氧化物薄膜晶体管研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,氧化物薄膜晶体管(TFTs)由其在有源矩阵发光二极管(AMOLED)显示中的潜在应用而受到了广泛的关注。传统的非晶硅TFTs由于迁移率较低、阈值电压漂移较严重,无法满足电流型驱动方式的OLED显示屏;而多晶硅TFTs虽然具有较高的迁移率和较好的稳定性,但是,其晶界的存在使得均匀性较差,从而影响了其在AMOLED显示中的应用,特别是在大尺寸显示屏中的应用。而氧化物TFTs,不但具有较高的迁移率,而且可见光透明、均匀性好、稳定性好,特别是可以低温制备,有望实现低成本的柔性显示。因此,开展氧化物薄膜晶体管的研究就有重大的现实意义。
     本论文首先对氧化物薄膜晶体管中有源层的制备条件进行探索,获得了各工艺参数对器件性能的影响。根据氧化物半导体的特点,重点研究了薄膜制备中的氧含量和溅射气压的影响;结合钝化层的沉积和后退火处理,研究了后退火温度和退火气氛对器件性能的影响。此外,针对源漏电极的沉积条件对器件性能的影响,详细研究了金属钼(Mo)电极和氧化铟锌(IZO)有源层的界面特性。发现随着溅射功率的增加,器件的阈值电压负向移动,迁移率降低。借助X射线光电子能谱,分析了Mo/IZO界面的扩散现象以及高功率对IZO薄膜的影响。为制备高性能的氧化物薄膜晶体管提供了指导方向。
     其次,背沟道刻蚀型薄膜晶体管由于具有相对简单的工艺,制备成本相对较低,在实际应用中具有巨大的吸引力。但是氧化物半导体和传统的硅基材料不同,其很容易被大部分刻蚀液刻蚀,较难实现该结构的氧化物薄膜晶体管。针对氧化物半导体耐酸碱等刻蚀液的能力较差,基于前面章节的研究结果,本论文通过采用多层钼-铝-钼(Mo/Al/Mo)的源漏电极结构,以双氧水(H2O2)和低浓度的氢氧化钾(KOH,0.5wt%)分别作为Mo和Al的刻蚀液,制备了高性能的IZO-TFT。其饱和迁移率为11.3cm2V-1s-1,较小的亚阈值摆幅(0.24V/decade),电流开关比大于108,在+10V和-10V的栅偏压下器件的阈值电压漂移量仅为0.4V和-0.2V。该Mo/Al/Mo电极结构不仅和有源层的接触良好,而且具备低电阻率和耐高温特性。H2O2对Mo和IZO具有较高的刻蚀选择比,而且对IZO的损伤较小;0.5wt%的KOH能较好地刻蚀Al而几乎不刻蚀Mo。本文还对H2O2刻蚀Mo薄膜的机理进行了分析,实现了以湿法背沟道刻蚀方案制备高性能氧化物薄膜晶体管。
     另外,本论文针对目前低温制备高质量的绝缘薄膜存在的问题,提出了低温阳极氧化法制备氧化铝(Al2O3)薄膜在柔性衬底上应用的可能,研究了其制备的关键工艺。对柔性聚萘二甲酸乙二醇酯(PEN)衬底上制备的Al2O3薄膜特性进行了详细的表征,其具有较好的台阶覆盖性和较低的表面粗糙度,特别是在较厚的栅极上制备绝缘层时有明显的优势;该Al2O3薄膜还表现出了优异的电特性和机械性能。总之,以阳极氧化法制备的Al2O3薄膜表现出和原子层沉积(ALD)方式制备的Al2O3薄膜相媲美的性能。另外,以阳极氧化法制备的栅绝缘薄膜被成功地应用到柔性薄膜晶体管的制备当中,所制备的薄膜晶体管表现出了良好的性能。本文还尝试了在柔性透明的PEN衬底上以阳极氧化的方式制备氧化铝(Al2O3)栅绝缘层薄膜阵列,基于前面对氧化物薄膜晶体管等方面的研究,成功制备了5inch的AMOLED彩色柔性显示屏。该显示屏不仅能正常显示静态图片,而且可以播放动态视频,在一定的曲率半径下,不会影响到显示效果;展现出了阳极氧化法制备的绝缘薄膜在低温和柔性电子领域的巨大应用潜力。
     最后,透明电极作为现代功能薄膜的重要组成部分,其图案化工艺更是决定了其应用的领域。众所周知,传统的氧化铟锡(ITO)薄膜随厚度增加而呈结晶特性,而结晶的ITO薄膜只能被强酸刻蚀,严重限制了其应用领域。为制备低阻值、低粗糙度、易刻蚀的透明电极,我们首先对ITO薄膜制备中各工艺参数的影响展开研究,获得了制备高性能透明导电ITO薄膜的关键参数。本论文首次采用多层的复合结构,以非晶透明的IZO薄膜作为插入层,有效地抑制了氧化ITO薄膜随着厚度增加呈结晶生长的特性。制备的多层复合薄膜不仅具有较低的电阻率(~2×10-4Ωcm)、高可见光透过率(~85%)、低表面粗糙度(~0.52nm),而且可以被草酸等弱酸刻蚀。该方法解决了低阻透明导电薄膜不易刻蚀的难题,拓宽其应用领域。
Recently, oxide thin-film transistors (TFTs) have been acctracting greatanntention due to the application in active matrix organic light emitting diode(AMOLED)displays. Because of the low mobility and serious threshold voltage (Vth)shift, the traditional amorphous silicion (a-Si) is insufficient to drive the OLED whichdriven by current. To be the poly-silicion (p-Si), although it has high field-effectmobility, good electrical stability, suffering from the low uniformity caused by theexistence of grain boundaries, which are restricted to application in AMOLED,especially for the lager-size displays. On the other hand, oxide semiconductor exhibitreasonably high mobility, transparent in visible light, good uniformity and excellentstability, especially of the low-temperature deposition, which shows the potential torealize the low-cost flexible displays. The oxide TFTs combine the advantages of a-Siand p-Si TFTs, and might be an alternative approach to realize reliable and highresolution AMOLEDs.
