基于壳聚糖PLGA纳米载体的构建及其水解释药研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖和PLGA两种生物可降解聚合物作为纳米载体用于抗癌药物的包载和肿瘤靶向治疗已经成为近年来研究的热点,作为两种生物医用材料,壳聚糖和PLGA作为纳米载体各有特点,PLGA良好的成球性,包载率和生物安全性使其已经用于各种临床药物载体的研究,而其相对较高的疏水性、较高的药物突释和较低的靶向性却在一定程度上则限制了其应用,经研究,由于壳聚糖的亲水性和活性氨基的存在,通过壳聚糖的修饰可以改善PLGA纳米载体的细胞黏附性和缓释性。本文通过共价修饰的方法合成了壳聚糖-PLGA共聚物,利用超声自组装法制备了壳聚糖-PLGA纳米载体(G-NPs),以传统乳化方法建立的壳聚糖-PLGA纳米载体(C-NPs)和空白的PLGA纳米载体为参照,对这种新型结构的纳米载体的理化性质、表面结构、生物相容性、水解稳定性、药物缓释性和细胞摄取进行了系统研究。
     通过乳化法制备了PLGANPs;以此为基础,在EDC和NHS的活化下,用壳聚糖对PLGANPs进行了表面接枝共聚,得到了表面修饰的C-NPs;以PLGA和壳聚糖两种聚合物为单体,通过EDC和NHS活化,将得到接枝共聚物超声自组装,得到了均一结构的G-NPs;制备得到的三种纳米载体,经红外光谱(FTIR)、核磁共振波普(~1HNMR)、元素分析、透射电镜(TEM)检测,验证了接枝共聚物的成功合成,元素分析表明采用直接催化反应的G-NPs中PLGA的取代度为11.83%,要高于乳化方法制备得到的C-NPs的7.62%;透射电镜观察得到的纳米粒子均呈完整的球形,具有不同的结构形态,三种纳米粒子的平均粒径在200nm左右,均呈现出良好的多分散性;利用荧光光谱分析测定了G-NPs的临界聚集浓度(CAC),讨论了G-NPs的自组装特性,得出分子间的氢键及疏水作用是促使G-NPs在水相中进行纳米自组装的主要作用力。
     对三种纳米载体生物相容性研究采用了溶血试验、蛋白吸附实验和细胞毒性试验来评价。三种纳米材料的溶血率均低于5%,蛋白吸附水平随着纳米粒子浓度的增加而增大,但仍处于较低的水平,当纳米溶液浓度范围是13-800μg/ml时,三种纳米粒子分别与MCF-7细胞孵育24h和48h后,均未对MCF-7细胞的增殖产生显著影响,表明,三种纳米粒子对MCF-7细胞是没有毒性的。生物相容性实验证明,C-NPs和G-NPs都具有良好的生物相容性。
     以抗癌药物阿霉素为药物模型,对纳米载体的体外药物包载和释药进行了研究,G-NPs和PLGA纳米载体表现出较好的药物载药量和包载效率。而通过体外释药研究发现,壳聚糖修饰PLGA后制备得到的C-NPs和G-NPs,相比于单纯的PLGANPs,降低了起始阶段的药物突释,但在突释完成后,C-NPs和G-NPs表现出了较好的药物累计释放效果,而且合成的G-NPs相对于传统方法制备的C-NPs,表现出12h较低的突释和72h较高的药物累积释放量,表现出更好的药物缓释性。
     利用UHPLC技术检测研究了三种纳米载体中PLGA的水解机制,壳聚糖修饰的C-NPs和G-NPs水解速率要明显高于未修饰的PLGA纳米粒子,G-NPs由于其自组装的均一结构,使其相对于内部完全为疏水PLGA的C-NPs而言,更有利于PLGA的水解,呈现比C-NPs略高的水解速率。通过激光粒度仪对纳米粒子粒径和粒径分布以及TEM形态观察,进一步验证了PLGA纳米载体的水解机制,发现纳米粒子的形态随着水解时间的延长,粒径和形态发生了明显的变化。
     以人乳腺癌细胞MCF-7为模型细胞对荧光标记纳米载体的摄取和生长抑制情况进行了研究,壳聚糖修饰的两种纳米粒子C-NPs和G-NPs表现出良好的细胞黏附性,通过荧光显微镜观察,均能有效的被MCF-7细胞摄取,而两种壳聚糖修饰的纳米载体的摄取效率无显著差异。细胞生长抑制的定量测定表明,载药后C-NPs和G-NPs在低浓度1-4μg/ml时,具有优于游离阿霉素和载药PLGA纳米载体的肿瘤细胞生长抑制率,另外载药纳米载体对MCF-7细胞生长的抑制具有一定的时间和浓度依赖性。
     综上所述,新制备的G-NPs纳米载体相比于C-NPs和PLGANPs,由于制备工艺和载体结构的差异,表现出较高的载药量、包封率和较低的突释性;而且受较高的水解速率的影响,G-NPs在72h后表现出较高的药物累计释放量,说明作为一种新型的纳米药物载体,其在生物医药领域用于抗癌药物的包载和释放具有更好的高效性和低毒性,结果表明,制备得到的G-NPs纳米载体在包载疏水抗癌药物后,有潜力成为抑制肿瘤细胞生长的新型纳米载体。
Chitosan and Poly D,L-lactide-co-glycolide(PLGA)-based nano-materials have been successfully developed as drug delivery systems due to sustained drug-release property. PLGA-based nanoparticulate formulations, designed to bead ministered orally, topically, subcutaneously, or transmucosally have the advantage of supplying a continuous amount of drug over a long period of time. However, the non-specific interaction with cells and proteins and lack of suitable function groups for efficient covalent conjugation obstructed its application. Physical and chemical modification of PLGA nanoparticles were studied for practical requirements. Chitosan, as a natural biodegradable copolymer of N-acetyl glucosamine and D-glucosamine, has been widely used in pharmaceutical and drug delivery systems for its favorable biological properties, such as biodegradability, biocompatibility, low toxicity, hemostatic, bacteriostatic, fungistatic, anticancerogen, and anticholesteremic properties. Modification of reactive groups (-NH2) in chitosan molecule such as carboxymethylation and quaternary ammonium salt modification could improve its water solubility and biocampatibility.
