor receptor signaling. Oncogene,27:7212-22,2008.
    [50]Y. Miyazaki, M. Shibuya, and H. Sugawara. Salinomycin, a new polyether antibiotic, Journal of Antibiotics,27:814-821,1974.
    [51]H. D. Danforth, M. D. Ruff, W. M. Reid, and R. L. Miller.Anticoccidial activity of salinomycin in battery raised broiler chickens, Poultry science,56:926-932,1977.
    [52]P. Butaye, L. A. Devriese, and F. Haesebrouck. Antimicrobial growth promoters used in animal feed:effects of less well known antibiotics on gram-positive bacteria. Clinical Microbiology Reviews,16:175-188,2003.
    [53]Piyush B. Gupta,Tamer T. Onder, Guozhi Jiang, Kai Tao,Charlotte Kuperwasser,Robert A. Weinberg. Identification of Selective Inhibitors of Cancer Stem Cells by High-Throughput Screening, Cell,138:645-659,2009.
    [54]Ketola K,Hilvo M. Salinomycin inhibits prostate cancer growth and migration via induction of oxidative stress.Br J Cancer,106:99-106,2012.
    [55]Wan X,Liu J,Lu JF. Activation of β-Catenin Signaling in Androgen Receptor-Negative Prostate Cancer Cells.Clin Cancer Res,18:726-36,2012.
    [56]Fuchs D,Daniel V.Sadeghi M,Opelz G,Naujokat C.Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-la cells. Biochem Biophys Res Commun,394:1098-104,2010.
    [57]Kim KY,Yu SN,Lee SY.Salinomycin-induced apoptosis of human prostate cancer cells due to accumulated reactive oxygen species and mitochondrial membrane depolarization.Biochem Biophys Res Commun,413(1):80-6,2011.
    [58]Kim J H, Chae M, Kim W K. Salinomycin sensitizes cancer cells to the effects of doxorubicin and etoposide treatment by increasing DNA damage and reducing p21 protein. Br J Pharmacol,162:773-84,2011.
    [59]Guan-Nan Zhang, Yi Liang, Ling-Jun Zhou, Shu-Peng Chen, Ge Chen,Tai-Ping Zhang, Tiebang Kang, Yu-Pei Zhao. Combination of salinomycin and gemcitabine eliminates pancreatic cancer cells. Cancer Letters,313:137-144,2011.
    [60]Aravalli RN, Cressman EN, Steer CJ. Cellular and molecular mechanisms of hepatocellular carcinoma:an update.Arch Toxicol,87:227-47,2013.
    [61]Christine L. Chaffer and Robert A. Weinberg.A Perspective on Cancer Cell Metastasis. Science,331:1559,2011.
    [62]Desheng Lu, Michael Y. Choi. Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells. PNAS,108:13253-13257,2011.
    [63]Fan Wang, Lei He, Chuan-Yong Guo. Salinomycin Inhibits Proliferation and Induces Apoptosis of Human Hepatocellular Carcinoma Cells In Vitro and In Vivo. PLOS ONE,7: e50638,2012.
    [64]Bei Zhang, Xueya Wang,Fengfeng Cai.Effects of salinomycin on human ovarian cancer cell line OV2008 are associated with modulating p38 MAPK. Tumour Biol,33:1855-62,2012.
    [65]Yilmaz M, Christofori G. Mechanisms of motility in metastasizing cells. Mol Cancer Res,8: 629-42,2010.
    [66]Westemarck J, Kah VM. Regulation of matrix metallo proteinase expression in tumor invasion. FASEBJ,3:781-92,1999.
    [67]Frame MC. Src in cancer:deregulation and consequences for cell behaviour. Biochim Bio Phys Aeta 2002 (1602):114-30.
    [68]Bowan T, Broome MA, Sinibaldi D, et al. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Aead Sci USA.2001 98(13):7319-24.
    [69]Alioua A, Mahajan A, Nishimaru K, et al. Coupling of c-Src to large conductance voltage-and ca2+-activated K+ channels as a newmechanism of agonist-induced vaso-constriction. Proe Natl Acad Sci USA,2002,99(22):14560-14565.
    [70]Reddy EP, KoraPapi A, Chaturvedi P, et al. IL-3 signaling and the role of Src kinases, JAKs and STATs:a covert liai-son unveiled. Oneogene2000 19(21):2532-2547.
    [71]Jaffe T, Schwartz B.2008. Leptin promotes motility and invasiveness in human colon cancer cells by activating multiple signal-transduction pathways. Int J Cancer J Int Cancer 123(11):2543-2556.
    [72]Huang XF, Chen J.2009b. Obesity, the PI3K/Akt signal pathway and colon cancer. Obes Rev 10(6):610-616.
    [73]Masaki T, Okada M, Shiratori Y, Rengifo W, Matsumoto K, Maeda S, Kato N, Kanai F, Komatsu Y, Nishioka M, Omata M. pp60 c-src activation in hepatocellular carcinoma of humans and LEC rats. Hepatology.27:1257-64,1998.
    [74]Li Y,Ren J,Yu W,et al. The epidermal growth factor receptor regulates interaction of the human DF3/MUC1 carcinoma antigen with c2Src and beta2catenin. J Biol Chem,276: 35239,2001.
    [75]Schuuring E,Verhoeven E,Litvinov S,et al. The product of the EMS1 gene,amplified and overexpressed in human carcinomas,is homologous to a v2Src subst rate and is located in cell2subst ratum contact sites. Mol Cell Biol,13:2891,1993.
    [76]Han L Y,Landen CN, Trevino J G,. Antiangiogenic and antitumor effect s of Src inhibition in ovarian carcinoma. Cancer Res,66:8633,2006.
    [77]Han NM,Curley SA,Gallick GE. Differential activation of pp60 (c2src) and pp62 (c2yes) in human colorectal carcinoma liver metastases. Clin Cancer Res,2:1397,1996.
    [78]Chen R, Kimo, Yang J, et al.Regulation of Akt/PKB activation by tyrosine phosphorylation. J Biol Chem 2001,276(34):31858-62.
    [79]Windham TC. Parikh NU, Siwak DR, et al.Src activation reatesanoikisin human colon tumor celll ines.Oncogene 2002:21(51):7797-807.
    [80]Caccia D, Micciche'F, Cassinelli G, Mondellini P, Casalini P, Bongarzone I (2010) Dasatinib reduces FAK phosphorylation increasing the effects of RPI-1 inhibition in a RET/PTC1-expressing cell line. Mol Cancer 9:278
    [81]Lori Rice, Sharon Lepler. Christina Pampo, Dietmar W, Siemann. Impact of the SRC inhibitor dasatinib on the metastatic phenotype of human prostate cancer cells. Clin Exp Metastasis (2012)29:133-142.
