贵州区域干旱演变特征及预测模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着全球性气候变化,旱灾发生趋于频繁,每年旱灾都造成了巨大的经济损失,严重的威胁着人类各种社会经济活动的正常进行。我国是一个水资源短缺的国家,干旱成为威胁我国经济发展与农业生产的主要制约因素,迫切需要对干旱特性、发生规律等进行深入研究。贵州省地处云贵高原东侧第二阶梯大斜坡上,境内地势西高东低,自中部向北、东、南三面倾斜。近年来,贵州省旱情发生频繁,程度不断加重,影响区域不断扩大,水资源供需矛盾更加突出,干旱已成为影响贵州省经济社会发展的重要因素。因此,对贵州喀斯特地区干旱发生的特征、规律进行分析和科学的预测,对防灾减灾具有十分重要的意义。本文运用贵州卡斯特地区多年气象资料,对该地区的旱灾发生及演变规律及降水预测方法进行了研究,主要成果如下:
     (1)贵州喀斯特地区干旱特征分析。以贵州喀斯特地区乌江水系、沅江水系、北盘江水系、红水河水系、赤水河綦江水系、柳江水系的1961年到2011年51年的降水量及温度等实际观测数据为基础,利用Palmer干旱指标、降水距平百分率法和Z指标,引入马利科夫判据的附加误差控制法,分析了贵州喀斯特地区逐年的年度旱情特征以及季度旱情特征,结果表明:Palmer指标对研究区域干旱强度的描述更准确,该方法综合考虑了降水量、温度、地表蒸腾、径流量等多方面因素,较适合贵州喀斯特地区岩溶发育,地表水汇水快,土壤蓄水能力差的干旱特征分析。
     (2)以蒙特卡洛算法及其分布函数为基础,运用P-Ⅲ型分布函数对降雨量进行模拟,将蒙特卡洛和NNBR模型相结合,提出了基于NNBR与蒙特卡洛算法相结合的降雨量预报模型。并利用回溯算法对预测降雨量序列进行回溯检测。结果表明,利用基于NNBR与蒙特卡洛算法相结合模型预测降水量更精确。
     (3)利用乌江流域1961-2010年共50年的降雨资料对马尔可夫、加权马尔科夫和趋势加权马尔科夫三种模型预测模型进行了验证和对比,结果表明,趋势加权马尔科夫预测效果较好,为提高降雨量预测精度提供了新途径。
     (4)运用BP神经网络、径向基函数(RBF)神经网络、Elman神经网络分别建立了研究区旱情预测模型,并进行三种预测模型的对比分析,结果表明,径向基函数(RBF)神经网络的预测效果较优。
     (5)以灰色预测模型为核心,建立小波分解—不同频率成分不同模型的预测架构,并引入波形预测,建立了降水量灰色预测优化方案。实际应用结果表明,本方法很好解决了频率震动大的问题,预测精度高,实现了方法创新。
     (6)根据1961-2010年贵州省19个气象台站的实测气温、降水、日照时间等数据为数据源,采用干旱综合指数法(CI),分析计算了贵州省近50年来干旱发生的频率、覆盖范围、干旱过程的持续日数、干旱强度;并应用ArcGIS9.3地理信息系统软件对不同发生强度、不同覆盖区域的干旱多年平均日数进行了空间分析,直观和形象的体现了研究区域不同等级旱情的空间分布、发展演变过程、覆盖范围及干旱强度等,为减灾防灾提供了科学依据。
     综上,本文的主要创新点如下:
     (1)首次尝试将基于最近邻抽样回归模型(NNBR)模型与蒙特卡洛滤波相结合,分析旱情的变化趋势、周期特性和突变特性。
     (2)将趋势加权马尔科夫模型运用到降雨量的预测之中,为降水量准确预测引入了新方法。
     (3)将灰色模型与小波相结合,将降水量数据进行小波分解,分别对不同频率成分分量进行预测,其中低频分量采用灰色模型进行预测;高频分量采用波形预测的方法进行预测,提出了基于小波分解的灰色预测模型。
In recently years, along with the global climate change, drought tend to be frequently, every year, the drought caused enormous economic loss, and serious threat to normal man's various social economic activities. China is a country with water storage, drought has become main restrictive factor that threaten to the economic development and the agricultural production, there is an urgent need to research into the characteristics and regularity of drought. Guizhou province is located in the second step slope, which is in the east of Yunnan-Guizhou plateau. The terrain is higher in the west and lower in the east, lying tilt from central to north, east and south. In recently, drought occurs frequently in Guizhou. The degree aggravating and the influence area expanding constantly, and the contradiction between supply and demand of water resources become more prominent. Drought has become important factor that affect the economic and social development in Guizhou. Therefore, analyze and scientific forecast the characteristics and regularities of the drought in Guizhou karst regions is of great significance for disaster prevention and mitigation. This paper researched the drought occurrence and evolution regularities and the precipitation prediction method by using years of meteorological data in Guizhou karst regions. The main results were as following:
     (1) Analysis of drought characteristics in Guizhou karst regions. Based on precipitation and temperature observed data from1961to2011of WuJiang, YuanJiang, BeiPanJiang, HongShui River, ChiShui River, QiJiang and LiuLiang water system in Guizhou karst regions, using Palmer drought index, precipitation percentage and Z index, and introduced Malikov Criterion Additional Error Control Method, this paper analyzed the annual and quarter drought characteristics in Guizhou karst regions. The results show that Palmer index described the research region drought intensity more accurate, the method considers multiple factors such as precipitation, temperature, surface transpiration and runoff synthetically, it is suitable for drought characteristics analysis in Guizhou karst regions where Karst development, fast surface water catchment and poor soil water storage capacity.