     PLGA nanoparticles were surface modified with chitosan by adsorption or covalent binding, both of which involved emulsification solvent evaporation and showed a unitary structure. The surface-modified structure of CHS-PLGA nanoparticles limited its applications in drug encapsulation and delivery. In order to improve the preparation and properties of CHS-PLGA nanoparticles, novel self-assembeled CHS-PLGA nanoparticles were prepared and studied.
     In the present study, surfaced modified Chitosan-PLGA nanoparticles (C-NPs) and self-assembled chitosan-PLGA nanoparticles (G-NPs) were prepared. The naked PLGA NPs were served as control. Three kinds of differently structured nanoparticles were prepared and characterized by the laser light scattering technique, transmission electron microscopy (TEM), FT-IR spectroscopy and elemental analysis. Successful conjugation of chitosan to the PLGA particles was confirmed by FT-IR spectroscopy and elemental analysis. These nanoparticles all showed regularly spherical shape with mean diameters as191.3±3.6nm,211.9±13.2nm and187.5±17.6nm for PLGA NPs, C-NPs and G-NPs, respectively. Their zeta potentials were-22.4±1.31mV,-8.7±0.45mV,-3.1±0.12mV, respectively.
     The hydrolytic erosion of PLGA, C-NPs and G-NPs and its influence on the release of DOX from those differently structured nanoparticles under acidic (pH3.8) and physiological (pH7.4) conditions were investigated. The process of hydrolytic erosion of the nanoparticles with time was evaluated by ultra high-pressure liquid chromatographic (UHPLC) analysis. Both C-NPs (15.3%PLGA remained after two weeks, pH7.4) and G-NPs (3.7%PLGA remained after two weeks, pH7.4) had higher hydrolysis rate than PLGA NPs (18.4%PLGA remained after6weeks, pH7.4), with G-NPs showing the highest rate in hydrolysis due to the incorporation of chitosan and its self-assembled structure. Self-assembling properties and controllable biodegradability of G-NPs indicated that it could be a promising drug delivery carrier for tumor drug delivery.
     Doxorubicin (DOX) was efficiently loaded into the nanoparticles and showed sustained release in PBS at different pH. PLGA NPs had higher drug-loading content (DL%) and encapsulation efficiency (EE%) for its hydrophobic property and unmodified structure. At pH7.4, the burst release of PLGA particles at12h was57.28%, while it was43.44%and40.47%for C-NPs and G-NPs, respectively. The cumulative release rate of DOX from PLGA NPs, C-NPs and G-NPs after72h was60.03%,56.56%and62.85%, respectively. Presence of chitosan in the C-NPs reduced the burst release of the drug and accelerated the erosion rate of nanoparticles. Of the three kinds of nanoparticles, G-NPs had the fastest erosion rate in PBS for its homogenous structure, which lead to the highest the cumulative release rate of DOX. And the nanoparticles showed increased erosion rate and cumulative drug release at lower pH. The release profile of DOX from nanoparticles was closely related to nanoparticle erosion except for the initial burst release.
     Furthermore, the biocompatibility of NPs was also investigated. Three kinds of nanoparticles showed low hemolysis rate and BSA adsorption rate. MTT assay showed that they were nontoxic and biocompatible to MCF-7cells.
     The in vitro cellular uptake and growth inhibition of C-NPs and G-NPs were studied. Both the fluorescence microscopy and quantitative determination showed that C-NPs and G-NPs can be effectively endocytosed by MCF-7cells, while no significant difference in uptake efficiency of two nanoparticles. The quantitative determination of cell growth inhibition showed that the drug-loaded C-NPs and G-NPs in low concentrations1-4μg/ml, had higher cell growth inhibition rate than free doxorubicin and drug-loaded PLGA nanoparticles carrier. The drug-loaded nanoparticles of growth inhibition for MCF-7cells were time and concentration dependent. The in vitro experimental results demonstrated that G-NPs were favorable for tumor cell phagocytosis and drug control release.
     Based on the above considerations, G-NPs have good biocompatibility and sustained drug release property, and drug-loaded nanoparticles show better inhibition to cancer cells than DOX in vitro, which revealed the promising potential as carriers for antitumor agents.