    [82]Aravalli RN, Steer CJ, Cressman EN. Molecular mechanisms of hepatocellular carcinoma. Hepatology 2008;48:2047-63.
    [83]Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology 2008;48:1312-27.
    [84]Zender L, Villanueva A, Tovar V, Sia D, Chiang DY, Llovet JM. Cancer gene discovery in hepatocellular carcinoma. J Hepatol 2010;52:921-9.
    [85]Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 2010;29:4989-5005.
    [86]Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M: PI3K/Akt signalling pathway and cancer. Cancer Treat Rev,30:193-204,2004.
    [87]Liao Y, Hung MC:Physiological regulation of Akt activity and stability. Am J Transl Res 2:19-42,2010.
    [88]Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JF. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets,8(3):187-198,2008.
    [89]Fukumoto S, Hsieh CM, Maemura K, Layne MD, Yet SF, Lee K.H. Akt participation in the Wnt signaling pathway through Dishevelled. J Biol Chem,2001,276:17479-17483.
    [90]Sharma M, Chuang WW, Sun Z. Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GSK3beta inhibition and nuclear beta-catenin accumulation. J Biol Chem, 2002,277:30935-30941.
    [91]Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, Mills GB, Kobayashi R, Hunter T, Lu Z. Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem,2007.282(15):11221-11229.
    [92]Ponce DP, Maturana JL, Cabello P, Yefi R, Niechi I, Silva E, Armisen R, Galindo M, Antonelli M, Tapia JC. Phosphorylation of AKT/PKB by CK2 is necessary forthe AKT-dependent up-regulation of beta--catenin transcriptional activity. J Cell Physiol,2011, 226(7):1953-1959.
    [93]Fuchs BC,Fujii T,Dorfman JD et al.Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells.Cancer Res.2008 Apr 1;68(7):2391-9.
    [94]Niu RF,Zhang L,Xi GM et al.Up-regulation of Twist induces angiogenesis and correlates with metastasis in hepatocellular carcinoma.J Exp Clin Cancer Res.2007 Sep;26(3):385-94.
    [95]Zeng G, Apte U, Cieply B, etal. siRNA-mediated beta-catenin knockdown in human hepatomacells results in decreased growth and survival.Neoplasia.2007,9(11):951-9.
    [96]Sherr CJ.1996. Cancer cell cycles. Science.274:1672-1677.
    [97]Tetsu O, MeCormiek E. Beta-catenin regulates expression of cyclinDl in colon carcinomacells. Nature,1999,398(6726):422-426.
    [98]Shtutman M, Zhurinsky J, Simehal, et al.The cyclinD1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad USA,1999,96(10):5522-5527.
    [99]Olivera A, Kohama T, Edsall L, et al. Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J Cell Biol,1999,147: 545-558.
    [100]Alao JP,Stavropoulou AV,Lam EW,Coombes RC,Vigushin DM. Histone deacetylase inhibitor, trichostatin A induces ubiquitin-dependent cyclin D1 degradation in MCF-7 breast cancer cells.Mol Cancer 2006,20:5-8.
    [101]Parekh P,Rao KV. Overexpression of cyclin Dl is associated with elevated levels of MAP kinases,Akt and Pak1 during diethylnitrosamine-induced progressive liver carcinogenesis. Cell Biol Int.2007; 31(1):35-43.
    [102]Gartel AL, Shchors K.2003.Mechanisms of c-myc-mediated transcriptional repression of growth arrest genes. Exp Cell Res 283:17-21.
    [103]Popescu NC, Zimonjic DB.2002. Chromosome-mediated alterations of the MYC gene in human cancer. J Cell Mol Med 6:151-159.
    [104]Joo M, Lee HK and Kang YK:2003. Expression of beta-catenin in hepatocellular carcinoma in relation to tumor cell proliferation and cyclin D1 expression. J Korean Med Sci 18: 211-217,.
    [105]Li YJ, Wei ZM, Meng YX, Ji XR.2005. Beta-catenin up-regulates the expression of cyclinDl, c-myc and MMP-7 in human pancreatic cancer:relationships with carcinogenesis and metastasis. World J Gastroenterol 11:2117-2123.
    [106]Wang W, Xue L, Wang P.2011. Prognostic value of beta-catenin, c-myc, and cyclin D1 expressions in patients with esophageal squamous cell carcinoma. Med Oncol 28:163-169.
    [107]Lai TY, Su CC, Kuo WW, Yeh YL.2011. β-catenin plays a key role in metastasis of human hepatocellular carcinoma. Oncol Rep 26:415-422.
    [108]Shuman Moss LA, Jensen-Taubman S, Stetler-Stevenson WG.2012. Matrix metallo-proteinases:changing roles in tumor progression and metastasis. Am J Pathol 181:1895-1899.
    [109]Zhou L, Wang DS, Li QJ, Sun W.2012. Downregulation of the Notch signaling pathway inhibits hepatocellular carcinoma cell invasion by inactivation ofmatrix metalloproteinase-2 and -9 and vascular endothelial growth factor. Oncol Rep 28:874-882.
    [110]Chen JS, Huang XH, Wang Q, Huang JQ.2013. Sonic hedgehog signaling pathway induces cell migration and invasion through focal adhesion kinase/AKT signaling-mediated activation of matrix metalloproteinase (MMP)-2 and MMP-9 in liver cancer. Carcinogenesis 34:10-9.
    [111]Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med,1997,3:917-921.
    [112]Leher R, Enomoto T, M cG regor JA, e t a 1. Correlation of survivin mRNA detection with histologic diagnosis in normal endometrium and endom etrial carcinoma [J]. Acta Obs tet Gynecol Scand,2005,81(2):162-167.
    [113]Adida C, Crotty PL, McG rath J, et a 1. Developmentally regulated expression of the novel cancer an ti-apoptosis gene survivin in human and mouse differentiation. Am J Patho,1998, 152(1):48-49.
    [114]O, Connor DS, SehechnerJS, Adida C, et al.Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am J Pathol.2000,156 (2):393-8.
    [115]Montorsi M, Maggioni M, Falleni M. Survivin gene expression in chronic liver disease and hepatocellular carcinoma. Hepatogastroenterology 2007; 54:2040-2044
    [116]Ikeguehi M, Hirooka Y, Kaibara N.Quantitative analysis of aoptosis-related gene expression in hepatocellular carcinoma. Cancer 2002,95(9):1938-45.
    [117]Cui F, Chen B, Chen JZ, Huang YX, Luo RC. Expressions of Survivin and vascular endothelial growth factor in hepatocellular carcinoma and their clinical significance. Nanfang Yike Daxue Xuebao 2008; 28:761-763
    [118]He Z,Wu J, Dang H, et al. Polo-like kinase 1 contributes to the tumorigenicity of BEL-7402 hepatoma cells via regulation of Survivin expression [J]. Cancer Lett,2011,303(2):92.
