乙型肝炎病毒在原代肝细胞共培养模型上的增强感染研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙型肝炎病毒(hepatitis B virus, HBV)的感染是目前世界范围内最为严重的公共卫生问题之一。根据世界卫生组织统计,截至目前为止,每年由于急性或慢性的HBV感染造成的死亡人数达到60万左右。
     在现有的HBV体外感染研究中,原代树齁肝实质细胞(primary tupaia hepatocytes, PTH)是一种被成功使用的模型。尽管如此,该系统仍然存在着相当的局限性。体内外培养环境的差异使得从肝脏组织中分离出来的原代肝细胞仅能部分维持原有的HBV易感性,而且随着体外培养时间的增加往往会迅速丧失。此外,实验动物的个体差别和分离技术的复杂性等因素也会增加不同批次分离的原代细胞的差异。这些问题导致了PTH作为HBV研究模型显得不够高效和不够稳定,降低了检测结果的信噪比,加大了分析难度,使得一些真正影响感染过程的重要因素在实际研究过程中变得难以被发现。另一方面,短暂的易感性维持时间也限制了许多研究方法的应用。
     我们采用树齁的肝星状细胞(hepatic stellate cells,HSC)作为支持细胞,建立了一种新的PTH共培养模型。我们发现,HBV在这种共培养系统上,感染得到了显著增强。除了HSC之外,使用树齁皮肤来源的原代成纤维细胞(primary tupaia fibroblast, PTF)建立的共培养系统也能对HBV的感染起到类似的促进效果。与之相一致的是,共培养系统对肝细胞的部分生理功能,包括细胞色素酶P450(CYP450)超家族成员的活性等方面也起到了较为明显的增强效果。这样的共培养系统很好地解决了原有模型存在的低效和不稳定的问题,有利于利用该模型揭示更多感染过程中的关键因素。
     除了促进感染之外,我们还发现,共培养系统能够显著地延长体外培养的原代肝实质细胞对HBV易感性的维持时问。这一优势拓宽了PTH作为HBV感染模型在实际研究中的应用。
     我们进一步研究了共培养系统影响肝实质细胞的相关机制,发现支持细胞对肝细胞的影响需要通过细胞间的直接接触来实现,并且两种细胞接触的时间点也会对最终促进感染的程度产生影响。
     我们通过表达水平、分布以及功能等多方面的检测,发现新鉴定出的HBV受体,钠离子-牛磺胆酸共转运蛋白(NTCP)在共培养系统中的肝细胞上表达没有发生明显的变化。另一方面,我们发现细胞内与HBV复制相关的一些肝富集转录因子(liver enriched transcription factor, LETF)的表达量出现了上调。研究发现其中的两种,HNF4A和HLF,在通过RNA干扰下调其表达水平后,HBV的感染效率也出现了明显的下降。这些结果显示,共培养系统中HBV的感染很有可能是在病毒的复制与生物合成等环节受到了增强。
     我们对共培养系统中的肝细胞作了进一步研究,发现两种与细胞生理状态密切相关的标记蛋白,MRP2(multidrug resistance protein2)和ZO-1(zonula occludens protein1)在表达和分布上呈现出与体内肝脏组织中的肝细胞类似的特征,而这些特征是单培养的肝细胞所不具备的。这说明共培养系统中的肝细胞在生理特征上更加接近于体内微环境中的细胞。
     因此,我们建立的原代肝细胞的共培养系统,能够作为一种体外研究HBV感染更加高效的模型,并且能够模拟更为接近体内生理状态下发生的HBV感染过程。这对于我们进一步揭示HBV感染和致病的相关机制有着十分重要的意义。
Approximately two billion people have been infected with human Hepatitis B virus (HBV) worldwide with over240million people are chronically infected. Among them about600,000die of HBV-related liver diseases each year. Available treatments are inadequate or non-effective to those who are chronically infected and at high risk of cirrhosis and hepatocellular carcinoma. More than50%of liver cancers worldwide are attributable to HBV and over90%in Asia.
     For a long period of time, primary hepatocytes, including those from humans, chimpanzees or tree shrews are the only cell types that can support complete life cycle of HBV. However, these cells precipitously decline in viability and remain susceptible to infection for only a few days following their preparation from liver tissue. Moreover, the infection efficiency in these models usually is low, only5-10%of primary hepatocytes could be infected in vitro with regular infection dosage. In addition to the primary hepatocytes, a hepatoma cell line, HepaRG, is the only cell line that is susceptible to HBV infection. However, its susceptibility is subjected to a month long process with induction of corticoids and DMSO.