     Firstly, we explore the performance of the TFTs influenced by the preparation ofthe active layer. Consider to the characteristics of the oxide semiconductor, oxygen inthe sputtering atmosphere and sputtering pressure were mainly studied. Combinationof passivation layer and annealing ambient, the influence of the annealing temperatureand ambient were studied also. Then, we found that as the increase of the sputteringpower of molybdenum (Mo), the Vthshift negative and the mobility decrease. Bymeans of X-ray photoelectron spectroscopy (XPS), we analyzed the diffusionphenomenon in the interface of Mo/IZO. These parts provide the guidance forfabrication high performance TFTs.
     Secondly, the TFT with back-channel-etch structure has great attention due to therelatively simple process and low-cost. But, differ to the conventional silicon-basedmaterials; the oxide semiconductors are very weak in most of the wet etchants. Basedon the results of the previous section in this paper, a stacked structure of Mo/Al/Mowas adopted as the source/drain electrodes and patterned by a wet-etch-method. TheMo and Al were etched by H2O2and KOH, respectively. Good etching profile withfew residues on the channel was obtained. The TFT exhibited a field effect mobility ofas high as11.3cm2V-1s-1, a sub-threshold swing of only0.24V/decade, and anon-to-off current ratio of larger than108. Furthermore, the threshold voltage shiftedonly0.4V and-0.2V for the device under positive (+10V) and negative (-10V) gate bias stress for2.5h, respectively. These results indicate that the method of wet etchingS/D electrodes is feasible for IZO-TFT and has the potential to reduce themanufacturing cost of oxide semiconductor-based TFT backplanes.
     In addition, aiming at the problems existing in the preparation of high qualitydielectric at low-temperature, we try to form the alumina (Al2O3) on flexible substrateby anode-oxidization. The Al2O3on polyethylene naphthalate (PEN) substrate wasfabricated at room temperature, and the key process factors were inverstigated indetail. The anolized Al2O3shown better side face coverage characteristics than theSiO2deposited by plasma enhanced chemical vapor deposition (PECVD), especiallyfor the thick gate electrode. Additionally, the anolized Al2O3exhibited excellentelectrical and mechanical characteristics. In all, it shown the comparable performanceto the Al2O3thin film formed by ALD. Meanwhile, we fabricated the TFTs with theanolidze Al2O3as gate insulator, which demonstrates the promising application of theTFTs in flexible AMOLED displays. Based on the previous research, we succefullyfabricated a5inch color flexible AMOLED display on PEN substrate, which exhibitsgood image quality in both flat and bent states. It is demostrated that the anodizedAl2O3with tremendous potential in low-temperature and flexible electronics.