    [119]Chen Y, Li D, Liu H, et al. Notch-1 signaling facilitates survivin expression in human non-small cell lung cancer cells [J]. Cancer Biol Ther,2011,11(1):14
    [120]J. L. C. M. Dorne, M. L. Fern'andez-Cruz, U. Bertelsen. Risk assessment of coccidostatics during feed cross contamination:animal and human health aspects, Toxicology and Applied Pharmacology,2011.
    [121]Kubowicz P, Zelaszczyk D, Pekala E.RNAi in Clinical Studies. Curr Med Chem,31,2013. Epub ahead of print.
    [122]Ramachandran PV, Ignacimuthu S.RNA interference-a silent but an efficient therapeutic tool. Appl Biochem Biotechnol,169:1774-89,2013.
    [123]Picanco-Castro V, de Sousa Russo-Carbolante EM, Tadeu Covas D. Advances in lentiviral vectors:a patent review. Recent Pat DNA Gene Seq,6(2):82-90,2012.
    [124]Sakuma T, Barry MA, Ikeda Y.Lentiviral vectors:basic to translational. Biochem J,443(3): 603-18,2012.
    [125]Min L, Chen Q, He S, Liu S, Ma Y.Hypoxia-induced increases in A549/CDDP cell drug resistance are reversed by RNA interference of HIF-la expression. Mol Med Rep, 5:228-32,2012.
    [126]Hui Xu, Fan-zhen Hong, Su Li, Ping Zhang, and Lin Zhu.Short hairpin RNA-mediated MDR1 gene silencing increases apoptosis of human ovarian cancer cell line A2780/Taxol. Chin J Cancer Res,24:138-142,2012.
    [127]Sun J, Yeung CA, Co NN, Tsang TY, Yau E, Luo K, Wu P, Wa JC, Fung KP, Kwok TT, Liu F.Clitocine reversal of P-glycoprotein associated multi-drug resistance through down-regulation of transcription factor NF-κB in R-HepG2 cell line. PLoS One,7: e40720,2012.
    [1]Jemal A, Siegal R, and Ward E:Cancer statistics. CA:Cancer J Clin 2009,59:225-249.
    [2]吴阶平,顾方六,郭应禄,杨勇等, 《吴阶平泌尿外科学》,济南,山东科学技术出版社.2004,上卷:965-973.
    [3]Pectasides D, Peetasides M, Nikolaou M.Adjuvant and neoadjuvant chemotherapy in musele invasive bladder caneer:literaturereview.EurUrol,2005,48(1):60-67.
    [4]Fazlul H SARKAR, Yi-wei LI.Targeting multiple signal pathways by chemopreventive agents for cancer prevention and therapy. Acta Pharmacol Sin,2007,28 (9):1305-1315.
    [5]陈瑞娣.癌化学防治研究进展.实用肿瘤杂志,1996,11(6):245-247.
    [6]Krishnan K,Campbell S, Abdel-Rahman F,et al.Cancer chemo- prevention drug targets.Curr Drug Targets.2003,4(1):45-54.
    [7]John T. Leppert, Oleg Shvarts, et al. Prevention of Bladder Cancer:A Review. European Urology,2006,49:226-234,.
    [8]Hong WK, Sporn MB. Recent advances in chemoprevention of cancer. Science, 1997,278(5340):1073-7.
    [9]Y.J. Surh, Cancer chemoprevention with dietary phyto-chemicals,Nat. Rev. Cancer 3 (2003) 768-780.
    [10]Kelloff GJ, Crowell JA, Steele VE, et al. Progress in cancer chemoprevention:development of diet-derived chemo preventive agents. J Nutr 2000; 130:467S-71S.
    [11]Pezzuto JM. Plant-derived anticancer agents. Biochem Pharmacol 1997; 53:121-33.
    [12]S.A. Smith-Warner, D. Spiegelman, et al.Fruits,vegetables and lung cancer:a pooled analysis of cohort studies,Int. J. Cancer,2003,107:1001-1011.
    [13]Terry Pterry JB, Wolk A. Fruit and vegetable consumption in the Prevention of cancer:an update.J Intern Med, 2001, 250(4):280-290.
    [14]WillianM, Baired, Ching Jer C. Nature products as a source of potential cancer chemotherapeutic and chemopreventive[J]. J Nat Prod,1990,53 (1):23-41.
    [15]ParkEJ, PezzutoJM. Botanicals in cancer chemoprevention. Cancer Metastasis Rev,2002, 2(3-4):231-255.
    [16]Steinmaus CM, Nunez S, Smith AH. Diet and bladder cancer:a meta-analysis of six dietary variables. Am J Epidemiol 2000;151(7):693-702.
    [17]Food, Nutrition, and the Prevention of Cancer:A Global Perspective. Nutrition 1997;15(6):523-6.
    [18]Nagano J, Kono S, Preston DL, Moriwaki H, Sharp GB, Koyama K, et al. Bladder-cancer incidence in relation to vegetable and fruit consumption:a prospective study of atomic-bomb survivors. Int J Cancer.2000,86(1):132-8.
    [19]ChenC,KingA.Dietary cancer-chemopreventive compounds:from signaling an gene expression to pharmacological. Trends MolMed, 2005, 26(6):318-326.
    [20]Khan N, Afaq F,Mukhtar H.Apoptosis by dietary factors:the suieide solution for delaying cancer growth.Careinogenesis, 2007, 28(2):233-239.
    [21]Shankar S, Srivastava RK. Involvement of Bcl-2 family members, phosphatidyiinositol 3'-kinase/AKT and mitochondrial p53 in curcumin (diferulolylmethane)-induced apoptosis in prostate cancer. Int J Oncol.2007;30:905-18.
    [22]Lev-Ari S, Starr A, Vexler A, et al. Inhibition of pancreatic andlung adenocarcinoma cell survival by curcumin is associated with increased apoptosis, down-regulation of COX-2 and EGFR and inhibition of Erkl/2 activity. Anticancer Res.2006;26:4423-30.
    [23]Kim HI, Huang H, Cheepala S, Huang S, Chung J. Curcumin inhibition of integrin (alpha6beta4)-dependent breast cancer cell motility and invasion. Cancer Prev Res (Phila Pa). 2008; 1:385-91.
    [24]Sahu RP, Batra S, Srivastava SK. Activation of ATM/Chkl by curcumin causes cell cycle arrest and apoptosis in human pancreatic cancer cells. Br J Cancer.2009; 100:1425-33.
    [2]5 Su CC, Lin JG, Li TM, et al. Curcumin-induced apoptosis of human colon cancer colo 205 cells through the production of ROS, Ca2+and the activation of caspase-3. Anticancer Res.2006;26:4379-89.