引文
Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J Control Rel,2004,100(1):5-28
    Aktas Y, Andrieux K, Alonso MJ, et al. Preparation and in vitro evaluation of chitosan nanoparticles containing a caspase inhibitor. Int J Pharm,2005,298(2):378-383
    Alexander H, Krauland, Mar'ia Jos'e Alonso. Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system. Int J Pharm.2007(340):134-142
    Allemann E, Gurny R, Deolker E. Drug loaded nanoparticles:preparation methods and drug targeting issues. Eur J Pharm Biopharm,1993(39):173-191
    Allison SD. Effect of structural relaxation on the preparation and drug release behavior of poly(lactic-co-glycolic)acid microparticle drug delivery systems. J Pharm Sci,2008(97):2022-2035
    Amiji M.Pyrene fluorescence study of chitosan self-association in aqueous solution. Carbohyd Polym,1995,26(3):211-213
    Angela M, De Campos, Alejandro Sanchez, et al. Chitosan nanoparticles:a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm,(2001)224:159-168
    Anitha R. Dudhani, Shantha L. Kosaraju. Bioadhesive chitosan nanoparticles:Preparation and characterization. Carbohyd Polym,2010(81):243-251
    Arshady R. Preparation of biodegradable microspheres and microcapsules:2. Polyactides and related polyesters. J Control Release,1991(17):1-21
    Bae Y, Diezi TA, Zhao A, et al. Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents. J Control Release,2007(122):324-330
    Banerjee T, Mitra S, Kumar Singh A, et al. Preparation characterization and biodistribution of ultrafine chitosan nanoparticles. Int J Pharm.2002,243(1-2):93-105
    Berthold A, Cremer K, Kreuter J. Preparation and characterization of chitosan microspheres as drug carrier for prednisolone sodium phosphate as model for antiinflammatory drugs. J Control Release,1996,39(1):17-25
    Bodmeier R, Chen HG, Paeratakul O. A novel approach to the delivery of micro-or nanoparticles. Pharm Res,1989,6(5):413-417
    Borchard G, LueBen H L, de Boer AG, et al. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. Ⅲ:Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. J Control Release,1996,39(2-3):131-138
    Bouissou C, Rouse J, Price R, et al. The influence of surfactant on PLGA microsphere glass transition and water sorption:Remodeling the surface morphology to attenuate the burst release. Pharm Res,2006(23):1295-1305
    Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Delivery Rev,2004(56):1649-1659
    Breitenbach A, Kissel T. Biodegradable comb polyesters:Part I. Synthesis, characterization and structural analysis of poly(lactide) and poly(lactide-co-glycolide) grafted onto water-soluble poly(vinyl alcohol)as backbone. Polymer,1998,39(1):3261-3271
    Budhian A, Siegel SJ, Winey KI. Controlling the in vitro release profiles fora system of haloperidol-loaded PLGA nanoparticles. Int J Pharm,2008(346):151-159
    Burns NL, Holmberg K, Brink C. Influence of surface charge on protein adsorption at an amphoteric surface:Effects of varying acid to base ratio. J Colloid Interf Sci.1996,178(1):116-122
    Campos AMD, Sanchez A, Alonso MJ. Chitosan nanoparticles:a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporine A. Int J Pharm,2001,224(1-2):159-168
    Carlson C, Hussain S M, Schrand A M, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B,2008(112):13608-13619
    Chaisri W, Hennink WE, Okonogi S. Preparation and characterization of cephalexin loaded PLGA microspheres. Curr Drug Deliv,2009(6):69-75
    Chakravarthi SS, Robinson DH. Enhanced cellular association of paclitaxel delivered in chitosan-PLGA particles. Int J Pharm,2011(409):111-120
    Chen HL, Yang WZ, Chen H, et al. Surface modification of Mitoxantrone-loaded PLGA nanospheres with chitosan. Colloids Surf B Biointerfaces,2009,73(378):212-218
    Chen MK, Liu Y, Yang WZ, et al. Preparation and characterization of self-assembled nanoparticles of6-O-cholesterol-modifiedchitosan for drug delivery. Carbohyd Polym,2011(84):1244-1251
    Chen XG, Park HJ. Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohyd Polym,2003(53):355-359
    Chithrani BD, Chan WCW. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of differentsizes and shapes. Nano Lett,2007(7):1542-1550
    Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett,2006(6):662-668
    Cohen-Sela E, Teitlboim S, Chorny M, et al. Single and double emulsion manufacturing techniques of an amphiphilic drug in PLGA nanoparticles:formulations of mithramycin and bioactivity. J Pharm Sci,2009(98):1452-1462
    Corsia K, Chellat F, Yahia L, et al. Mesenchymal stem cells,MG63and HEK293transfection using chitosan-DNA nanoparticles. Biomaterials,2003(24):1255-1264
    Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles:an overview of biomedical applications. J Control Release,2012(161):505-522
    Das M, Mohanty C, Sahoo SK. Ligand-based targeted therapy for cancer tissue.Expert Opin. Drug Delivery,2009(6):285-304
    De S, Miller DW, Robinson DH. Effect of particle size of nanospheres and microspheres on the cellular-association and cytotoxicity of paclitaxel in4T1cells. Pharm Res,2005(22):766-775
    Denis FA, Hanarp P, Sutherland DS, et al. Protein adsorption on model surfaces with controlled nanotopography and chemistry. Langmuir,2002,18(3):819-828