     Finally, transparent conductor oxides (TCO) play an important role in AMOLEDdisplays. As we all known, as the increase of the thickness, the ITO thin-film tends tobe crystalline. Unfortunately, the crystallized ITO film will encounter a patterningproblem, because it can only be etched by strong acids, such as aqua regia, which aredestructive to the underlying films. In order to prepare the low-roughness andeasily-etched transparent electrodes, a layer of ultra-thin IZO was inserted betweenITO films. It was found that this as-deposited TCO film with IZO insertion layers wasamorphous and easily-etched even in weak acids. Furthermore, the surface roughnessof this multilayer TCO film was only0.52nm, much lower than that of the ITOmonolayer film with the same thickness. After annealing at250oC in air, a low sheetresistance of~9.6Ω/and a reasonably transmittance of~85%in visible range wereobtained. This method expanded the application of the TCOs significantly.
引文
[1] McCarthy M. A., Liu B., Donoghue E. P., et al. Low-voltage, low-power, organiclight-emitting transistors for active matrix displays[J]. Science,2011,332(6029):570-573
    [2] Jahinuzzaman S. M., Sultana A., Sakariya K., et al. Threshold voltage instabilityof amorphous silicon thin-film transistors under constant current stress[J]. AppliedPhysics Letters,2005,87(2):023502
    [3] Suzuki T., Flat panel displays for ubiquitous product applications and relatedimpurity doping technologies[J]. Journal of applied physics,2006,99(11):111101
    [4] Hoffman R. L., Norris B. J., Wager J. F. ZnO-based transparent thin-filmtransistors[J]. Applied Physics Letters,2003,82(5):733-735
    [5] Nomura K., Ohta H., Ueda K., et al. Thin-film transistor fabricated insingle-crystalline transparent oxide semiconductor[J]. Science,2003,300(5623):1269-1272
    [6] Nomura K., Ohta H., Takagi A., et al. Room-temperature fabrication of transparentflexible thin-film transistors using amorphous oxide semiconductors[J]. Nature,2004,432(7016):488-492
    [7]刘玉荣;王智欣;虞佳乐等,高迁移率聚合物薄膜晶体管[J].物理学报,2009,58,8556-8556
    [8]王雄;才玺坤;原子健等,氧化锌锡薄膜晶体管的研究[J].物理学报,2011,60(3),037305
    [9]李喜峰;信恩龙;石继锋等,低温透明非晶IGZO薄膜晶体管的光照稳定性[J].物理学报,2013,62(10),10853
    [10] Zhao M., Lan L., Xu H., et al. Wet-etch method for patterning metal electrodesdirectly on amorphous oxide semiconductor films[J]. ECS Solid State Letters,2012,1(5): P82-P84
    [11] Lilienfeld JE., Device for controlling Electric current[P]. U.S. Patent:1,900,018.1933-3-7
    [12] Heil O. Improvements in or relating to electrical amplifiers and other controlarrangements and devices[J]. British Patent,1935,439(457):10-14
    [13] Bardeen J., Brattain W. H., The transistor, a semi-conductor triode[J]. PhysicalReview,1948,74(2):230
    [14] Shockley W., The Theory of p-n Junctions in Semiconductors and p-n JunctionTransistors[J]. Bell System Technical Journal,1949,28(3):435-489
    [15] Shockley W. A unipolar" field-effect" transistor[J]. Proceedings of the IRE,1952,40(11):1365-1376
    [16] Weimer P. K., The tft a new thin-film transistor[J]. Proceedings of the IRE,1962,50(6):1462-1469
    [17] Lechner B. J., Marlowe F J, Nester E O, et al. Liquid crystal matrix displays[J].Proceedings of the IEEE,1971,59(11):1566-1579