    [26]Pan W, Yang H, Cao C, et al. AMPK mediates curcumininduced cell death in CaOV3 ovarian cancer cells. Oncol Rep.2008;20:1553-9.
    [27]Bakhshi J, Weinstein L, Poksay KS, Nishinaga B, Bredesen DE, Rao RV. Coupling endoplasmic reticulum stress to the cell Curcumin and Cancer 507 death program in mouse melanoma cells: effect of curcumin. Apoptosis.2008;13:904-14.
    [28]Lin JK,Jin-shian SY.Mechanisms of cancer chemoprevention by curcumin.Proc Natl Sci Counc ROC(B).2001-25:59-66.
    [29]Kerr JF,Wyllie AH.Currie AR.Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics.Br J Ccncer.1972;26:239-257.
    [30]Li, Z. X, Ouyang, K. Q, Jiang, X. Curcumin induces apoptosis and inhibits growth of human Burkitt's lymphoma in xenograft mouse model. Mol Cells 2009; 27:283-289.
    [31]Leow, P. C, Tian, Q, Ong, Z. Y. Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/beta-catenin antagonists against human osteosarcoma cells. Invest New Drugs 2009.
    [32]harakan, S. T, Inamoto, T, Sung, B. Curcumin potentiates the antitumor effects of gemcitabine in an orthotopic model of human bladder cancer through suppression of proliferative and angiogenic biomarkers. Biochem Pharmacol 2010; 79:218-228.
    [33]Kunnumakkara, A. B, Diagaradjane, Pand Guha, S. Curcumin sensitizes human colorectal cancer xenografts in nude mice to gamma-radiation by targeting nuclear factor-kappaB-regulated gene products. Clin Cancer Res 2008; 14:2128-2136.
    [34]Mackenzie, G. G, Queisser, N, Wolfson, M. L. Curcumin induces cell-arrest and apoptosis in association with the inhibition of constitutively active NF-kappaB and STAT3 pathways in Hodgkin's lymphoma cells. Int J Cancer 2008; 123:56-65.
    [35]Tomita, M, Matsuda, T, Kawakami, H. Curcumin targets Akt cell survival signaling pathway in HTLV-I-infected T-cell lines. Cancer Sci 2006; 97:322-327.
    [36]Cheng GZ et al. Advances of AKT pathway in human oncogenesis and as a target for anti-cancer drug discovery. Curr Cancer Drug Targets,8:2-6,2008.
    [37]Niquet J, Wasterlain CG. Bim,Bad, and Bax:a deadly combination in epileptic seizures. J Clin Invest,113:960-962,2004.
    [38]Cheng GZ, Park S, Shu S, et al. Advances of AKT pathway in human oncogenesis and as a target for ant i_cancer drug discovery.Curr Cancer Drug Targets,8:2-6,2008,.
    [39]Basanez G, Soane L, Hardwick JM.A new view of the lethal apoptotic pore. PLoS Biol,10: e1001399,2012.
    [40]Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells,335:440-2,1988.
    [41]Lewandowska U, Szewczyk K, Owczarek K, Hrabec Z, Podsedek A, Koziolkiewicz M, Hrabec E. Flavanols from Evening Primrose (Oenothera paradoxa) Defatted Seeds Inhibit Prostate Cells Invasiveness and Cause Changes in Bcl-2/Bax mRNA Ratio. J Agric Food Chem.61:2987-98,2013.
    [42]Yin H, Guo C, Wang Y, Liu D, Lv Y, Lv F, Lu Z.Fengycin inhibits the growth of the human lung cancer cell line 95D through reactive oxygen species production and mitochondria-dependent apoptosis. Anticancer Drugs.2013.Epub ahead of print.
    [43]Vacas E, Bajo AM, Schally AV, Sanchez-Chapado M, Prieto JC, Carmena MJ. Antioxidant activity of vasoactive intestinal peptide in HK2 human renal cells. Peptides,38:275-81,2012.
    [44]Fiandalo MV, Kyprianou N.Caspase control:protagonists of cancer cell apoptosis. Exp Oncol.34:165-75,2012.
    [45]Tsao AS, Kim ES, Hong WK.Chemoprevention of cancer.CA Cancer J Clin,2004,54(3):150-180.
    [46]Busby JE, Kamat AM.Chemoprevention for bladder cancer.J Urol,2006,176(5):1914-1920.
    [47]Tan TW, Tsai HR, Lu HF, Lin HL, Tsou MF, Lin YT, et al.Curcumin-induced cell cycle arrest and apoptosis in human acute promyelocytic leukemia HL-60 cells via MMP changes and caspase-3 activation.2006;26:4361-71.
    [48]Karmakar S, Banik NL, Patel SJ, Ray SK. Curcumin activated both receptor-mediated and mitochondriamediated proteolytic pathways for apoptosis in human glioblastoma T98G cells. 2006;407:53-8.
    [49]Li L, Aggarwal BB, Shishodia S, Abbruzzese J, Kurzrock R. Nuclear factor-kappaB and IkappaB kinase are constitutively active in human pancreatic cells, and their down-regulation by curcumin (diferuloylmethane) is associated with the suppression of proliferation and the induction of apoptosis.2004; 101:2351-62.
    [50]Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction.2002;512:334-40.
    [51]Chan WH, Wu HJ, Hsuuw YD. Curcumin inhibits ROS formation and apoptosis in methylglyoxal-treated human hepatoma G2 cells.2005; 1042:372-8.
    [52]Moos PJ, Edes K, Mullally JE, Fitzpatrick FA. Curcumin impairs tumor suppressor p53 function in colon cancer cells.2004;25:1611-7.
    [53]Bush JA, Cheung Jr KJ, Li G. Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53.2001;271:305-14.
    [54]Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P, Aggarwal BB. Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. 2001;20:7597-609.
    [55]Aggarwal S, Takada Y, Singh S, Myers JN, Aggarwal BB. Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor-kappaB signaling.2004; 111:679-92.
    [56]Surh YJ.Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory ac-tivities:a short review[J].Food Chem Toxicol,2002,40(8):1091
    [57].Aggarwal BB,Kumar A,Bharti ACAnticancer potential of curcumin:preclinical and clinical studies[J].Antican-cer Res,2003,23(1A):363
    [58]Biroccio A,Benassi B,Filomeni G,!et al.Glutathione influence c-Myc-induced apoptosis in M14 human melanoma cells[J].J Biol Chem,2002,277(46):43763-70.
    [59]Willims GT,et al.Molecular regulation of apoptosis:genetic control on cell death.Cell,1993;74:777
    [60]Li, Z. X, Ouyang, K. Q, Jiang, X. Curcumin induces apoptosis and inhibits growth of human Burkitt's lymphoma in xenograft mouse model. Mol Cells 2009; 27:283-289.
    [61]Leow, P. C, Tian, Q, Ong, Z. Y. Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/beta-catenin antagonists against human osteosarcoma cells. Invest New Drugs 2009.