    Denkbas EB, Kilicay E, Birlikseven C, et al. Magnetic chitosan microspheres:preparation and characterization. Reactive&Functional Polymers,2002,50(3):225-232
    Desantis C, Siegel R, Bandi F,etal. Breast cancer statistics.CA Cancer J Clin,2011(61):408-418
    Duan B, Yuan XY, Zhu Y. A nanofibmus composite membrane of PLGA-chitosan/PVA prepared by electrospinning. European Polymer Journal,2006,(42):2013-2022
    Dufes C, Schatzlein AG, Tetley L, et al. Niosomes and polymeric chitosan based vesicles bearing transferring and glucose ligands for drug targeting. Pharm Res,2000(17):1250-1258
    Feng SS. Nanoparticles of biodegradable polymers for new-concept chemotherapy Expert. Rev Med Devices,2004(1):115-125
    Foged C, Brodin B, Frokjaer S, et al. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm,2005(298):315-322
    Fwu-Long Mi, Hsing-Wen Sung, Shin-Shing Shyu, et al. Synthesis and characterization of biodegradable TPP/genipin co-crosslinked chitosan gel beads. Polymer,2003(44):6521-6530
    Gomez Orellana I. Strategies to improve oral drug bioavailability. Expert Opin Drug Deliv,2005,2(3):419-433
    Gopferich A. Mechanisms of polymer degradation and erosion. Biomaterials,1996(17):103-114
    Graham PD, Brodbeck KJ, McHugh AJ. Phase inversion dynamics of PLGA solutions related to drug delivery. J Control Release,1999(58):233-245
    Gref R, Domb A, Quellec P, et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv. Drug Delivery Rev,2005(16):215-233
    Grenha A, Seijo B, Remunan-Lopez C. Microencapsulated chitosan nanoparticles for lung protein delivery. Eur J Pharm Sci,2005,25(4-5):427-437
    Guan XP, Quan DP, Liao K, et al. Preparation and characterization of cationic chitosan-modified poly(d,l-lactide-coglycolide) copolymer nanospheres as DNA carriers. J. Biomater. Appl,2008(22):353-371
    Hai-Quan Mao, Krishnendu Roy, Vu L. Troung-Le, et al. Chitosan-DNA nanoparticles as gene carriers synthesis, characterization and transfection efficiency. J Control Release,2001(70):399-421
    Hamman JH, Enslin GM, Kotze AF. Oral delivery of peptide drugs:barriers and developments. Bio Drugs,2005,19(3):1652177
    Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci,2002(6):319-327
    He Q, Liu Ji, Sun X, et al. Preparation and characteristics of DNA-nanoparticles targeting to hepatocarcinoma cells. World J Gastroenterol,2004,10(5):660-663
    Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems. J Control Release,2003(89):151-165
    Herrwerth S, Eck W, Reinhardt S. Factors that determine the protein resistance of oligoether self-assembled monolayers-internal hydrophilicity terminal Hydrophilicity and lateral packing density. J Am Chem Soc,2003(125):9359-9366
    Hillaireau H, Couvreur P. Nanocarriers' entry into the cell:relevance to drug delivery. Cell Mol Life Sci,2009(66):2873-2896
    Holland SJ, Tighe BJ, Gould PL. Polymers for biodegradable medical devices, part I. J Control Release,1986(4):155-180
    Houchin ML, Topp EM. Physical properties of PLGA films during polymer degradation. J Appl Polym Sci,2009(114):2848-2854
    Hu FQ, Meng P, Dai YQ, et al. PEGylated chitosan-based polymer micelle as an intracellular delivery carrier for anti-tumor targeting therapy. Eur J Pharm Biopharm,2008(70):749-757
    Hu Y, Jiang X, Ding Y, et al. Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles. Biomaterials,2002,23(15):3193-3201
    Hua FJ, Park TG., Lee DS. A facile preparation of highly interconnected macroporous poly(D,L-lactic acid-co-glycolic acid)(PLGA) scaffolds by liquid-liquid phase separation of a PLGA-dioxane-water ternary system. Polymer,2003(44):1911-1920
    Hyung PJ, Kwon S, Lee M, et al. Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin:In vivo biodistribution and anti-tumor activity. Biomaterials,2006(27):119-126
    leva E, Trapani A, Cioffi N, et al. Analytical characterization of chitosan nanoparticles for peptide drug delivery applications. Anal Bioanal Chem,2009(393):207-215
    Isakovic A, Markovic Z, Todorovic-Markovic B, et al. Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol Sci,2006(91):173-183
    Jain GK, Pathan SA, Akhter S, et al. Mechanistic study of hydrolytic erosion and drug release behaviour of PLGA nanoparticles:influence of chitosan Polymer Degradation and Stability. Polym Degrad Stab,2010(95):2360-2366
    Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-coglycolide)(PLGA) devices. Biomaterials,2000(21):2475-2490
    Janes KA, Calvo P, Alonso MJ. Polysaccharide colloidal particles as delivery systems for macromolecule. Adv Drug Deliver Rev,2001,47(1):83-97
    Jayakumar R, Chennazhi K P, Muzzarelli R A, et al. Chitosan conjugated DNA nanoparticles in gene therapy. Carbohyd Polym,2010(79):1-8
    Jayakumar R, Nwe N, Tokura S, et al. Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol,2007(40):175-181
    Jemal A, Siegel R, Ward E,eta/. Cancer statistics. CA Cancer J Clin.2009(59):225-249
    Jeong B, Lee KM, Gutowska A, et al. An thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering. Biomacromolecules,2002,3(4):865-868
    Joshi P, Chakraborti S, Ramirez-Vick JE, et al. The anticancer activity of chloroquine-gold nanoparticles against MCF-7breast cancer cells. Colloids Surf B Biointerfaces,2012(95):195-200