     In this study, we used primary hepatocytes of treeshrew as a model and examined if co-culturing hepatocytes with other nonparenchymal cells can improve human HBV infection of PTHs. We also investigated molecular mechanisms that are involved in the enhanced infection, and whether the recently identified receptor NTCP plays a role.
     We demonstrated the infection of both HBV and WMHBV on PTHs co-cultured with hepatic stellates cells (HSCs) from tupaia or primary tupaia fibroblasts (PTFs) was significantly enhanced. The enhancement of HBV infection in co-cultivation is direct intercellular contact dependent. Co-cultured hepatocytes exhibited enhanced hepatic functions and physiological characteristics as indicated by activity of cytochrome P450enzymes, expression patterns of multidrug resistance protein2(MRP2) and zonula occludens protein1(ZO-1). Moreover, the HBV susceptibility of PTH was found to be prolonged effectively through co-cultivation.
     The enhanced infection of HBV was partially attributable to the up-regulated hepatic transcription factors in the co-cultured hepatocytes, whereas the expression level of the newly identified cellular receptor sodium taurocholate cotransporting polypeptide (NTCP) for HBV was not significantly changed. Nonetheless, NTCP remains the receptor mediating viral entry into the co-cultured hepatoctyes. Together, experimental HBV infection on primary hepatocytes co-cultured with supportive cells sheds new light on HBV entry and provides a useful model to study contributing factors for the efficiency of HBV infection in vitro.
引文
[1]Blumberg, B.S., H.J. Alter, and S. Visnich, A "New" Antigen in Leukemia Sera[J]. JAMA,1965.191:p.541-6.
    [2]Prince, A.M., H. Fuji, and R.K. Gershon, Immunohistochemical Studies on the Etiology of Anicteric Hepatitis in Korea[J]. Am J Hyg,1964.79:p.365-81.
    [3]Prince, A.M., An antigen detected in the blood during the incubation period of serum hepatitis[J]. Proc Natl Acad Sci U S A,1968.60(3):p.814-21.
    [4]Ott, J.J., et al., Global epidemiology of hepatitis B virus infection:new estimates of age-specific HBsAg seroprevalence and endemicity[J]. Vaccine,2012.30(12):p. 2212-9.
    [5]Alter, M.J., Epidemiology and prevention of hepatitis B[J]. Semin Liver Dis,2003. 23(1):p.39-46.
    [6]Chang, M.H., et al., Decreased incidence of hepatocellular carcinoma in hepatitis B vaccinees:a 20-year follow-up study[J]. J Natl Cancer Inst,2009.101(19):p. 1348-55.
    [7]Ganem, D. and A.M. Prince, Hepatitis B virus infection--natural history and clinical consequences[J]. N Engl J Med,2004.350(11):p.1118-29.
    [8]Dane, D.S., C.H. Cameron, and M. Briggs, Virus-like particles in serum of patients with Australia-antigen-associated hepatitis[J]. Lancet,1970.1(7649):p.695-8.
    [9]Robinson, W.S., DNA and DNA polymerase of a virus-like particle in hepatitis B[J]. Dev Biol Stand,1975.30:p.23-37.
    [10]Lutwick, L.I. and W.S. Robinson, DNA synthesized in the hepatitis B Dane particle DNA polymerase reaction[J]. J Virol,1977.21(1):p.96-104.
    [11]Seeger, C. and W.S. Mason, Hepatitis B virus biology[J]. Microbiol Mol Biol Rev, 2000.64(1):p.51-68.
    [12]Cattaneo, R., H. Will, and H. Schaller, Hepatitis B virus transcription in the infected liver[J]. EMBO J,1984.3(9):p.2191-6.
    [13]Enders, G.H., D. Ganem, and H. Varmus, Mapping the major transcripts of ground squirrel hepatitis virus:the presumptive template for reverse transcriptase is terminally redundant[J]. Cell,1985.42(1):p.297-308.
    [14]Gough, N.M., Core and E antigen synthesis in rodent cells transformed with hepatitis B virus DNA is associated with greater than genome length viral messenger RNAs[J]. J Mol Biol,1983.165(4):p.683-99.
    [15]Chen, M.T., et al., A function of the hepatitis B virus precore protein is to regulate the immune response to the core antigen[J]. Proc Natl Acad Sci U S A,2004. 101(41):p.14913-8.
    [16]Takahashi, K., et al., Immunochemical structure of hepatitis B e antigen in the serum[J]. J Immunol,1983.130(6):p.2903-7.
    [17]Marion, P.L., et al., Polypeptides of hepatitis B virus surface antigen produced by a hepatoma cell line[J]. J Virol,1979.32(3):p.796-802.