    [62]Tharakan, S. T, Inamoto, T, Sung, B. Curcumin potentiates the antitumor effects of gemcitabine in an orthotopic model of human bladder cancer through suppression of proliferative and angiogenic biomarkers. Biochem Pharmacol 2010; 79:218-228.
    [63]Kunnumakkara, A. B, Diagaradjane, Pand Guha, S. Curcumin sensitizes human colorectal cancer xenografts in nude mice to gamma-radiation by targeting nuclear factor-kappaB-regulated gene products. Clin Cancer Res 2008;14:2128-2136.
    [64]Mackenzie, G. G, Queisser, N, Wolfson, M. L. Curcumin induces cell-arrest and apoptosis in association with the inhibition of constitutively active NF-kappaB and STAT3 pathways in Hodgkin's lymphoma cells. Int J Cancer 2008; 123:56-65.
    [65]Tomita, M, Matsuda, T, Kawakami, H. Curcumin targets Akt cell survival signaling pathway in HTLV-I-infected T-cell lines. Cancer Sci 2006; 97:322-327.
    [66]Kangas A, Nicholson DW, Holtta E.Involvement of caspase3 in c-myc-induced apoptosis[J]. Oncogene,1998,16(3):387-398.
    [67]Juin, P., Hunt, A., Littlewood, T.. C-Myc functionally cooperates with Bax to induce apoptosis. Mol. Cell. Biol.2002; 22:6158-6169.
    [68]Adams, J.M., Cory, S.. The Bcl-2 protein family:arbiters of cell survival. Science 1998; 281:1322-1326.
    [69]Kuo ML, Huang TS, Lin JK. Curcumin, an antioxidant and anti-tumor promoter, induces apoptosis in human leukemia cells.1996;1317:95-100.
    [70]Kim MS, Kang HJ, Moon A. Inhibition of invasion and induction of apoptosis by curcumin in H-ras-transformed MCF10A human breast epithelial cells.2001;24:349-54.
    [71]Song G, Mao YB, Cai QF, Yao LM, Ouyang GL, Bao SD. Curcumin induces human HT-29 colon adenocarcinoma cell apoptosis by activating p53 and regulating apoptosisrelated protein expression.2005;38:1791-8.
    [72]Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction.2002;512:334-40.
    [73]Wu Y, Chen Y, Xu J, Lu L. Anticancer activities of curcumin on human Burkitt's lymphoma. 2002;24:348-52.
    [74]Yuan J,Shaham S,Ledoux S,et al.TheC.eleganscell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme[J].Cell,1993,75 (4):641.
    [75]Thornberry NA, Yuri L. Caspases:Enemies within [J]. Science,1998,281(8):1312-1316.
    [76]Fazlul H SARKAR,Yi-wei LI. Targeting multiple signal pathways by chemopreventive agents for cancer prevention and therapy. Acta Pharmacol Sin 2007; 28:1305-1315.
    [77]Qin J, Xie LP, Zheng XY, Wang YB, Bai Y, Shen HF, et al. A component of green tea, (-)-epigallocatechin-3-gallate, promotes apoptosis in T24 human bladder cancer cells via modulation of the PI3K/Akt pathway and Bcl-2 family proteins. Biochem Biophys Res Commun 2007; 354:852-7.
    [78]WU X, Obata T, Khan Q, etal.The Phosphatidylinositol-3 kinase Pathway regulates bladder cancer cell invasion.BJU Int,2004,93(1):143-150.
    [79]ROSIVATZ E. Inhibiting PTEN [J].Biochem Soc Trans,2007,35(Pt2):257-259.
    [80]DOWNES CP, PERERAN, ROSS S,etal. Substrate specificity and acute regulation of the tumour suppressorphosphatase, PTEN [J]. Biochem Soc Symp,2007,74:69-80.
    [81]Wang DS,Riger Christ K,Latini JM,et al. Molecular analysis of PTEN and MX II in primary bladder carcinoma.Int J Cancer 2000 88:620-625.
    [82]Myers MP, StolarovJP, Eng C.PTEN, the tumor suppresor from human chromosome 10q23, is a dual-specificity phosphatase. Proc Natl Acad Sci USA 1997 94(5):9052-9057.
    [83]Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not Bcl-X(L). Cell,1996, 87(4):619-628
    [84]GREEN D R, REED J C. Mitochondria and apoptosis[J].Science,1998,281:1309-1312.
    [85]RENTZSCH F, HOBMAYER B, HOLSTEIN TW.Glycogen synthase kinase 3 has a proapoptotic function inHydra gametogenesis [J]-Dev Bio,l 2005,278(1):1-12-
    [86]Schulze A, Lehmann K, Jefferies HB, et a:l Analysis of the transcriptional program induced by Raf in epithelial cells[J].GenesDev,2001,15:981-994.
    [87]Zimmermann S, Moelling K. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science,1999,286 (5445):1741-1744.
    [88]Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin:Preclinical and clinical studies. Anticancer Res 2003; 23:363-398.
    [89]Ogiso Y,Tomida A,Lei S,et al.Proteasome inhibition circuments solid tumor resistsnce to topoisomerase Ⅱ-directed drugs[J].Cancer Res.2000,60(9):2429-2434.
    [90]汤钊.现代肿瘤学[M]第二版上海医科大学出版社,2000.461.
    [91]Hanahan D, Weinberg RA. The hallmarks of cancer.2000;100:57-70.
    [92]Gao N, Flynn DC, Zhang Z, et al. G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells[J]. Am J Physiol Cell Physiol,2004,287(2):281-291
    [93]Xu G, Zhang WH, Bertram P, et al. Pharmacogenomic profiling of the PI3K/PTEN- AKT mTOR pathway in common human tumors[J]. Int J Oncol,2004,24(9):893-900
    [94]Zhang BL, Cao HQ, Rao GN, et al.15 (S)-Hydroxyeicosate-traenoic acid induces angiogenesis via activation of PI3K-Akt-mTOR-S6K1 signaling[J]. Cancer Res,2005, 65(16):7283-7292
    [95]R.B. Clarke, p27KIP1 phosphorylation by PKB/Akt leads to poor breast cancer prognosis, Breast Cancer Res.5 (2003) 162-163.
    [96]F. Chang, J.T. Lee, P.M. Navolanic, L.S. Steelman, J.G. Shelton, W.L. Blalock, R.A. Franklin, J.A. McCubrey, Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transforma tion:a target for cancer chemotherapy, Leukemia 17 (2003) 590-603.
    [97]McCubrey JA, Steelman LS, Franklin RA, Abrams SL, Chappell WH, Wong EW, et al. Targeting the RAF/MEK/ERK, PI3K/AKT and P53 pathways in hematopoietic drug resistance. Adv Enzyme Regul 2007 Mar 21.