    [18] Brody, T. P., Asars, J. A. and Dixon, G. D., A6″×6″20Lines-per-Inch LiquidCrystal Display Panel[J]. Digest1973SID Intl. Symp.,1973,179-182
    [19] Le Comber P. G., Spear W. E., Ghaith A., Amorphous-silicon field-effect deviceand possible application[J]. Electronics Letters,1979,15(6):179-181
    [20] Depp S. W., Juliana A., Huth B. G., Polysilicon FET devices for large areainput/output applications[C]//Electron Devices Meeting,1980International.IEEE,1980,26:703-706
    [21] Stupp E., Mitra U., Carldon A., et al. Polysilicon TFT-LCD for Full-ResolutionColor Video Projector[C]//Proc.10th. Int. Disp. Res. Conf," Eurodisplay,1990,90:52-55
    [22] Little T. W., Koike H., Takahara K., et al. A9.5inch,1.3mega-pixel lowtemperature poly-Si TFT-LCD fabricated by SPC of very thin films and anECR-CVD gate insulator[C]//Display Research Conference,1991., ConferenceRecord of the1991International. IEEE,1991:219-222
    [23] Garnier F., Horowitz G., Peng X., et al. An all-organic" soft" thin film transistorwith very high carrier mobility[J]. Advanced Materials,1990,2(12):592-594
    [24] Kamiya T., Hosono H., Material characteristics and applications of transparentamorphous oxide semiconductors[J]. NPG Asia Materials,2010,2(1):15-22
    [25] Nomura K., Takagi A., Kamiya T., et al. Amorphous oxide semiconductors forhigh-performance flexible thin-film transistors[J]. Japanese journal of appliedphysics,2006,45(5S):4303
    [26] Barquinha P., Pimentel A., Marques A., et al. Influence of the semiconductorthickness on the electrical properties of transparent TFTs based on indium zincoxide[J]. Journal of non-crystalline solids,2006,352(9):1749-1752
    [27] Lavareda G., Nunes de Carvalho C., Fortunato E., et al. Transparent thin filmtransistors based on indium oxide semiconductor[J]. Journal of non-crystallinesolids,2006,352(23):2311-2314
    [28] Chiang H. Q., Wager J. F., Hoffman R. L., et al. High mobility transparentthin-film transistors with amorphous zinc tin oxide channel layer[J]. AppliedPhysics Letters,2005,86(1):013503-013503-3
    [29] Kyeong J. J., Won Y. H., Jeong J. H., et al. Origin of threshold voltage instabilityin indium-gallium-zinc oxide thin film transistors[J]. Applied Physics Letters,2008,93(12):123508-123508-3
    [30] Iwasaki T., Itagaki N., Den T., et al. Combinatorial approach to thin-filmtransistors using multicomponent semiconductor channels: An application toamorphous oxide semiconductors in In-Ga-Zn-O system[J]. Applied physicsletters,2007,90(24):242114
    [31] Lin C. C., Effects of contrast ratio and text color on visual performance withTFT-LCD[J]. International Journal of Industrial Ergonomics,2003,31(2):65-72
    [32] Yamazaki S. A Possibility of Crystalline Indium-Gallium-Zinc-Oxide[C]//QualityElectronic Design (ASQED),20135th Asia Symposium on. IEEE,2013:1-5
    [33] http://news.xinhuanet.com/fortune/2013-12/30/c_118770917.htm
    [34] Tang C. W., VanSlyke S. A., Organic electroluminescent diodes[J]. AppliedPhysics Letters,1987,51(12):913-915
    [35] Jeong J. K., Jin D. U., Mo Y. G., et al. Organic light emitting display (OLED) andits method of fabrication: U.S. Patent7,663,302[P].2010-2-16
    [36] Seel P B. Digital Television&Video[J]. Communication Technology Update andFundamentals,2012:65
    [37]曹镛,陶洪,邹建华,等.金属氧化物薄膜晶体管及其在新型显示中的应用[J].华南理工大学学报(自然科学版),2012,10:002.