    [18]Peterson, D.L., I.M. Roberts, and G.N. Vyas, Partial amino acid sequence of two major component polypeptides of hepatitis B surface antigen[J]. Proc Natl Acad Sci U S A,1977.74(4):p.1530-4.
    [19]Brass, V. and D. Ganem, The role of envelope proteins in hepatitis B virus assembly[J]. Proc Natl Acad Sci U S A,1991.88(3):p.1059-63.
    [20]Heermann, K.H., et al., Large surface proteins of hepatitis B virus containing the pre-s sequence[J]. J Virol,1984.52(2):p.396-402.
    [21]Henkler, F., et al., Intracellular localization of the hepatitis B virus HBx protein[J]. J Gen Virol,2001.82(Pt 4):p.871-82.
    [22]Doria, M., et al., The hepatitis B virus HBx protein is a dual specificity cytoplasmic activator of Ras and nuclear activator of transcription factors[J]. EMBO J,1995. 14(19):p.4747-57.
    [23]Zoulim, F., J. Saputelli, and C. Seeger, Woodchuck hepatitis virus X protein is required for viral infection in vivo[J]. J Virol,1994.68(3):p.2026-30.
    [24]Chen, H.S., et al., The woodchuck hepatitis virus X gene is important for establishment of virus infection in woodchucks[J]. J Virol,1993.67(3):p. 1218-26.
    [25]Yan, H., et al., Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus[J]. elife,2012.1:p. e00049.
    [26]Kann, M., A. Bischof, and W.H. Gerlich, In vitro model for the nuclear transport of the hepadnavirus genome[J]. J Virol,1997.71(2):p.1310-6.
    [27]Rabe, B., et al., Nuclear import of hepatitis B virus capsids and release of the viral genome[J]. Proc Natl Acad Sci U S A,2003.100(17):p.9849-54.
    [28]Bock, C.T., et al., Hepatitis B virus genome is organized into nucleosomes in the nucleus of the infected cell[J]. Virus Genes,1994.8(3):p.215-29.
    [29]Bock, C.T., et al., Structural organization of the hepatitis B virus minichromosome[J]. J Mol Biol,2001.307(1):p.183-96.
    [30]Newbold, J.E., et al., The covalently closed duplex form of the hepadnavirus genome exists in situ as a heterogeneous population of viral minichromosomes[J]. J Virol,1995.69(6):p.3350-7.
    [31]Simonsen, C.C. and A.D. Levinson, Analysis of processing and polyadenylation signals of the hepatitis B virus surface antigen gene by using simian virus 40-hepatitis B virus chimeric plasmids[J]. Mol Cell Biol,1983.3(12):p.2250-8.
    [32]Schaller, H. and M. Fischer, Transcriptional control of hepadnavirus gene expression[J]. Curr Top Microbiol Immunol,1991.168:p.21-39.
    [33]Quasdorff, M. and U. Protzer, Control of hepatitis B virus at the level of transcription[J]. J Viral Hepat,2010.17(8):p.527-36.
    [34]Moolla, N., M. Kew, and P. Arbuthnot, Regulatory elements of hepatitis B virus transcription[J]. J Viral Hepat,2002.9(5):p.323-31.
    [35]Bartenschlager, R. and H. Schaller, Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome[J]. EMBO J,1992.11(9):p.3413-20.
    [36]Huang, M.J. and J. Summers, Infection initiated by the RNA pregenome of a DNA virus[J]. J Virol,1991.65(10):p.5435-9.
    [37]Hirsch, R.C., et al., Polymerase gene products of hepatitis B viruses are required for genomic RNA packaging as wel as for reverse transcription[J]. Nature,1990. 344(6266):p.552-5.
    [38]Lenhoff, R.J. and J. Summers, Coordinate regulation of replication and virus assembly by the large envelope protein of an avian hepadnavirus[J]. J Virol,1994. 68(7):p.4565-71.
    [39]Cavanaugh, V.J., L.G Guidotti, and F.V. Chisari, Inhibition of hepatitis B virus replication during adenovirus and cytomegalovirus infections in transgenic mice[J]. J Virol,1998.72(4):p.2630-7.
    [40]de Franchis, R., et al., The natural history of asymptomatic hepatitis B surface antigen carriers[J]. Ann Intern Med,1993.118(3):p.191-4.
    [41]Stevens, C.E., et al., Vertical transmission of hepatitis B antigen in Taiwan[J]. N Engl J Med,1975.292(15):p.771-4.
    [42]Hoofnagle, J.H., Serologic markers of hepatitis B virus infection[J]. Annu Rev Med, 1981.32:p.1-11.
    [43]Ribeiro, R.M., A. Lo, and A.S. Perelson, Dynamics of hepatitis B virus infection[J]. Microbes Infect,2002.4(8):p.829-35.