    [98]Han Z, Hong L, Wu K, Han S, Shen H, Liu C, et al. Reversal of multidrug resistance of gastric cancer cells by downregula-tion of Aktl with Aktl siRNA. J Exp Clin Cancer Res 2006; 25: 601-6.
    [99]Tazzari PL, Cappellini A, Ricci F, Evangelisti C, Papa V, Grafone T, et al. Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts. Leukemia 2007; 21:427-38
    [100]Brognard J,Clark AS, Ni Y,et al.Akt/protein kinase B is constitutive ly active in non-small cell lung cancer cells and promotes cellularsurvival and resistance to chemotherapy and radiation. Cancer Res.2001,61(10):3986-3997.
    [101]Jean LN, Amelia K, NilsDA, et al. PI3K/Akt mediates radiosensiti- zation by the signaling inhibitor LY294002 in human malignant gliomas. J Neuro Oncology,2005,71 (3):215-222.
    [102]Bondar VM, Sweeney-Gotsch B, Andreeff M, et al. Inhibition of the phosphatidylinositol 3'-kinase-AKT pathway induces apoptosis in pancreatic carcinoma cells in vitro and in vivo. Mol Cancer Ther,2002,1 (12):989-997.
    [103]Kim MS, Park MJ,Moon EJ, et al. Hyaluronic acid induces osteo- pontin via the phosphatidylinositol 3-kinase /Akt pathway to enhance the motility of human glioma cells. Cancer Res,2005,65 (3):686-691.
    [104]Clark AS,West K, Streicher S, et al. Constitutive and inducible AKT activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther, 2002,1(9):707-717.
    [105]Gupta AK,Bakanauskas VJ, Cerniglia GJ, et al. The Ras radiation resistance pathway. Cancer Res,2001,61 (10):4278-4282.
    [106]Sakuntala WG, Julie L, Elisabeth B, et al. The insulin- like growth factor-Ⅰ receptor kinase inhibitor, NVPADW742, sensitizes small cell lung cancer cell lines to the effects of chemotherapy. Clin Cancer Res,2005,11 (15):1563-1571.
    [107]AissatN, Le Tourneau C, GhoulA, et al. Antip roliferative effects of rapamycin as a single agent and in combination with carbop latin and paclitaxel in head and neck cancer cell lines. Cancer Chemother Pharmacol,2008,62 (2):302-313.
    [108]Qin J, Xie LP, Zheng XY, Wang YB, Bai Y, Shen HF, et al. A component of green tea, (-)-epigallocatechin-3-gallate, promotes apoptosis in T24 human bladder cancer cells via modulation of the PI3K/Akt pathway and Bcl-2 family proteins. Biochem Biophys Res Commun 2007; 354:852-7.
    [109]Nair AS, Shishodia S, Ahn KS, Kunnumakkara AB, Sethi G, Aggarwal BB. Deguelin, an Akt inhibitor, suppresses Ikappa-Balpha kinase activation leading to suppression of NF-kappaB regulated gene expression, potentiation of apoptosis, and inhibition of cellular invasion. J Immunol 2006; 177:5612-22.
    [110]Lee HY, Oh SH, Woo JK, Kim WY, Van Pelt CS, Price RE, et al.Chemopreventive effects of deguelin, a novel Akt inhibitor, on tobacco-induced lung tumorigenesis. J Natl Cancer Inst 2005;97:1695-9.
    [111]Chaudhuri D, Orsulic S, Ashok BT. Antiproliferative activity of sulforaphane in Akt-overexpressing ovarian cancer cells. Mol Cancer Ther 2007; 6:334-45.
    [112]Benistant C, Chapuis H, Roche S.A specific function for Phosphatidylinositol 3-kinase alPha-in cell survival and for Phosphatidytinositol 3-kinase beta in de novo DNA synthesis of human colon carcinoma cells.Oneogene,2000,19(44):5083-5090.
    [113]WU X, Obata T, Khan Q, etal.The Phosphatidylinositol-3 kinase Pathway regulates bladder cancer cell invasion.BJU Int,2004,93(1):143-150.
    [114]Chang F, Lee JT, Navolanic PM, et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation:a target for cancer chemotherapy. Leukem ia,2003,17(3):590-603.
    [115]Franke TF, Hornik CP, Segev L, et al. PI3K/Akt and apop tosis:size matter. Oncogene,2003, 22 (56):8983-8998.
    [116]Morgensztern D, McLeod HL. PI3K/Akt/mTOR pathway as a target for cancer therapy AnticancerDrugs,2005,16 (8):797-803.
    [117]Vlahos CJ, Matter WF, Hui KY, et al. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Bio Chem,1994, 269(7):5241-5248.
    [118]Semba S, Itoh N, Ito M, et al. The in Vitro and in Vivo Effects of 2-(4-Morpholinyl)-8-phenylchrom-one (LY294002), a specific inhibitor of Phosphatidylinositol 3'-Kinase, in Human Colon Cancer Cells Clin Cancer Res,2002,8(6):1957-1963
    [119]Tabellini G, Cappellini A,Tazzari PL, et al. Phosphoin-ositide 3-kinase/Akt involvement in arsenic trioxide resist- ance of human leukemia cells. J CellPhysiol,2005,202(2):623-634.
    [120]Kubiatowski T, Jang T, Lachyankar MB, et al.Association of increased phosphatidylinositol 3-kinase signaling with increased invasiveness and gelatinase activity in malignant gliomas. J Nneurosurgery,2001,95 (3):480-488.
    [121]Mitsuhiko O, Satoru K. Inhibition of the PI3K/Akt signaling pathway enhances the sensitivity of Fasmediated apop tosis in human gastric carcinoma cell line. J Can Res Clin Onco,2004,130 (1):8214-8221.
    [122]Vana-Davis, Frankenberry K,Cunninghan C,et al.MAPK and PI3K inhibition reduces proliferation of Barrett's adeno-carcinoma in vitro. J Surg Res,2005,127(1):53-58.
    [123]Nguyen DM, Chen GA, Reddy R. Potentiation of paclitaxel cyto-toxicity in lung and esophageal cancer cells by pharmacologic inhibition of the phosphoinositide 3-kinase /protein kinase B (Akt)-mediated signaling pathway. J Thorac Cardiovasc Surg,2004,127 (2):365-375
    [124]Rane MJ, Coxon PY, Powell DW, et al. p38 Kinase-dependen MAPK-APK2-activation functions as 3-phosphoinositide -dependent kinase-2 for Akt in human neutrophils. J Biol Chem,2001,276 (5):3517
    [125]Hu LM, Hofmann J, Lu YL, et al. Inhibition of phosphatidylinositol 3 -kinase increases efficacy of paclitaxel in vitro and in vivo ovarian cancermodels. Cancer Res,2002,62 (4): 1087-1092.