    Jumaa M, Furkert FH, Muller BW. A new lipid emulsion formulation with high antimicrobial efficacy using chitosan. Eur J Pharm Biopharm,2002,53(1):115-123
    Kanke M, Katayama H, suzuki S, et al. Application of chitin and chitosan to pharmaceutical preparations.I.Film preparation and in vitro evaluation. Chem Pharm Bull,1999(37):523-525
    Kato Y, Onishi H, Machida Y. Applicaion of chitin and chiosan derivatives in the pharmaceutical field[J]. Curr Pharm Biotechnol,2003,4(5):303-309
    Kawashima Y, Yamamoto H, Takeuchi H, et al. Properties of a peptide containing dl-lactide/glycolide copolymer nanospheres prepared by novel emulsion solvent diffusion methods. Eur J Pharm Biopharm,1998(45):41-48
    Kawashima Y, Yamamoto H, Takeuchi H, Kuno Y. Mucoadhesive dllactide/glycolide copolymer nanospheres coated with chitosan to improve oral delivery of elcatonin. Pharm Dev Technol,2000(5):77-85
    Kawashima Y. Nanoparticluate systems for improved drug delivery. Adv Drug Del Rev,2001(47):1-2
    Kevin A Janes, Marie P Fresneau, Ana Marazuela, et al. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release,2001(73):255-267
    Khin YW, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials,2005(26):2713-2722
    Kim JH, Kim YS, Kim S, et al. Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel. J Control Release,2006,111(1-2):228-234
    Kotze AF, Luessen HL, de Leeuw BJ, et al. Comparison of the effect of different chitosan salts and N-trimethyl chitosan chloride on the permeability of intestinal epithelial cells (Caco-2). J Control Release,1998,51(1):35-46
    Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces,2010(75):1-18
    Kwon YM, Kim SW. Biodegradable triblock copolymer microspheres based on thermosensitive sol-gel transition. Pharm Res,2004,21(2):339-343
    Lange R. New methods of drug delivery. Science,1990(249):1527-1533
    Lee KY, Kim JH, Kwon IC, et al. Self-aggregates of deoxycholic acid-modified chitosan as a novel carrier of adriamycin. Colloid Polym Sci,2000(278):1216-1219
    Lee KY, Kwon IC, Kim YH, et al. Preparation of chitosan self-aggregates as a gene delivery system. J Control Rel,1998(51):213-220
    Li J, Kong M, Chen XG, et al, A facile method for preparing biodegradable chitosan derivatives with low grafting degree of poly(lactic acid). Int J Biol Macromol,2011(49):1016-1021
    Li SM, Vert M. Biodegradation of aliphatic polyesters. In:Scott G, Gilead D, editors. Degradable polymers:principles and applications. London:Chapman&Hall,1995:43-87
    Li Z, Ramay HR, Hauch KD, et al. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials,2005(26):3919-3928
    Loh JW, Yeoh G, Saunders M, et al. Uptake and cytotoxicity of chitosan nanoparticles in human liver cells. Toxicol Appl Pharm,2010,249(2):148-157
    Lueben HL, Rental CO, Kotze AF, et al. Mucoadhesivepolymers in peroral peptide drug delivery IV:Polycarbophil and chitosan are potent enhancers of peptide transport acrossintestinal mucosue in vitro. J Contr Rel,1997(45):15-24
    Ma FK, Li J, Kong M, et al. Preparation and hydrolytic erosion of differently structured PLGA nanoparticles with chitosan modification. Int J Biol Macromol,2013(54):174-179
    Madhumathi K, Binulal NS, Nagahama H, et al. Preparation and characterization of novelⅡ-chitin-hydroxyapatite composite membranes for tissue engineering applications. Int J Biol Macromol,2009(44):1-5
    Madhumathi K, Sudheesh Kumar PT, Abilash S, et al. Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. Journal of Material Science:Materials in Medicine,2010(21):807-813
    Madhumathi K, Sudheesh Kumar PT, Kavya KC,et al. Novel chitin/nanosilica composite scaffolds for bone tissue engineering applications. Int J Biol Macromol,2009(45):289-292
    Maestrelli F, Garcia-Fuentes M, Mura P, Alonso MJ. A new drug nanocarrier consisting of chitosan and hydoxypropylcyclodextrin. Eur J Pharm Biopharm,2006,63(2):79-86
    Majeti NV, Ravi Kumar. A review of chitin and chitosan applications. Reactive and Functronal Polyners,2000,46(1):1-27
    Mansouri S, Cuie Y, Winnik F, et al. Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials,2006(27):2060-2065
    Mao HQ, Roy K, Troung-Le VL, et al. Chitosan-DNA nanoparticles as gene carriers:synthesis, characterization and transfection efficiency. J Control Release.2001,70(3):399-421
    Mao S, Xu J, Cai C, et al. Effect of W/O/W process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Int J Pharm,2007(334):137-148
    Maulding HV, Tice TR, Cowsar DR, et al. Biodegradable microcapsules:acceleration of polymeric excipient hydrolytic rate by incorporation of a basic medicament. J Control Rel,1986(3):103-117
    Mi FL, Tna YC, Liang HF, et al. In vivo biocompatibility and degradability of a novel injecable-chiosan-based implant. Biomaterials,2002,23(1):181-191
    Min Lang Tsai, Shi Wei Bai, Rong Huei Chen*.Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan-sodium tripolyphosphate nanoparticle. Carbohyd Polym.2008(71):448-457
    Mohamed F, van der Walle CF. Engineering biodegradable polyester particles with specific drug targeting and drug release properties. Pharm Sci,2008(97):71-87
    Mosmann T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays. J Immunol Methods,1983(65):55-63.