    [44]Koff, R.S., et al, Contagiousness of acute hepatitis B. Secondary attack rates in household contacts[J]. Gastroenterology,1977.72(2):p.297-300.
    [45]Weinberger, K.M., et al., Sensitive and accurate quantitation of hepatitis B virus DNA using a kinetic fluorescence detection system (TaqMan PCR)[J]. J Virol Methods,2000.85(1-2):p.75-82.
    [46]Liaw, Y.F., et al., The development of cirrhosis in patients with chronic type B hepatitis:a prospective study[J]. Hepatology,1988.8(3):p.493-6.
    [47]Moreno-Otero, R., et al., Development of cirrhosis after chronic type B hepatitis:a clinicopathologic and follow-up study of 46 HBeAg-positive asymptomatic patients[J]. Am J Gastroenterol,1991.86(5):p.560-4.
    [48]Beasley, R.P., Hepatitis B virus. The major etiology of hepatocellular carcinoma[J]. Cancer,1988.61(10):p.1942-56.
    [49]Yang, H.I., et al., Hepatitis B e antigen and the risk of hepatocellular carcinoma[J]. N Engl J Med,2002.347(3):p.168-74.
    [50]Uetake, S., et al., Analysis of risk factors for hepatocellular carcinoma in patients with HBs antigen-and anti-HCV antibody-negative alcoholic cirrhosis:clinical significance of prior hepatitis B virus infection[J]. Alcohol Clin Exp Res,2003. 27(8 Suppl):p.47S-51S.
    [51]Tseng, T.C., et al., High levels of hepatitis B surface antigen increase risk of hepatocellular carcinoma in patients with low HBV load[J]. Gastroenterology, 2012.142(5):p.1140-1149 e3; quiz e13-4.
    [52]Niederau, C, et al., Long-term follow-up of HBeAg-positive patients treated with interferon alfa for chronic hepatitis B[J]. N Engl J Med,1996.334(22):p.1422-7.
    [53]Kwon, H. and A.S. Lok, Hepatitis B therapy[J]. Nat Rev Gastroenterol Hepatol, 2011.8(5):p.275-84.
    [54]Wong, D.K., et al., Effect of alpha-interferon treatment in patients with hepatitis B e antigen-positive chronic hepatitis B. A meta-analysis[J]. Ann Intern Med,1993. 119(4):p.312-23.
    [55]Ikeda, K., et al., Interferon decreases hepatocellular carcinogenesis in patients with cirrhosis caused by the hepatitis B virus:a pilot study[J]. Cancer,1998.82(5):p. 827-35.
    [56]Dienstag, J.L., et al., Lamivudine as initial treatment for chronic hepatitis B in the United States[J]. N Engl J Med,1999.341(17):p.1256-63.
    [57]Chien, R.N., Y.F. Liaw, and M. Atkins, Pretherapy alanine transaminase level as a determinant for hepatitis B e antigen seroconversion during lamivudine therapy in patients with chronic hepatitis B. Asian Hepatitis Lamivudine Trial Group[J]. Hepatology,1999.30(3):p.770-4.
    [58]Liaw, Y.F., et al., Effects of extended lamivudine therapy in Asian patients with chronic hepatitis B. Asia Hepatitis Lamivudine Study Group[J]. Gastroenterology, 2000.119(1):p.172-80.
    [59]Maynard, J.E., W.V. Hartwell, and K.R. Berquist, Hepatitis-associated antigen in chimpanzees[J]. J Infect Dis,1971.123(6):p.660-4.
    [60]Maynard, J.E., et al., Viral hepatitis and studies of hepatitis associated antigen in chimpanzees[J]. Can Med Assoc J,1972.106:p. Supp1:473-9.
    [61]Gerety, R.J. and E. Tabor, Newly licensed hepatitis B vaccine. Known safety and unknown risks[J]. JAMA,1983.249(6):p.745-6.
    [62]Schellekens, H., et al., The protection of chimpanzees against hepatitis B viral infection using a recombinant yeast-derived hepatitis B surface antigen[J]. Postgrad Med J,1987.63 Suppl 2:p.93-6.
    [63]Yan, R.Q., et al., Human hepatitis B virus and hepatocellular carcinoma. I. Experimental infection of tree shrews with hepatitis B virus[J]. J Cancer Res Clin Oncol,1996.122(5):p.283-8.
    [64]Walter, E., et al., Hepatitis B virus infection of tupaia hepatocytes in vitro and in vivo[J]. Hepatology,1996.24(1):p.1-5.
    [65]Farza, H., et al., Replication and gene expression of hepatitis B virus in a transgenic mouse that contains the complete viral genome[J]. J Virol,1988.62(11):p. 4144-52.