     (2) Based on the Monte Carlo Algorithms and its distribution function, using P-III type distribution function to simulate the precipitation, and combining the Monte Carlo Algorithms and NNBR model, this paper proposed precipitation forecast model which is based on the combination of Monte Carlo Algorithms and NNBR model, and used backtracking algorithm to test the predict rainfall sequence. Results show that based on NNBR model combined with Monte Carlo Algorithms to predict rainfall is more accurate.
     (3) Using precipitation data in1961-2010of Wujiang Drainage Area to verify and compare three prediction model Markov, weighted Markov and trend weighted Markov, and the results show that the trend weighted Markov prediction effect is better than the other two models, it provides a new way for improving the rainfall forecasting precision.
     (4) Using BP neural network, Radial Basis Function(RBF) neural network and Elman neural network established drought forecasting model of the study area respectively, and compared and analyzed of the three kinds of prediction model, the results show that the Radial Basis Function(RBF) neural network has a better prediction effect.
     (5) With gray prediction model as the core, established wavelet decomposition- different frequency components with different model architecture, and introduced waveform prediction, and rainfall gray prediction optimization scheme is established. Practical application results show that the method is very good to solve large vibration frequency problems, and has high prediction accuracy, it implements the method innovation.
     (6) According to the measured temperature, precipitation and sunshine time data in1961-2010of19meteorological offices and stations in Guizhou province, and by using comprehensive drought index (CI), the drought frequency, coverage, last days of process and intensity in Guizhou province in recent50years are analyzed and calculated. Spatial analyses for drought years average number of different strength and different coverage area are realized by geographic information system software ArcGIS9.3, different grade drought, evolution process and the range and intensity of drought in the research area are reflected intuitively and visually, it provides scientific basis for disaster prevention and reduction.
     In conclusion, the main innovation points are as follows:
     (1) The first attempts to combine model based on the nearest neighbor sampling regression (NNBR) with Monte Carlo Algorithms to analyze the variation trend, cycle characteristics and mutation features of drought.
     (2) Using trend weighted Markov model in rainfall forecast, thus introduced a new method for accurately precipitation predictions.
     (3) Combined gray model with wavelet, took the precipitation data wavelet decomposition, forecast different frequencies components respectively, of which using gray model to the low frequency component forecast and waveform prediction method to high frequency component forecast, and put forward the gray forecasting model based on wavelet decomposition.
引文
1.安顺清,邢久星.1985.修正的帕默尔干旱指数及其应用[J].气象,11(12):17-19.
    2.安顺清,邢久星.1986.帕默尔旱度模式的修正[J].气象科学研究院院刊,1(1):75-81.
    3.韦庆,卢文喜,田竹君.运用蒙特卡洛方法预报年降雨量研究[J].干旱区资源与环境,2004,18(4):144-146.