    Mumper RJ, Wang J, Claspell JM, et al. Novel polymeric condensing carrier for gene delivery. Proc Int Symp Control Rel Bioact Mater,1995,23(2):178-179
    Mundargi R, Babu V, Rangaswamy V, et al. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. Control Release,2008(125):193-209
    Murakami H, Kobayashi M, Takeuchi H, et al. Preparation of poly(D,L-lactide-coglycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int J Pharm,1999(187):143-152
    Nie H, Lee LY, Tong H, et al. PLGA/chitosan composites from a combination of spray drying and supercritical fluid foaming techniques:New carriers for DNA delivery. J Control Release,2008(129):207-214
    Noemi Csaba, Magnus Koping-Hoggard, Maria Jose Alonso. Ionically crosslinked chitosan/trip-olyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery. Int J Pharm,2009(382):205-214
    Ohya Y, Cai R, Nishizawa H, et al. Preparation of PEG-grafted chitosan nanoparticle for peptide drug carrier. Pro Int Symp Control Rel Bioact Mater,1999,26(1):655-656
    Ohya Y, Shiratani M, Kobayashi H, et al. Release behavior of5-fluorouracil from chitosan-gel nanoshperes immobilizing5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. Pure Appl Chem,1994,31(1):629-642
    Onishi H, Machida Y. Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials,1999,20(2):175-182
    Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm,2006,307(1):93-102
    Pamujula S, Graves RA, Moiseyev R, et al. Preparation of polylactide-co-glycolide and chitosan hybrid microcapsules of amifostine using coaxial ultrasonic atomizer with solvent evaporation. J Pharm Pharmacol,2008(60):283-289
    Panyam J, Labhasetwar V. Biodegradable nanopartilces for drug and gene delivery to cells and tissue. Adv Drug Del Rev,2003(55):329-347
    Park IK, Kim TH, Park YH, et al. Galactosylated chitosan-graft-poly (ethylene glycol) as hepatocyte-targeting DNA carrier. J Control Release,2001(76):349-362
    Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. J Drug Target,2008(16):108-123
    Passerini N, Craig DQM. An investigation into the effects of residual water on the glass transition temperature of polylactide microspheres using modulated temperature DSC. J Control Release,2001(73):111-115
    Perugini P, Genta I, Conti B, et al. Periodontal delivery of ipriflavone:new chitosan/PLGA film delivery system for lipophilic drug. Int J Pharm,2003(252):1-9
    Peter M, Sudheesh Kumar PT, BinulalNS, et al. Development of novel chitin/nano bioactive glass ceramic nanocomposite scaffolds for tissue engineering applications. Carbohyd Polym, 2009(78):926-931
    Prabaharan M, Jayakumar R. Chitosan-graft-cyclodextrin scaffolds with controlled drug release capability for tissue engineering applications. Int J Biol Macromol,2009(44):320-325
    Prabaharan M, Mano JF. Chitosan-based particles as controlled drug delivery systems. Drug Delivery,2005(12):41-57
    Prokop A, Davidson JM. Nanovehicular intracellular delivery systems. J Pharm Sci,2008(97):3518-3590
    Rabin C, Liang Y, Ehrlichman RS, et al. In vitro and in vivo demonstration of risperidone implants in mice. Schizophr Res,2008(98):66-78
    Rao SB, Sharma CP. Use of chitosan as a biomaterial:Studies on its safety and hemostatic potential. Journal of Biomedical Materials Research,1997,34(1):21-28
    Reed AM and Gilding DK. Biodegradable Polymers for Use in Surgery Polyglycolic/Polylactic Acid Homo and Copolymers:2.In Vitro Degradation. Polymer,1981,22(4):494-498
    Rejman J, Oberle V, Zuhorn IS, et al. Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem J,2004(377):159-169
    Rosca ID, Watari F, Uo M. Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J Control Release,2004(99):271-280
    Rothen-Rutishauser BM, Schurch S, Haenni B, et al. Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol,2006(40):4353-4359
    Roy K, Mao HQ, Huang SK, et al. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med,1999(5):380-381
    Ruel-Gariepy E, Leclair G, Hildgen P, et al. Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. J Control Release,2002(82):373-383
    Ruhe PQ, Hedberg EL, Padron, NT, et al. rhBMP-2release from injectable poly (DL-lactic-co-glycolic acid)/calcium-phosphate cement composites.J Bone Jt Surg,2003(85):75-81
    Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discovery Today,2003(8):1112-1120
    Sahoo SK, Parveen S, Panda JJ. The present and future of nanotechnology in human health care. Nanomedicine,2007(3):20-31
    Sahu SK, Mallick SK, Santra S,et al. In vitro evaluation of folic acid modified carboxymethyl chitosan nanoparticles loaded with doxorubicin for targeted delivery. J Mater Sci Mater Med,2010,21(5):1587-1597
    Shikata F, Tokumitsu H, Ichikawa H, Fukumori Y. In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer. Eur J Pharm Biopharm,2002,53(1):57-63.