    [66]Araki, K., et al., Expression and replication of hepatitis B virus genome in transgenic mice[J]. Proc Natl Acad Sci U S A,1989.86(1):p.207-11.
    [67]Raney, A.K., et al., Nuclear covalently closed circular viral genomic DNA in the liver of hepatocyte nuclear factor 1 alpha-null hepatitis B virus transgenic mice[J]. J Virol,2001.75(6):p.2900-11.
    [68]Rhim, J.A., et al., Complete reconstitution of mouse liver with xenogeneic hepatocytes[J]. Proc Natl Acad Sci U S A,1995.92(11):p.4942-6.
    [69]Rhim, J.A., et al., Replacement of diseased mouse liver by hepatic cell transplantation[J]. Science,1994.263(5150):p.1149-52.
    [70]Marsh, M. and A. Helenius, Virus entry:open sesame[J]. Cell,2006.124(4):p. 729-40.
    [71]Gripon, P., et al., Hepatitis B virus infection of adult human hepatocytes cultured in the presence of dimethyl sulfoxide[J]. J Virol,1988.62(11):p.4136-43.
    [72]Ochiya, T., et al., An in vitro system for infection with hepatitis B virus that uses primary human fetal hepatocytes[J]. Proc Natl Acad Sci U S A,1989.86(6):p. 1875-9.
    [73]Asabe, S., et al., The size of the viral inoculum contributes to the outcome of hepatitis B virus infection[J]. J Virol,2009.83(19):p.9652-62.
    [74]Tuttleman, J.S., J.C. Pugh, and J.W. Summers, In vitro experimental infection of primary duck hepatocyte cultures with duck hepatitis B virus[J]. J Virol,1986. 58(1):p.17-25.
    [75]Aldrich, C.E., et al., In vitro infection of woodchuck hepatocytes with woodchuck hepatitis virus and ground squirrel hepatitis virus[J]. Virology,1989.172(1):p. 247-52.
    [76]Berry, M.N. and D.S. Friend, High-yield preparation of isolated rat liver parenchymal cells:a biochemical and fine structural study[J]. J Cell Biol,1969. 43(3):p.506-20.
    [77]Seglen, P.O., Preparation of rat liver cells. I. Effect of Ca 2+on enzymatic dispersion of isolated, perfused liver[J]. Exp Cell Res,1972.74(2):p.450-4.
    [78]Gebhardt, R., et al., New hepatocyte in vitro systems for drug metabolism: metabolic capacity and recommendations for application in basic research and drug development, standard operation procedures[J]. Drug Metab Rev,2003. 35(2-3):p.145-213.
    [79]Guguen-Guillouzo, C. and A. Guillouzo, Modulation of functional activities in cultured rat hepatocytes[J]. Mol Cell Biochem,1983.53-54(1-2):p.35-56.
    [80]Guillouzo, A., Liver cell models in in vitro toxicology[J]. Environ Health Perspect, 1998.106 Suppl 2:p.511-32.
    [81]Guillouzo, A. and C. Guguen-Guillouzo, Evolving concepts in liver tissue modeling and implications for in vitro toxicology[J]. Expert Opin Drug Metab Toxicol, 2008.4(10):p.1279-94.
    [82]Hewitt, N.J., et al., Primary hepatocytes:current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies[J]. Drug Metab Rev,2007.39(1):p.159-234.
    [83]Waring, J.F., et al., Isolated human hepatocytes in culture display markedly different gene expression patterns depending on attachment status[J]. Toxieol In Vitro, 2003.17(5-6):p.693-701.
    [84]Isom, H.C., et al., Maintenance of differentiated rat hepatocytes in primary culture[J]. Proc Natl Acad Sci U S A,1985.82(10):p.3252-6.
    [85]Bissell, D.M., et al., Support of cultured hepatocytes by a laminin-rich gel. Evidence for a functionally significant subendothelial matrix in normal rat liver[J]. J Clin Invest,1987.79(3):p.801-12.
    [86]Dunn, J.C., et al., Hepatocyte function and extracellular matrix geometry:long-term culture in a sandwich configuration[J]. FASEB J,1989.3(2):p.174-7.
    [87]Justice, B.A., N.A. Badr, and R.A. Felder,3D cell culture opens new dimensions in cell-based assays[J]. Drug Discov Today,2009.14(1-2):p.102-7.
    [88]Andrei, G., Three-dimensional culture models for human viral diseases and antiviral drug development[J]. Antiviral Res,2006.71(2-3):p.96-107.
    [89]Wang, L. and J.L. Boyer, The maintenance and generation of membrane polarity in hepatocytes[J]. Hepatology,2004.39(4):p.892-9.