    4.杨金玲,吴亚楠,谢淼,李鸿雁.蒙特卡洛法在嫩江流域汛期降雨量预测中的应用[J].南水北调与水利科技,2011,9(3):28-29.
    5.王文圣,袁鹏,丁晶.最近邻抽样回归模型在水环境预测中的应用[J].中国环境科学,2001,21(4):367-370.
    6.王文圣,向红莲,丁晶.最近邻抽样回归模型在水文水资源预报中的应用[J].水电能源科学,2001,19(2):8-10.
    7.刘东,付强.小波最近邻抽样回归耦合模型在三江平原年降水预测中的应用[J].灌溉排水学报,2007,26(4).
    8.焦瑞峰,吴昊,师洋.基于灰色关联分析的蒙特卡洛法建立水库出库水质预测模型[J].环境工程,2006,24(4):63-65.
    9.张弦.基于改进粒子滤波算法的移动机器人定位[D].北京:北京邮电大学,2010.
    10.董丽丽,徐淑琴,刘杨,王云鹤.小波随机耦合模型在查哈阳农场降雨量预测中应用[J].中国农村水利水电,2011,04:26-28.
    11.黄显峰,邵东国,阳书敏.降雨时间序列分解预测模型及应用[J].中国农村水利水电,2007,09:6-8.
    12.周爱霞,张行南.优化适线法在水文频率分析中的应用[J].人民长江,2007,38(6):38-39.
    13.崔磊,迟道才,曲霞.基于小波消噪的平稳时间序列分析方法在降雨量预测中的应用[J].中国农村水利水电,2010,09:30-35.
    14.任晔,徐淑琴.灰色神经网络组合模型在庆安县年降雨量预测中的应用[J].节水灌溉,2012,09:24-25.
    15.迟道才,沈亚西,陈涛涛等.2012.灰色关联度组合模型在涝灾预测中的应用[J].中国农村水利水电,(1):80-82
    16.迟道才,张瑞,张清,东昊.2008.灰色神经网络组合模型(CNN)在涝灾预测中的应用[J].沈阳农业大学学报,39(1):118-120
    17.丰彦,高国荣.2005.小波阈值消噪中分解层数的自适应确定[J].武汉大学学报(理学版),51(2):11-14.
    18.冯定原,邱新法.1995.农业干旱的成因、指标、时空分布和防旱抗旱对策.中国减灾,(2):22-26
    19.冯清海,袁万城.2007.BP神经网络和RBF神经网络在墩柱抗震性能评估中的比较研究[J].结构
    1.工程师,123(5):41-47
    20.高炬,王繁强,黄祖英.2006.小波分析在陕西省旱涝气候预测中的应用[J].陕西气象,(6):11-14
    21.高庆华.1991.关于建立自然灾害评估系统的总体构思[J].灾害学,6(3):70-77
    22.宫赤坤,毛罕平.2000.温室夏季温湿度遗传模糊神经网络控制[J].农业工程学报,16(4):106-109
    23.郭桂蓉.1993.模糊模式识别[M].北京:国防工业出版社,169-178
    24.郭晶,杨章玉.2002.MATLAB6.5辅助神经网络分析与设计[M].北京:电子工业出版社:145-161
    25.国家科委全国重大自然灾害综合研究组.1993.中国重大自然灾害及减灾对策分论[M].北京:科学出版社
    26.李帅,刘冀,杜发兴,汤振权.2009.小波分析在宜昌地区降水变化中的应用[J].中国农村水利水电,(5).:34-37
    27.李安生.1995.马利科夫判据的无效区[J].殷都学刊(自然科学版),(2):18-20
    28.李萍,曾令可,税安泽,金雪莉,刘艳春,王,慧.2008.基于MATLAB的BP神经网络预测系统的设计[J].计算机应用与软件,25(4):149-150-84
    29.李士勇.1998.模糊控制·神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社
    30.李炜,陈晓辉,毛海杰.2009.小波阈值消噪算法中自适应确定分解层数研究[J].计算机仿真,26(3):311-313-326
    31.李晓峰,徐玖平,王萌清,等.2004.BP人工神经网络自适应学习算法的建立与应用[J].系统工程理论与实践,1(5):1-8
    32.林盛吉,张庆庆,俞超锋,许月萍.2011.干旱指数在杭州市历年旱涝特征分析中的应用[J].中国农村水利水电,(1):69-73
    33.刘昌明、何希吾.2001.中国21世纪水问题方略[M].北京:科学出版社
    34.刘德辅,褚晓明,王树青.2001.沿海和河口城市防灾设防标准系统分析[J].灾害学,(4):1-7
    35.刘东,付强.2007.小波最近邻抽样回归耦合模型在三江平原年降水量预测中的应用[J].灌溉排水学报,26(4):82-85
    36.刘庚山,郭安红,安顺清,刘巍巍.2004.帕默尔干旱指标及其应用研究进展[J].自然灾害学报,(04):21-26
    37.刘倩,熊丽荣.2007.基于人工神经网络算法对水稻需水量的预测[J].华中农业大学学报,26(5):885-887
    38.王殿武,迟道才,梁风国,江行久等.区域旱涝特征分析及灾害预测技术研究[M].北京:中国水利水电出版社,2011.5.