    Siegel SJ. Kahn JB. Metzger K, et al. Effect of drug type on the degradation rate of PLGA matrices. Eur J Pharm Biopharm,2006(64)287-293
    Su Young Chae, Sohee Son, Minhyung Lee, et al. Deoxycholic acid-conjugated chitosan oligosaccharide nanoparticles for efficient gene carrier. J Cont Rel,2005,109(1-3):330-344
    Suellen, Cadorin, Fernandes, et al. Biosensor based on laccase immobilized on microspheres of chitosan crosslinked with tripolyphosphate. Sensors and Actuators B,2008,133(1):202-207
    Sunil A, Nadagouda M, Tejraj A. Recent advances on chitosan-based micro-and nanoparticles in drug delivery B. Control Release,2004,100(5):12-28
    Tada Y, Wada M, Migita T, et al. Increased expression of multidrug resistance-associated proteins in bladder cancer during clinical course and drug resistance to doxorubicin. Int J Cancer,2002,98(4):630-635
    Tahara K, Sakai T, Yamamoto H, et al. Improved cellular uptake of chitosan-modified PLGA nanospheres by A549cells. Int J Pharm,2009,382(1-2):198-204
    Tanima B, Susmita M, Singh K, et al. Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int J Pharm,2002,243(1-2):93-102
    Therin M, Christel P, Li SM, et al. In vivo degradation of massive poly(alpha-hydroxy acids): validation of in vitro findings. Biomaterials,1992(13):594-600
    Tian XX,Groves MJ.Formulation and biological activity of antineoplastic proteoglycans derived form Mycobacterium vaccae in chitosan nanoparticles. J Pharm Pharmacol,1999,51(2):151-157
    Tokumitsu H, Hiratsuka J, Sakurai Y, et al. Gadolinium neutroncapture therapy using novel gadopentetic acid-chitosan complex nanoparttcles:In vivo growth suppression of erperimental melanoma solid tumor. Cancer Lett,2000,150(2):177-182
    Vert M, Li SM, Garreau H. Attempts to map the structure and degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomater Sci Polym Edn,1994(6):639-649
    Vert M, Mauduit J, Li S. Biodegradation of PLA/GA polymers:increasing complexity. Biomaterials,1994(15):1209-1213
    Vivek R, Thangam R, Muthuchelian K, et al. Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7cells. Process Biochem,2012(47):2405-2410
    Wagenaar B, Muller B. Piroxicam release from spray-dried biodegradable microspheres. Biomaterials,1994(15):49-54
    Wan Y, Wu H, Yu A, et al. Biodegradable polylactide/chitosan blend membranes. Biomacromolecules,2006(7):1362-1372
    Wang XH, Li DP, Wang WJ, et al. Covalent immobilisation of chitosan and heparin on PLGA surface. Int J Biol Macromol,2003(33):95-100
    Wang Y, Yang X, Yang J, et al. Self-assembled nanoparticles of methotrexate conjugated O-carboxymethyl chitosan:Preparation, characterization and drug release behavior in vitro. Carbohyd Polym,2011,86(4):1665-1670
    Wang ZH, WangZY, Sun CS,et al. Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials,2010(31):908-915
    Winn SR, Hu Y, Sfeir C, et al. Gene therapy approaches for modulating bone regeneration. Adv Drug Deliver Rev.2000,42(1):121-138
    Wu Y, Yang WL, Wang CC, et al. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int J Pharm,2005(295):235-245
    Xie WM, Xu PX, Wang W, et al. Preparation and antibacterial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohyd Polym,2002(50):35-40
    Yamamoto H, Kuno Y, Sugimoto S,et al. Surface modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. J Control Release,2005(102):373-381
    Yamamoto H, Kuno Y, Sugimoto S,et al. Surfacemodified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. J Control Release,2005(102):373-381
    Yang H, Hon MH. The effect of the molecular weight of chitosan nanoparticles and its application on drug delivery. Microchem J,2009(92):87-91
    Yang R, Shim WS, Cui FD, et al. Enhanced electrostatic interaction between chitosan-modified PLGA nanoparticle and tumor. Int J Pharm,2009(371):142-147