    [90]Gebhardt, R. and D. Mecke, Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture[J]. EMBO J, 1983.2(4):p.567-70.
    [91]Michalopoulos, G.K. and M.C. DeFrances, Liver regeneration[J]. Science,1997. 276(5309):p.60-6.
    [92]Bezerra, J.A., Liver development:a paradigm for hepatobiliary disease in later life[J]. Semin Liver Dis,1998.18(3):p.203-16.
    [93]Houssaint, E., Differentiation of the mouse hepatic primordium. I. An analysis of tissue interactions in hepatocyte differentiation[J]. Cell Differ,1980.9(5):p. 269-79.
    [94]Douarin, N.M., An experimental analysis of liver development J]. Med Biol,1975. 53(6):p.427-55.
    [95]Langenbach, R., et al., Maintenance of adult rat hepatocytes on C3H/10T1/2 cells[J]. Cancer Res,1979.39(9):p.3509-14.
    [96]Guguen-Guillouzo, C., et al., Maintenance and reversibility of active albumin secretion by adult rat hepatocytes co-cultured with another liver epithelial cell type[J]. Exp Cell Res,1983.143(1):p.47-54.
    [97]Bhatia, S.N., et al., Probing heterotypic cell interactions:hepatocyte function in microfabricated co-cultures[J]. J Biomater Sci Polym Ed,1998.9(11):p.1137-60.
    [98]Begue, J.M., et al., Prolonged maintenance of active cytochrome P-450 in adult rat hepatocytes co-cultured with another liver cell type[J]. Hepatology,1984.4(5):p. 839-42.
    [99]Donato, M.T., J.V. Castell, and M.J. Gomez-Lechon, Cytochrome P450 activities in pure and co-cultured rat hepatocytes. Effects of model inducers[J]. In Vitro Cell Dev Biol Anim,1994.30A(12):p.825-32.
    [100]Loreal, O., et al., Cooperation of Ito cells and hepatocytes in the deposition of an extracellular matrix in vitro[J]. Am J Pathol, 1993.143(2):p.538-44.
    [101]Shimaoka, S., T. Nakamura, and A. Ichihara, Stimulation of growth of primary cultured adult rat hepatocytes without growth factors by coculture with nonparenchymal liver cells[J]. Exp Cell Res,1987.172(1):p.228-42.
    [102]Lanford, R.E., et al., Isolation of a hepadnavirus from the woolly monkey, a New World primate[J]. Proc Natl Acad Sci U S A,1998.95(10):p.5757-61.
    [103]Weill, F.X., et al., Characterization of a new human liver myofibroblast cell line: transcriptional regulation of plasminogen activator inhibitor type I by transforming growth factor beta 1[J]. Lab Invest,1997.77(1):p.63-70.
    [104]Khetani, S.R., et al., T-cadherin modulates hepatocyte functions in vitro[J]. FASEB J,2008.22(11):p.3768-75.
    [105]Gripon, P., et al., Myristylation of the hepatitis B virus large surface protein is essential for viral infectivity[J]. Virology,1995.213(2):p.292-9.
    [106]Bruss, V., et al., Myristylation of the large surface protein is required for hepatitis B virus in vitro infectivity[J]. Virology,1996.218(2):p.396-9.
    [107]Le Seyec, J., et al., Infection process of the hepatitis B virus depends on the presence of a defined sequence in the pre-S1 domain[J]. J Virol,1999.73(3):p. 2052-7.
    [108]Chouteau, P., et al., A short N-proximal region in the large envelope protein harbors a determinant that contributes to the species specificity of human hepatitis B virus[J]. J Virol,2001.75(23):p.11565-72.
    [109]Blanchet, M. and C. Sureau, Infectivity determinants of the hepatitis B virus pre-S domain are confined to the N-terminal 75 amino acid residues[J]. J Virol,2007. 81(11):p.5841-9.
    [110]Le Duff, Y., M. Blanchet, and C. Sureau, The pre-S1 and antigenic loop infectivity determinants of the hepatitis B virus envelope proteins are functionally independent[J]. J Virol,2009.83(23):p.12443-51.
    [111]Glebe, D., et al., Pre-sl antigen-dependent infection of Tupaia hepatocyte cultures with human hepatitis B virus[J]. J Virol,2003.77(17):p.9511-21.
    [112]Barrera, A., et al., Mapping of the hepatitis B virus pre-S1 domain involved in receptor recognition[J]. J Virol,2005.79(15):p.9786-98.
    [113]Glebe, D., et al., Mapping of the hepatitis B virus attachment site by use of infection-inhibiting preS1 lipopeptides and tupaia hepatocytes[J]. Gastroenterology,2005.129(1):p.234-45.