    [126]Schmidt M, Hovelmann S, Beckers TL. A novel form of constitutively active farnesylated Aktl prevents mammary epithelial cells from anoikis and suppresses chemotherapy-induced apoptosis. Br J Cancer,2002,87 (8):924-932.
    [127]Westfall SD,Skinner MK.Inhibition of phosphatidy-linositol 3-kinase sensitizes ovarian cancer cells to carboplatin and allows adjunct chemotherapy treatment. Mol Cancer Ther.2005,4(11):1764-1771.
    [128]Liang J, Ge F, Guo C, et al. Inhibition of PI3K/Akt partially leads to the inhibition of PrP(C)-induced drug resistance in gastric cancer cells. FEBS J.2009;276(3):685-694.
    [129]陈鹏涛,王贵吉,裴迎新,等.P13K/Akt抑制剂LY294002对大肠癌细胞化疗增敏作用的探讨.肿瘤基础与临床,2008,21(1):10-12.
    [130]任源,陈明辉,查晓,等.TPZ联合LY294002对人宫颈癌细胞的体外抑制作用.华西药学杂志,2008,23(1):59-60.
    [131]Commandeur JN and Vermeulen NP:Cytotoxicity and cytoprotective activities of natural compounds. The case of curcumin. Xenobiotica.26:667-80,1996.
    [132]Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, Ko JY, Lin JT, Lin BR, Ming-Shiang W et al.:Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res.21:2895-900,2001.
    [133]Ammon HP and Wahl MA:Pharmacology of Curcuma longa. Planta Med.57:1-7,1991.
    [134]Syng-ai C, Kumari AL and Khar A:Effect of curcumin on normal and tumor cells:Role of glutathione and bcl-2. Molecular Cancer Therapeutics.3:1101-1108,2004.
    [135]Bava SV, Puliappadamba VT, Deepti A, Nair A, Karunagaran D and Anto RJ:Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem. 280:6301-8,2005.
    [136]Tomita M, Kawakami H, Uchihara JN, Okudaira T, Masuda M, Takasu N, Matsuda T, Ohta T, Tanaka Y, Ohshiro K et al.:Curcumin (diferuloylmethane) inhibits constitutive active NF-kappaB, leading to suppression of cell growth of human T-cell leukemia virus type I-infected T-cell lines and primary adult T-cell leukemia cells. Int J Cancer.118:765-72, 2006.
    [137]Banerjee S, Zhang Y, Ali S, Bhuiyan M, Wang Z, Chiao PJ, et al. Molecular evidence for increa sed antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res 2005; 65:9064-72.
    [138]Li Y, Ahmed F, Ali S, Philip PA, Kucuk O, Sarkar FH. Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res 2005; 65:6934-42.
    [139]Li Y, Ellis KL, Ali S, El-Rayes BF, Nedeljkovic-Kurepa A, Kucuk O, et al. Apoptosis-inducing effect of chemotherapeutic agents is potentiated by soy isoflavone genistein, a natural inhibitor of NF-kappaB in BxPC-3 pancreatic cancer cell line. Pancreas 2004;28:e90-e95.
    [140]Mohammad RM, Al-Katib A, Aboukameel A, Doerge DR, Sarkar F, Kucuk O. Genistein sensitizes diffuse large cell lymphoma to CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) chemotherapy. Mol Cancer Ther 2003; 2:1361-8.
    [141]Hwang JT, Ha J, Park OJ. Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways. Biochem Biophys Res Commun 2005; 332:433-40.
    [142]Satoh H, Nishikawa K, Suzuki K, Asano R, Virgona N, Ichikawa T, et al. Genistein, a soy isoflavone, enhances necrotic-like cell death in a breast cancer cell treated with a chemotherapeutic agent. Res Commun Mol Pathol Pharmacol 2003; 113-114:149-58.
    [143]Tanos V, Brzezinski A, Drize O, Strauss N, Peretz T. Synergistic inhibitory effects of genistein and tamoxifen on human dysplastic and malignant epithelial breast cells in vitro. Eur J Obstet Gynecol Reprod Biol 2002; 102:188-94.
    [144]Chisholm K, Bray BJ, Rosengren RJ. Tamoxifen and epigallocate chin gallate are synergistically cytotoxic to MDAMB-231 human breast cancer cells. Anticancer Drugs 2004; 15:889-97.
    [145]Zhang Q, Wei D, Liu J. In vivo reversal of doxorubicin resistance by (-)-epigallocatechin gallate in a solid human carcinoma xenograft. Cancer Lett 2004; 208:179-86.
    [146]Notarbartolo M, Poma P, Perri D, Dusonchet L, Cervello M, D'Alessandro N. Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kappaB activation levels and in IAP gene expression. Cancer Lett 2005; 224:53-65.
    [147]Bava SV, Puliappadamba VT, Deepti A, Nair A, Karunagaran D, Anto RJ. Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem 2005;280:6301-8.
    [148]Chan MM, Fong D, Soprano KJ, Holmes WF, Heverling H. Inhibition of growth and sensitization to cisplatin-mediated killing of ovarian cancer cells by polyphenolic chemopreventive agents. J Cell Physiol 2003; 194:63-70.
    [149]Kunnumakkara AB, Guha S, Krishnan S, Diagaradjane P, GelovaniJ, Aggarwal BB. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-{kappa}B-regulated gene products. Cancer Res 2007; 67:3853-61.
    [150]Lev-Ari S, Strier L, Kazanov D, Madar-Shapiro L, Dvory-Sobol H, Pinchuk I, et al. Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells. Clin Cancer Res 2005; 11:6738-44.
    [151]Deeb D, Xu YX, Jiang H, Gao X, Janakiraman N, Chapman RA. Curcumin (diferuloyl-methane) enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in LNCaP prostate cancer cells. Mol Cancer Ther 2003; 2:95-103.
    [152]Bava SV, Puliappadamba VT, Deepti A, Nair A, Karunagaran D and Anto RJ:Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem. 280:6301-8,2005.
    [153]Kamat AM, Sethi G, Aggarwal BB, Paneau C, Schaffer P and Bollack C:Curcumin potentiates the apoptotic effects of chemo therapeutic agents and cytokines through down-regulation of nuclear factor-kappaB and nuclear factor-kappaB-regulated gene products in IFN-alpha-sensitive and IFN-alpha-resistant human bladder cancer cells.[Epidemiology of bladder cancer]. Mol Cancer Ther.6:1022-30,2007.