    Yang XH, Sladek TL, Liu XS, et al. Reconstitution of caspase3sensitizes MCF-7breast cancer cells to doxorubicin-and etoposideinduced apoptosis. Cancer Research,2001(61):348-354
    Zhang LK, Hou SX, Mao SJ, et al. Uptake of folate-conjugated albumin nanoparticles to the SKOV3cells. Int J Pharm,2004,287(1-2):155-162
    Zheng CH, Gao JQ, Zhang YP, et al. A protein delivery system biodegradable alginate-chitosan-poly(lactic-co-glycolic acid) composite microspheres. Biochem. Biophys. Res Commun,2004(323):1321-1327
    Zhu AP, Chan MB, Dai S,et al. The aggregation behavior of O-carboxymethylchitosan in dilute aqueous solution. Colloids Surf B Biointerfaces,2005(43):143-149
    Zhu AP, Chen T, Yuan LH. Synthesis and characterization of N-succinyl-chitosan and its self-assembly of nanospheres. Carbohydr Polym,2006(66):274-279
    Zhu AP, Liu JH, Ye WH. Effective loading and controlled release of camptothecin by O-carboxymethylchitosan aggregates. Carbohyd Polym,2006(63):89-96
    曹献英,刘静霆,尹美珍,等.抗肿瘤药物载体的研究进展[J].生物骨科材料与临床研究,2006,3(5):3233
    陈盛,罗志敏,马秀玲.磁性壳聚糖微球[J].化学通报,2003,66(26):1-6
    董勤,蔡洪培,张忠兵,等.磁性聚乳酸羟基乙酸氧化酚砷纳米微粒对人肝癌细胞生长的抑制作用[J].中国肿瘤生物治疗杂志,2006,13(3):196199
    费轶博,李凤前,胡晋红,等.用离子交联-匀化工艺制备乙肝疫苗壳聚糖纳米粒[J].药学服务与研究,2008(8):119121
    高文昌,张波,于如同.纳米粒子PLGA介导HIF1α基因转染的实验研究[J].江苏医药,2010,36(22):26692672
    韩浩,李利伟,秦文贞,等ACF/PLGA骨组织工程复合支架的制备及其性能[J].材料科学与工程学报,2012,30(9):719723
    郝英魁,杨学东.载药壳聚糖纳米粒的研究进展[J].中国药学杂志,2005,40(17):12921295
    何山,谢德明.壳聚糖与端羧基PLGA接枝共聚物的制备与表征[J].暨南大学学报,2008,29(5):491-499
    何鑫,张梅,尹荔松,等.多形貌纳米银的研究进展[J].材料导报,2009,23(4):36-41
    季君辉,离子交换与吸附[J].1999,15(6),511;应用化学.2000.17(1):115
    蒋挺大,壳聚糖.北京:化学工业出版社,2001,8-14
    冷静,苏华.纳米高分子材料在生物医学领域的研究与应用[J].中国药事,2007,21(1):35-37
    李凤生,罗付生,杨毅,等.磁响应纳米四氧化三铁/壳聚糖复合微球的制备及特性[J].磁性材料及器件,2002,33(6):1-4
    李敬.基于壳聚糖的纳米载体系统的构建及其肿瘤靶向性研究:[博士学位论文].山东:中国海洋大学海洋生物学专业,2012
    李晶,汪森明.壳聚糖纳米微球作为化疗药物载体的研究进展[J].广东医学.2011,32(6):806-807
    林少琴.壳聚糖-硬脂酸离子复合物吸油材料的制备和性能[J].石油化工,2005(12):1183-1185刘洪刚,程国安.生物材料的研究和展望[J].自然杂志,1998(6):330-333
    刘丽,李晨曦,何炳林.生物降解高分子纳米球的制备[J].应用化学,1999(5):69-72
    刘美静,吕建洲.纳米壳聚糖对金属离子的吸附研究[J].安徽农学通报,2011(03):44-58
    刘媚,张建莹,杨培慧,等.壳聚糖载药纳米微球对人肝癌细胞的杀伤作用及AF探测[J].电子显微镜学报,2009,28(2):146-148
    刘敏,黄绳武.蛋白质多肽类药物非注射制剂研究现状[J].中国生化药物杂志,2007,28(2):142-144
    吕彩霞,姚子华.纳米羟基磷灰石/壳聚糖-硫酸软骨素复合材料的制备及其性能研究[J].复合材料学报,2007,24(1):110-115
    齐欣等.壳聚糖的制备及其对鸡蛋保鲜效果的研究[J].食品科学,2000(5):64-66
    祁兵,李宏卫,温玉明,等.组织工程化口腔黏膜载体材料聚乳酸羟基乙酸膜在兔皮下的埋植实验[J].华西口腔医学杂志,2004(5):362-365
    钱俊青,唐颖,唐振兴.甘油三酯介质中制备壳聚糖纳米粒工艺研究[J].氨基酸和生物资源,2008,30(3):16-20
    师昌绪.材料大词典.北京:化学工业出版社,1994
    孙雪,奚廷斐.生物材料和再生医学的进展[J].中国修复重建外科杂志,2006,20(2):189-193
    佟鹏,高建强,王兵树,等.纳米技术的研究与应用[J].能源研究与信息,2002,18(3):138-142
    王勃生,孟庆恩,高振英,等.生物材料的战略意义及近期发展方向[J].材料导报,1995(3):1-5
    王春,杨连生,扶雄.壳聚糖基纳米载药微粒的研究进展[J].现代食品科技,2006(23):89-92
    王海,许立峰,张超,等.载紫杉醇PLGA/F68纳米粒逆转多药耐药用于乳腺癌的治疗[J].生物医学工程与临床,2012,17(1):17-21
    王彦红,王景慧,岳建霞.导电高分子纳米复合材料研究进展[J].化工时刊,2007,21(1):73-77王迎军,刘康时.生物医学材料的研究与发展[J].中国陶瓷,1998,34(5):26-29
    卫克文,樊明文,吴补领.GbpB-壳聚糖纳米颗粒系统的构建及其经鼻免疫大鼠的实验研究[J].口腔医学研究,2005,21(5):488-491
    魏谭军,董德刚,裘梁,等.离子交联法制备壳聚糖纳米颗粒[J].安徽农业科学,2012(5):2885-2886
    文玉华,周富信,刘曰武.中纳米材料的研究进展[J].力学进展,2001,31(1):41-61
    吴立明,习温瑜,管正红.壳聚糖纳米粒制备的研究进展[J].齐鲁药事,2008,27(10):682-685
    肖叶群,王琛,虞登峰.壳聚糖/离子液体溶液对涤纶织物的整理[J].合成纤维,2012(6):21-24
    谢宇,胡金刚,魏娅,等.离子凝胶法制备壳聚糖纳米微粒[J].应用化工,2009,38(2):171-173
    徐键,天然高分子甲壳素/壳聚糖在食品工业中应用的新进展[J].食品科学,1995(4):41-45
    许海燕,孔桦.纳米材料的研究进展及其在生物医学中的应用[J].基础医学与临床,2002,22(2):97-102
    袁苏宜.纳米材料研究进展[J].广东有色金属学报,1998(2):125-130
    袁佐平.生物医用材料的研究进展[J].新经济产业,2003,17:56-57
    张慧珠,高福平,杨新督等.壳聚糖-脱氧胆酸及其叶酸偶联体的表征及自组装特性的研究[J].功能材料,2008,39(3):465-468
    张静.油酰壳聚糖纳米粒作为抗肿瘤药物载体的研究:[博士学位论文].山东:中国海洋大学生物化学与分子生物学专业,2010
    张阳德,李斌生,刘勤,等.载绿色荧光蛋白基因壳聚糖纳米粒载体的制备和转染的研究[J].中国现代医学杂志,2004,14(19):48-51
    赵佳胤,邬建敏.壳聚糖纳米粒子荧光探针的制备和表征[J].分析化学,2006,34(11):1555-1559
    周长忍,甲壳素及其衍生物在缓释药物中的应用[J].现代化工,1999(3):19-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700