    [114]Gripon, P., I. Cannie, and S. Urban, Efficient inhibition of hepatitis B virus infection by acylated peptides derived from the large viral surface protein[J]. J Virol,2005.79(3):p.1613-22.
    [115]Engelke, M, et al., Characterization of a hepatitis B and hepatitis delta virus receptor binding site[J]. Hepatology,2006.43(4):p.750-60.
    [116]Schulze, A., et al., Fine mapping of pre-S sequence requirements for hepatitis B virus large envelope protein-mediated receptor interaction[J]. J Virol,2010.84(4): p.1989-2000.
    [117]Stieger, B., The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation[J]. Handb Exp Pharmacol,2011(201):p.205-59.
    [118]de Waart, D.R., et al., Hepatic transport mechanisms of cholyl-L-lysyl-fluorescein[J]. J Pharmacol Exp Ther,2010.334(1):p.78-86.
    [119]Schrem, H., J. Klempnauer, and J. Borlak, Liver-enriched transcription factors in liver function and development. Part I:the hepatocyte nuclear factor network and liver-specific gene expression[J]. Pharmacol Rev,2002.54(1):p.129-58.
    [120]Cereghini, S., Liver-enriched transcription factors and hepatocyte differentiation[J]. FASEB J,1996.10(2):p.267-82.
    [121]Bryant, D.M. and K.E. Mostov, From cells to organs:building polarized tissue[J]. Nat Rev Mol Cell Biol,2008.9(11):p.887-901.
    [122]Le Vee, M., et al., Functional expression of sinusoidal and canalicular hepatic drug transporters in the differentiated human hepatoma HepaRG cell line[J]. Eur J Pharm Sci,2006.28(1-2):p.109-17.
    [123]Trauner, M. and J.L. Boyer, Bile salt transporters:molecular characterization, function, and regulation[J]. Physiol Rev,2003.83(2):p.633-71.
    [124]Borst, P. and R.O. Elferink, Mammalian ABC transporters in health and disease[J]. Annu Rev Biochem,2002.71:p.537-92.
    [125]Courtois, A., et al., Differential regulation of multidrug resistance-associated protein 2 (MRP2) and cytochromes P450 2B1/2 and 3A1/2 in phenobarbital-treated hepatocytes[J]. Biochem Pharmacol,2002.63(2):p. 333-41.
    [126]Courtois, A., et al., Up-regulation of multidrug resistance-associated protein 2 (MRP2) expression in rat hepatocytes by dexamethasone[J]. FEBS Lett,1999. 459(3):p.381-5.
    [127]Schulze, A., et al., Hepatocyte polarization is essential for the productive entry of the hepatitis B virus[J]. Hepatology,2012.55(2):p.373-83.
    [128]Qadri, I., et al., Hepatocyte nuclear factor (HNF) 1 and HNF4 mediate hepatic multidrug resistance protein 2 up-regulation during hepatitis C virus gene expression[J]. Mol Pharmacol,2006.70(2):p.627-36.
    [129]Kojima, T., et al., Regulation of the blood-biliary barrier:interaction between gap and tight junctions in hepatocytes[J]. Med Electron Microsc,2003.36(3):p. 157-64.
    [130]Fanning, A.S. and J.M. Anderson, Zonula occludens-1 and-2 are cytosolic scaffolds that regulate the assembly of cellular junctions[J]. Ann N Y Acad Sci, 2009.1165:p.113-20.
    [131]Decaens, C., et al., Which in vitro models could be best used to study hepatocyte polarity?[J]. Biol Cell,2008.100(7):p.387-98.
    [132]Kawaguchi, T., et al., Different lobular distributions of altered hepatocyte tight junctions in rat models of intrahepatic and extrahepatic cholestasis[J]. Hepatology, 1999.29(1):p.205-16.
    [133]Murata, M., et al., Down-regulation of survival signaling through MAPK and Akt in occludin-deficient mouse hepatocytes in vitro[J]. Exp Cell Res,2005.310(1):p. 140-51.
    [134]Spath, G.F. and M.C. Weiss, Hepatocyte nuclear factor 4 provokes expression of epithelial marker genes, acting as a morphogen in dedifferentiated hepatoma cells[J]. J Cell Biol,1998.140(4):p.935-46.
    [135]Hamilton, G.A., et al., Regulation of cell morphology and cytochrome P450 expression in human hepatocytes by extracellular matrix and cell-cell interactions[J]. Cell Tissue Res,2001.306(1):p.85-99.
    [136]Nakamura, T., Y. Tomita, and A. Ichihara, Density-dependent growth control of adult rat hepatocytes in primary culture[J]. J Biochem,1983.94(4):p.1029-35.