    39.邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,2002.
    40.郭化文.灰色系统在干旱灾害预报中的应用[J].泰安师专学报,2001,23(6):9-13.
    41.王伟.应用灰色模型预测镇雄县中心城区中长期用水量[D].重庆大学.2012.5:22-27
    42.杨得平,刘喜华,孙海涛等.经济预测方法及MATLAB实现[M].北京:机械工业出版社,2012.2:180-185.
    43.边红娟,雷宏军,王勇.灰色理论在区域降雨量预测中的应用——以河南商城县为例[J].安徽农业科学,2009,37(13):6059-6060.
    44.吴红斌,林炳东.灰色理论在干旱预测中的应用[J].中国西部科技,2005,2:30-32.
    45.邓丽仙,杨绍琼.灰色系统理论在滇池流域干旱预测中的应用[J].人民长江,2008,39(6):26-28.
    46.黄显峰,邵东国,阳书敏.降雨时间序列分解预测模型及应用[J].中国农村水利水电,2007,9:6-8.
    47.任晔,徐淑琴.灰色神经网络组合模型在庆安县年降雨量预测中的应用[J].节水灌溉,2012,9:24-29.
    48.牛存稳,张利平,夏军.2004.华北地区降水量的小波分析[J].干旱区地理,27(1):66-70
    49.钱镜林,张晔,刘国华.2006.基于小波分解的径流预报非线性模型[J].水利水电学报.25(5):17-21
    50.钱晓东,肖强,罗海燕.2010.基于改进的RBF神经网络的人民币汇率预测研究[J].计算机工程与应用,46(10):229-231
    51.桑燕芳,王栋.2008.水文序列分析中小波函数选择方法[J].水利学报,39(3):295-300
    52.沈振荣.1992.我国近三十年旱情的时空分布规律[J].自然资源,(4):9-18
    53.石岩,蒋兴良,苑吉河.2009.基于RBF网络的覆冰绝缘子闪络电压预测模型[J].高电压技术,35(3):591-595
    54.迟道才,赵瑞,张清等.2008.灰色神经网络组合模型(CNN)在涝灾预测中的应用.沈阳农业大学学报.39(1):118-120.
    55.宋印胜.1998.马尔可夫链模型在地下水水位预测中的应用[J].山东地质,(1):34-40
    56.苏博,刘鲁,杨方廷.2006.GM(1,N)灰色系统与BP神经网络方法的粮食产量预测比较研究.中国农业大学学报,11(4):99-104
    57.孙安健,高波.2000.华北平原地区地区夏季严重旱涝特征诊断分析[J].大气科学,24(3):393-402
    58.孙才志,张戈,林学珏.2003.加权马尔可夫链在降水丰枯状况预测中的应用[J].系统工理论与实践,(4):100-105
    59.孙永是,白人海,谢安.2004.中国东北地区干旱趋势的年代际变化[J].北京大学学报(自然科学版),40(5):806-813
    60.谭冠军.2000.GM(1,1)模型的背景值构造方法和应用(I)[J].系统工程理论与实践,20(4):98-103.