    [154]Anuchapreeda S, Leechanachai P. Smith MM, et al. Modulation of P-glycoprotein expression and function by curcumin in multidrug-resistant human KB cells[J]. Biochem Pharmacol,2002,64(4):573-584
    [155]张慧珠,杨林,李小娜,等。姜黄素体外增敏抗肿瘤药物作用[J]。华西药学杂志,2003,18(3): 172-174。
    [156]Hour TC, Chen J, Huang CY, et at. Curcumin enhance cytotoxicity of chemotherapeutic agent in prostate cancer cell by inducing p21(WAF1/CIP1) and C/EBPbeta expressions and suppressing NF-Kappa B activation[J]. Prostate,2002.51(3):211-219
    [157]West KA, Castillo SS, Dennis PA. Activation of the PI3K/Akt pathway and chemotherapeutic resistance[J]. Drug Resist Updat,2002,5 (6):234-248.
    [158]Fiala ES, Sohn OS,Wang CX, et al. Induction of p reneop lastic lung lesions in uinea p igs by cigarette smoke inhalation and their exacer bation by high dietary evels of vitamins C and E[J]. Carcino-genesis,2005,26 (3):605-612.
    [159]Nakanishi K, SakamotoM, Yamasaki S, et al. Akt phosphorylation is a risk factor for early disease recurrence and poor p rognosis in hepato-cellular carcinoma [J]. Cancer,2005,103 (2):307-312.
    [160]Zhao L Z, YinW, Su XW, et al. IGF21 p rotection against cerebellar granule neurons apop tosis induced by diphenylhydantoin through a PI3K/Akt dependent pathway [J]. Chin Pharm acol Bull,2005,21 (1):53-7.
    [161]Benistant C, Chapuis H, Roche S.A specific function for Phosphatidylinositol 3-kinase alPha-in cell survival and for Phos phatidytinositol 3-kinase beta in de novo DNA synthesis of human colon carcinoma cells.Oneogene,2000,19(44):5083-5090.
    [162]WU X, Obata T, Khan Q, etal.The Phosphatidylinositol-3 kinase Pathway regulates bladder cancer cell invasion.BJU Int,2004,93(1):143-150.
    [163]Xing CG, Zhu BS, Liu HH, et al. LY294002 induces p53-dependent apoptosis of SGC7901 gastric cancer cells [J]. Acta Pharmacol Sin,2008,29 (4):489-498.
    [164]TakedaA, OsakiM, Adachi K, et al. Role of the phosphatidy linositol 3-kinase-Akt signal pathway in the p roliferation of human pan-creatic ductal carcinoma cell lines [J]. Pancreas, 2004,28 (3):353-358.
    [165]Nguyen DM, Chen GA, Reddy R. Potentiation of paclitaxel cytotoxicity in lung and esophageal cancer cells by pharmacologic inhibition of the phosphoinositide 32kinase/p rotein kinase B (Akt)-mediated signaling pathway [J]. Thorac Cardiovasc Surg,2004,127 (2):365-375.
    [166]ChristopherM, Christa B, Fuhrman V, et al. Phosphatidylinositol 3-kinase inhibition byLY294002 radiosensitizes human cervical cancer cell lines [J]. Clin Cancer Res,2006,12 (1):250-256.
    [167]刘民锋,余险峰,郭伟,等.LY294002对胆管癌细胞化疗增敏作用的探讨[J].中国肿瘤临床,2006,33(11):611-613.
    [168]Kim W, Seong J, An JH, et al. Enhancement of tumor radioresponse by wortmannin in C3H /HeJ hepatocarcinoma [J]. Radiat Res,2007,48 (3):187-195.
    [169]Brognard J, Clark AS, Ni Y, et al. Akt/protein kinase bisconsti-tutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation [J].Cancer Res,2001,61 (10):3986-3997.
    [170]Sindhwani P, Hampton JA, Baig MM, Keck R and Selman SH:Curcumin prevents intravesical tumor implantation of the MBT-2 tumor cell line in C3H mice. Journal of Urology. 166:1498-1501,2001.
    [171]Tan TW, Tsai HR, Lu HF, Lin HL, Tsou MF, Lin YT, et al. Curcumin-induced cell cycle arrest and apoptosis in human acute promyelocytic leukemia HL-60 cells via MMP changes and caspase-3 activation.2006;26:4361-71.
    [172]Karmakar S, Banik NL, Patel SJ, Ray SK. Curcumin activated both receptor-mediated and mitochondriamediated proteolytic pathways for apoptosis in human glioblastoma T98G cells. 2006;407:53-8.
    [173]Li L, Aggarwal BB, Shishodia S, Abbruzzese J, Kurzrock R. Nuclear factor-kappaB and IkappaB kinase are constitutively active in human pancreatic cells, and their down-regulation by curcumin (diferuloylmethane) is associated with the suppression of proliferation and the induction of apoptosis.2004; 101:2351-62.
    [174]Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G. Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction.2002;512:334-40.
    [175]Chan WH, Wu HJ, Hsuuw YD. Curcumin inhibits ROS formation and apoptosis in methylglyoxal-treated human hepatoma G2 cells.2005; 1042:372-8.
    [176]Moos PJ, Edes K, Mullally JE, Fitzpatrick FA. Curcumin impairs tumor suppressor p53 function in colon cancer cells.2004;25:1611-7.
    [177]Bush JA, Cheung Jr KJ, Li G. Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53.2001;271:305-14.
    [178]Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P, Aggarwal BB. Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. 2001;20:7597-609.
    [179]Aggarwal S, Takada Y, Singh S, Myers JN, Aggarwal BB. Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor-kappaB signaling.2004; 111:679-92.
    [180]Ogiso Y,Tomida A,Lei S,et al.Proteasome inhibition circuments solid tumor resistsnce to topoisomerase Ⅱ-directed drugs[J].Cancer Res.2000,60(9):2429-2434.
    [181]汤钊.现代肿瘤学[M]第二版上海医科大学出版社,2000.461.
    [182]Hanahan D, Weinberg RA. The hallmarks of cancer.2000;100:57-70.
    [183]Ko WG,Kang TH,Kim NY,et al.Lavandulylflavonoids:a new class of in vitro apoptogenic agents from Sophora flavescens[J]. Toxicology in Vitro,2000,14:429-33.
    [184]ASHKENAZI A, DIXIT V M. Death receptors:signaling and modulation[J]. Science 1998,281:1305-1308.
    [185]GREEN D R, REED J C. Mitochondria and apoptosis[J].Science,1998,281:1309-1312.
    [186]ZHOU H, HENZEL WJ, LIU X S, et al. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome C-dependent activation of caspase-3[J]. Cell, 1997,90:405-413.
    [187]ENARI M, SAKAHIRA H, YOKOYAMA H, et al. A Caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD[J]. Nature,1998,391:43-50.
    [188]Robert son GS, Crocker SJ, Nicholson DW, et al.Neuroprotection by the inhibition of apoptosis. Brain Pat hol,2000,10(2):283-292.
    [189]Wang J,Lenardo MJ. Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies [J]. J Cell Sci,2000,113 (Pt 5):753-757.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700