    [137]Schulze, A., et al., Hepatocyte polarization is essential for the productive entry of the hepatitis B virus[J]. Hepatology,2011.
    [138]Friedman, S.L., Hepatic stellate cells:protean, multifunctional, and enigmatic cells of the liver[J]. PhysiolRev,2008.88(1):p.125-72.
    [139]Krause, P., et al., Maintaining hepatocyte differentiation in vitro through co-culture with hepatic stellate cells[J]. In Vitro Cell Dev Biol Anim,2009.45(5-6):p. 205-12.
    [140]Szpirer, C., et al., Chromosomal localization in man and rat of the genes encoding the liver-enriched transcription factors C/EBP, DBP, and HNF1/LFB-1 (CEBP, DBP, and transcription factor 1, TCF1, respectively) and of the hepatocyte growth factor/scatter factor gene (HGF)[J]. Genomics,1992.13(2):p.293-300.
    [141]Watanabe, Y., H. Osaki, and T. Akaike, TNF-alpha bifunctionally induces proliferation in primary hepatocytes:role of cell anchorage and spreading[J]. J Immunol,1997.159(10):p.4840-7.
    [142]Cavallaro, U. and E. Dejana, Adhesion molecule signalling:not always a sticky business[J]. Nat Rev Mol Cell Biol,2011.12(3):p.189-97.
    [143]Guyomard, C., et al., Influence of alginate gel entrapment and cryopreservation on survival and xenobiotic metabolism capacity of rat hepatocytes[J]. Toxicol Appl Pharmacol,1996.141(2):p.349-56.
    [144]Lecuit, T. and P.F. Lenne, Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis[J]. Nat Rev Mol Cell Biol,2007.8(8):p. 633-44.
    [145]Alkhatib, G, et al., CC CKR5:a RANTES, MIP-lalpha, MIP-lbeta receptor as a fusion cofactor for macrophage-tropic HIV-1[J]. Science,1996.272(5270):p. 1955-8.
    [146]Berson, J.F., et al., A seven-transmembrane domain receptor involved in fusion and entry of T-cell-tropic human immunodeficiency virus type 1 strains[J]. J Virol, 1996.70(9):p.6288-95.
    [147]Deng, H., et al., Identification of a major co-receptor for primary isolates of HIV-1[J]. Nature,1996.381(6584):p.661-6.
    [148]Sekiya, S. and A. Suzuki, Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors[J]. Nature,2011.475(7356):p.390-3.
    [149]Huang, P., et al., Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors[J]. Nature,2011.
    [150]Odom, D.T., et al., Control of pancreas and liver gene expression by HNF transcription factors[J]. Science,2004.303(5662):p.1378-81.
    [151]Raney, A.K., et al., Members of the nuclear receptor superfamily regulate transcription from the hepatitis B virus nucleocapsid promoter[J]. J Virol,1997. 71(2):p.1058-71.
    [152]Yu, X. and J.E. Mertz, Distinct modes of regulation of transcription of hepatitis B virus by the nuclear receptors HNF4alpha and COUP-TF1[J]. J Virol,2003.77(4): p.2489-99.
    [153]Ishida, H., et al., Identification of multiple transcription factors, HLF, FTF, and E4BP4, controlling hepatitis B virus enhancer Ⅱ[J]. J Virol,2000.74(3):p. 1241-51.
    [154]Long, Y., et al., The correlation of hepatocyte nuclear factor 4 alpha and 3 beta with hepatitis B virus replication in the liver of chronic hepatitis B patients[J]. J Viral Hepat,2009.16(8):p.537-46.
    [155]Gripon, P., et al., Regulation by dimethylsulfoxide, insulin, and corticosteroids of hepatitis B virus replication in a transfected human hepatoma cell line[J]. J Med Virol,1989.28(3):p.193-9.
    [156]Gripon, P., C. Diot, and C. Guguen-Guillouzo, Reproducible high level infection of cultured adult human hepatocytes by hepatitis B virus:effect of polyethylene glycol on adsorption and penetration[J]. Virology,1993.192(2):p.534-40.
    [157]Rumin, S., et al., Long-term productive episomal hepatitis B virus replication in primary cultures of adult human hepatocytes infected in vitro [J]. J Viral Hepat, 1996.3(5):p.227-38.
    [158]Ozer, A., et al., Effect of hepatocyte proliferation and cellular DNA synthesis on hepatitis B virus replication[J]. Gastroenterology,1996.110(5):p.1519-28.
    [159]Meier, A., et al., The myristoylated preS1-domain of the hepatitis B virus L-protein mediates specific binding todifferentiated hepatocytes[J]. Hepatology,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700