    61.汤成友,缈韧.2007.基于小波变换的水文时间序列分解[J].水资源研究,28(1):16-17
    62.唐延芳,迟道才,顾拓等.2007.灰色残差修正模型在灌溉用水量预测中的应用[J].水利科技与经济,13(6):388-390[J]
    63.王平.1999.自然灾害综合区划的研究现状与展望[J].自然灾害学报,8(1):21-29
    64.王宝英,张学.1996.农作物高产的适宜土壤水分指标研究[J].灌溉排水,15(3):35-37
    65.王建林,王宪彬,太华杰.2000.中国粮食总产量预测方法研究[J].气象学报,58(6):738-744
    66.王劲松,郭江勇,周跃武,杨兰芳.2007.干旱指标研究的进展与展望[J].干旱区地理,30(1):60-64
    67.王丽丽,李文华.2006.2种小波消噪方法的比较[J].煤矿机械,27(12):190-191
    68.王维,张英堂,任国全.2009.小波阈值降噪算法中最优分解层数的自适应确定及仿真[J].仪器仪表学报,30(3):526-2-529
    69.王文圣,丁晶,李跃清.2005.水文小波分析[M].北京:化学工业出版社,102-136
    70.王秀杰,练继建,费守明等.2007.基于小波消噪的混沌多元回归日径流预测模型[J].系统仿真学报,19(15):3605-3608
    71.余朝刚,王剑平.2006.基于径向基函数神经网络的温室室内温度预测模型[J].生物数学学报,21(4):549-553
    72.余英林,李海洲.1996.神经网络与信号分析[M].广州:华南理工大学出版社,252-282
    73.袁文平,周广胜.2004.标准化降水指标与Z指数在我国应用的对比分析[J].植物生态学报,(4):523-529
    74.袁文平,周广胜.2004.干旱指标的理论分析与研究展望[J].地球科学进展,19(6):982-990
    75.张存杰,S王宝灵.1998.西北地区旱涝指标的研究[J].高原气象,17(4):381-389
    76.张大海,江世芳,史开泉.2002.灰色预测公式的理论缺陷及改进[J].系统工程理论与实践,22(8):140-142
    77.张汉雄.1994.用马尔可夫链模型预测宁南山区旱情[J].自然灾害学报,(3):47-54
    78.张宏平,张汝鹤.1998.陕西省干旱灾害的农业风险评估[J].灾害学,13(4):57-61
    79.张吉先,钟秋海,戴亚平.2004.小波门限消噪法应用中分解层数及阈值的确定[J].中国电机工程学报,24(2):118-122.
    80.张宁宁,迟道才,袁吉.2006.朝阳地区干旱特征分析及抗旱对策研究[J].中国农村水利水电,(09):61-64
    81.张强,鞠笑生,李淑华.1998.三种干旱指标的比较和新指标的确定[J].气象科技(6):48-52
    82.张文坚.1996.90年代浙江城镇洪涝灾害分析及其展望[J].科技通报,(1):43-47
    83.张艳芳.2005.基于GM(1,1)的残差修正模型及应用[J].水力学与工程技术,(5):51-53
    84.张袁,林启太.2004.模糊马尔可夫链状模型在矿区降水灾害预测中的应用[J].国外建材科技,(1)56-58
    85.智会强,牛坤,田亮,杨增军.2005.BP网络和RBF网络在函数逼近领域内的比较研究[J].科技通报,21(2):193-197
    86.钟丽辉,魏贯军.2012.基于Mallat算法的小波分解重构的心电信号处理[J].电子设计工程,20(2):57-59
    87.周黄斌,周永华,朱丽娟.2008.基于MATLAB的改进BP神经网络的实现与比较[J].计算技术与自动化.27(1):28-31
    88.周祥林,陆宝宏,孙婷婷等.2006.基于响应单元的太湖流域干旱分析方法研究[J].水资源保护,(2):6-10
    89.朱炳援,谢金南,邓振镛.1998.西北干旱指标研究的综合评述[J].甘肃气象,16(1):35-37
    90.朱明武,李永新,卜雄珠.2006.测试信号处理与分析[M].北京.北京航空航天大学出版社.45-71
    91.朱明星,张德龙.2000.RBF网络基函数中心选取算法的研究[J].安徽大学学报(自然科学版),24(1):72-78
    92.朱益民,孙旭光,陈晓颖.2003.小波分析在长江中下游旱涝气候预测中的应用[J].解放军理工大学学报,4(6):90-93
    93.邹海荣.2010.马利科夫准则有效的判据[J].上海电机学院学报,13(4):205-210
    94.邹旭恺,张强,王有民等.2005.干旱指标研究进展及中美两国国家级干旱检测[J],气象,31(7):6-10
    95.仲远见,李靖,王龙.改进马尔可夫链降雨量预测模型的应用[J],济南大学学报:自然科学版,2009,23(4):402-405
    96.王蓓,刘玉甫.滑动平均一马尔可夫模型在降水预测中的应用[J],水资源研究,2009,30(2):25-27.