    [38] Klasens H. A., Koelmans H., A tin oxide field-effect transistor[J]. Solid-StateElectronics,1964,7(9):701-702
    [39] Boesen G. F., Jacobs J. E., ZnO field-effect transistor[J]. Proceedings of the IEEE,1968,56(11):2094-2095
    [40] Kamiya T., Nomura K., Hosono H., Origins of High Mobility and Low OperationVoltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport,Defects and Doping*[J]. Journal of display Technology,2009,5(12):468-483
    [41] Kumomi H., Nomura K., Kamiya T., et al. Amorphous oxide channel TFTs[J].Thin Solid Films,2008,516(7):1516-1522
    [42] Hsieh H. H., Kamiya T., Nomura K., et al. Modeling of amorphous InGaZnO4thin film transistors and their subgap density of states[J]. Applied Physics Letters,2008,92(13):133503-133503-3
    [43] Chiang H. Q., Wager J. F., Hoffman R. L., et al. High mobility transparentthin-film transistors with amorphous zinc tin oxide channel layer[J]. AppliedPhysics Letters,2005,86(1):013503-013503-3
    [44] Huh M. S., Yang B. S., Oh S., et al. Improvement in the Performance of TinOxide Thin-Film Transistors by Alumina Doping[J]. Electrochemical andSolid-State Letters,2009,12(10): H385-H387
    [45] Fortunato E. M. C., Pereira L. M. N., Barquinha P. M. C., et al. High mobilityindium free amorphous oxide thin film transistors[J]. Applied Physics Letters,2008,92(22):222103
    [46] Wu C., Li X., Lu J., et al. Characterization of amorphous Si-Zn-Sn-O thin filmsand applications in thin-film transistors[J]. Applied Physics Letters,2013,103(8):082109
    [47] Rim Y. S., Kim D. L., Jeong W. H., et al. Effect of Zr addition on ZnSnOthin-film transistors using a solution process[J]. Applied Physics Letters,2010,97(23):233502
    [48] Jun T., Song K., Jung Y., et al. Bias stress stable aqueous solution derivedY-doped ZnO thin film transistors[J]. Journal of Materials Chemistry,2011,21(35):13524-13529
    [49] Kim W. S., Moon Y. K., Kim K. T., et al. Improvement in the negative biastemperature stability of ZnO based thin film transistors by Hf and Sn doping[J].Thin Solid Films,2011,519(20):6849-6852
    [50] Choi J. Y., Kim S. S., Lee S. Y., Effect of hafnium addition on Zn-Sn-O thin filmtransistors fabricated by solution process[J]. Applied Physics Letters,2012,100(2):022109
    [51] Cho D. H., Yang S., Byun C., et al. Transparent Al-Zn-Sn-O thin film transistorsprepared at low temperature[J]. Applied Physics Letters,2008,93(14):142111
    [52] Ku C. J., Duan Z., Reyes P. I., et al. Effects of Mg on the electrical characteristicsand thermal stability of MgxZn1-xO thin film transistors[J]. Applied PhysicsLetters,2011,98(12):123511-123511-3
    [53] Lim S. J., Kwon S., Kim H., et al. High performance thin film transistor with lowtemperature atomic layer deposition nitrogen-doped ZnO[J]. Applied PhysicsLetters,2007,91(18):183517
    [54] Yaglioglu B., Yeom H. Y., Beresford R., et al. High-mobility amorphousIn2O3-10wt%ZnO thin film transistors[J]. Applied physics letters,2006,89(6):062103
    [55] Fortunato E., Barquinha P., Pimentel A., et al. Amorphous IZO TTFTs withsaturation mobilities exceeding100cm2/Vs[J]. physica status solidi(RRL)-Rapid Research Letters,2007,1(1): R34-R36
    [56] Bong H., Lee W. H., Lee D. Y., et al. High-mobility low-temperature ZnOtransistors with low-voltage operation[J]. Applied Physics Letters,2010,96(19):192115
    [57] Chen A. H., Liang L. Y., Zhang H. Z., et al. Enhancement of a-IZO TTFTPerformance by Using Y2O3∕Al2O3Bilayer Dielectrics[J]. Electrochemical andSolid-State Letters,2011,14(2): H88-H92
    [58] Park J. C., Lee H. N., Im S., Self-Aligned Top-Gate Amorphous Indium ZincOxide Thin-Film Transistors Exceeding Low-Temperature Poly-Si TransistorPerformance[J]. ACS applied materials&interfaces,2013,5(15):6990-6995