    97. Karl T R.1983.Some spital characteristics of drought duration in the United Stated [J].Journal Climate Applied Meteorology,22:1356-1366
    98. Agnew C T,Svoboda M D,Wilhite D A,etal.1999. Monitoring the 1996 drought using the Standardized Precipitation Index[J]. Bull. Amer. Meteor. Soc, (80):129-438.
    99. Alberto Malinverno.2002.Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem [J]. Geophysical Journal International, 151(3):675-688
    100.American Meteorological Society.1997.Meteorological drought-Policy statement [J]. Bulletin of American Meteorological Society,(78):847-849
    101.Bhalme,H N and Mooley.1980.Large-scale drought/flood and monsoon circulation[J]. Mon. Weather Rev.(108):1197-1211.
    102.CHANG D G, BIU Y, VETTERLIM.2000. Adaptive wavelet thresholding for image denoising and compression[C].IEEE Trans. Image Processing,9(9):1532-1546.
    103.ChenS,Cowan C F N,Grant P M.1991.Orthogonal least squares learning algorithm for radial basis function Networks[J].IEEE Trans on Neural Networks,2(2):302-309
    104.Cui Jie,Liu Sifeng,Xie Naiming.2012.Novel Grey Decision Making Model And Its Numerical Simulation[J].Transactions of Nanjing University of Aeronautics & Astronautics,29(2):112-117
    105.DONOHO D L.1995.De-Noising by Soft-Thresholding [J].IEEE Trans. Infrom. Theory, 41:613-627.
    106.Ferreira P M, Faria E A,2002.Eruano A.Neural network models in greenhouse air temperature prediction[J].Nerocomputing,43(1):51-75
    107.Harris Jonathan M, et al.1999.Carrying capacity in Agriculture Globe and regional issue[J]. Ecological Economics,129(3):443-461
    108.HornikK,StineheombeM,WhiteH.1989.Multilayer Feed-forward NerworkareUniversal ApProximators,NeuralNetwork,2(6):359-366.
    109.Jackson R K.1983.Canopy temperature and crop water stress, Advances in Irrigation [M].New York:Academic Press,
    11 O.Karl T R.1983. Some Spital Characteristics of Drought Duration in the United Stated [J].Journal Climate Applied Meteorology,(22):1356-1366
    111.Kastra M.1996. Forecasting Combining with Neural Netwoirks [J]. Forecast,15(1): 49-61.
    112.Kife G W.1977,Frequency and Risk Analysis in Hydrology [M].Water Resources Publication, Colorado
    113.Kwang-BaekKim, Dong-Un Lee, Kwee-Bo Sim. Per-formance improvement of fuzzyRBF networks//Ad-vances inNaturalComputation[C]. First Internation-al Conference, ICNC2005. Proceedings, Part I(Lecture Notes in Computer Science Vo.l3610),2005:237-244.
    114.Liu Sifeng,Hu Mingli,Forrest Jeffrey,Yang Yingjie.Progress of Grey System Models[J]. Transactions of Nanjing University of Aeronautics & Astronautics,29(2):103-111
    115.Mallat,2003. A Wavelet Tour of Signal Processing[M].北京:机械工业出版社(杨力华等译),55-67
    116.McCulloch W S, Pitts W.1943.A Logical calculus of the ideas immanent in nervous activity [J]. Bulletin of Mathematical Biophysics,10(5):115-133
    117.Palmer W C.1965.Meteorological drought US [J].Weather Bureau Research Paper,45-58
    118.Palmer W C.1965.Meteorological drought US[J].Weather Bureau Research Paper,10(2): 45-58
    119.Palmer WC.1967.The abnormally dry weather of 1961-1966 in the northeastern United States[A].Proc. Conf. Drought in the Northeastern United States[C] Jerome Spar,Ed., NewYork University Geophys.Res.Lab.Rep.TR-68-3:32-56
    120.Paul Jordan, Peter Talkner.2000.A seasonal Markov chain model for the weather in the central Alps [J].Tellus A,52(4):455-466
    121.RENN J C.1998.Control of a servohydraulic positioning system using state-space controller with grey forecasting[J].JSME International Journal-Series C,13(3):391-397
    122.Seiler B A, Hayes M, Bressan L.2002.Using the standardized precipitation index for flood risk monitoring [J]. International Journal of Climatology,(22):1365-1376
    123.Thomas A.2000.Spatial and temporal characteristics of potential evepotranspiration trends over China [J]. International Journal Climatology, (20):381-396
    124.WIDROWB, HOFF M E.1960:Adaptive Switching Circuits [A]. IRE WESCON convention record:part4. Computers: Machine Systems[C]. Los Angeles:96-104
    125.Wilhite DA.2000.Drought as a natural hazard:Coneepts and definitions[A].Drought:A Global Assessment[C]. London & NewYork:Routledge Press
    126.William Wright.2004.Agricultural drought policy and practice in Australia. Expert Group Meeting on Reducing the Impact of Natural Disasters and Mitigation of Extreme Events in Agriculture,Rangelands,Forestry and Fisheries. Beijing,China,16-20February.
    127.XinYao,ongLiu.1997.New Evolutionary System for Evolving Artificial Neural Networks IEEE. Transactions on Neural Networks [M].1997,8(3):694-714.
    128. YEN T H,JEROMY Y.2000.A novel image compressing using grey models on dynamic window[J].International Journal of Systems Science,12(9):225-229
    129.Yinao Wang, Zhijie Chen, Yingchuan Li, Mianyun Chen.2000.Improvements for the accumulated generating operation and its application to the soft foundation settlement model[J]. Advavces in Systems Science and Applications,1(2):186-191
    130.YU Zhao-yang, WANG Jian-ping, YING Yi-bin.2006.Greenhouse temperature prediction model based on radial basis function neural networks[J]. Journal of Biomathematics,21(4):549-553
    131.Lohani V K,Loganathan G V.1997.Early warning system for drought management using the Palmer Drought index. Journal of the American Water Resources Association, 33(6):1375-1386.
    132.McKee T B, Doesken N J, Kleist J.1995. Drought monitoring with multiple timescales. Preprints,9th Conference on Applied Climatology,15-20 January,
    133.McKee T B,Doesken N J. The relationship of drought frequency and duration to time scales. Proceedings of Vulnerability [M]. Cambridge University Press, UK. pp517.
    134.Paul A Samuelson, William D Nordhaus. M icroeconom ics [M].Boston:McGraw-Hill Irwin,2001
    135.PICC Report. Climate Change 2001:The scientific basis. Cambridge University Press, 2001:140-165
    136.Rita Guerreiro.2004.Accessibility of database information to facilitate early detection of extreme events to help mitigate their impacts on agriculture, forestry and fisheries.Expert Group Meeting on Reducing the Impact of Natural Disasters and Mitigation of Extreme Events in Agriculture, Rangelands, Forestry and Fisheries Beijing, China,16-20 February 615-660.
    137.Shafer, B. A., and L. E. Dezman.1982:Development of a Surface Water Supply Index(SWSI) to assess the severity of drought conditions in snowpack runoff areas,Proc,50th Western Snow Conf.,Reno,NV.
    138.Shen.H W and Guillerrno.Q.Tablios "Drought analysis with reservoirs using treeing reconstructed flow"Journal of Hydraulics Engineering,1995.
    139.S. Kaplan,1997.The words of risk analysis, Risk Analysis,17
    140.Soule.P.T.1992:Spatial patterns of drought frequency and duration in the contiguous USA based on multiple drought event definitions. Int J. Climatol,12.
    141.Stanhil G,Cohen S.Global dimming:a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences[J].Agricultural and Forest Meteorology,2001,107:255-27
    142.Thomas A.Spatial and temporal characteristics of potential evepotranspiration trends over China [J]. International Journal Climatology,2000,20:381-396.
    143.William Wright.2004.Agricultural drought policy and practice in Australia. Expert Group Meeting on Reducing the Impact of Natural Disasters and Mitigation of Extreme Events in Agriculture,Rangelands,Forestry and Fisheries. Beijing,China,16-20February.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700