    [59] Cross R. B. M., De Souza M. M., Investigating the stability of zinc oxide thinfilm transistors[J]. Applied physics letters,2006,89(26):263513
    [60] G rrn P., Ghaffari F., Riedl T., et al. Zinc tin oxide based driver for highlytransparent active matrix OLED displays[J]. Solid-State Electronics,2009,53(3):329-331
    [61] Lee J. M., Cho I. T., Lee J. H., et al. Bias-stress-induced stretched-exponentialtime dependence of threshold voltage shift in InGaZnO thin film transistors[J].Applied Physics Letters,2008,93(9):093504-093504-3
    [62] Kang D., Lim H., Kim C., et al. Amorphous gallium indium zinc oxide thin filmtransistors: Sensitive to oxygen molecules[J]. Applied physics letters,2007,90(19):192101
    [63] Nomura K., Kamiya T., Hirano M., et al. Origins of threshold voltage shifts inroom-temperature deposited and annealed a-In-Ga-Zn-O thin-film transistors[J].Applied Physics Letters,2009,95(1):013502-013502-3
    [64] Kamiya T., Nomura K., Hosono H., Origins of High Mobility and Low OperationVoltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport,Defects and Doping*[J]. Journal of display Technology,2009,5(12):468-483
    [65] Kim C. J., Kim S., Lee J. H., et al. Amorphous hafnium-indium-zinc oxidesemiconductor thin film transistors[J]. Applied Physics Letters,2009,95(25):252103
    [66] Ryu M. K., Yang S., Park S. H. K., et al. High performance thin film transistorwith cosputtered amorphous Zn-In-Sn-O channel: Combinatorial approach[J].Applied Physics Letters,2009,95(7):072104-072104-3
    [67] Kim G. H., Jeong W. H., Du Ahn B., et al. Investigation of the effects of Mgincorporation into InZnO for high-performance and high-stabilitysolution-processed thin film transistors[J]. Applied Physics Letters,2010,96(16):163506
    [68] Chong E., Chun Y. S., Lee S. Y., Amorphous silicon-indium-zinc oxidesemiconductor thin film transistors processed below150oC[J]. Applied PhysicsLetters,2010,97(10):102102
    [69] Park J. S., Kim K. S., Park Y. G., et al. Novel ZrInZnO Thin-film Transistor withExcellent Stability[J]. Advanced Materials,2009,21(3):329-333
    [70] Kim D. N., Kim D. L., Kim G. H., et al. The effect of La in InZnO systems forsolution-processed amorphous oxide thin-film transistors[J]. Applied PhysicsLetters,2010,97(19):192105-192105-3
    [71] Chong H. Y., Han K. W., No Y. S., et al. Effect of the Ti molar ratio on theelectrical characteristics of titanium-indium-zinc-oxide thin-film transistorsfabricated by using a solution process[J]. Applied Physics Letters,2011,99(16):161908
    [72] Park H. W., Kim B. K., Park J. S., et al. Device performance and bias instabilityof Ta doped InZnO thin film transistor as a function of process pressure[J].Applied Physics Letters,2013,102(10):102102
    [73] Raja J., Jang K., Balaji N., et al. Negative gate-bias temperature stability ofN-doped InGaZnO active-layer thin-film transistors[J]. Applied Physics Letters,2013,102(8):083505
    [74] Koo C. Y., Song K., Jung Y., et al. Enhanced Performance of Solution-ProcessedAmorphous LiYInZnO Thin-Film Transistors[J]. ACS applied materials&interfaces,2012,4(3):1456-1461
    [75] Kim J. I., Ji K. H., Jung H. Y., et al. Improvement in both mobility and biasstability of ZnSnO transistors by inserting ultra-thin InSnO layer at the gateinsulator/channel interface[J]. Applied Physics Letters,2011,99(12):122102
    [76] Wang S. L., Yu J. W., Yeh P. C., et al. High mobility thin film transistors withindium oxide/gallium oxide bi-layer structures[J]. Applied Physics Letters,2012,100(6):063506
    [77] Kim H. S., Park J. S., Jeong H. K., et al. Density of states-based design of metaloxide thin-film transistors for high mobility and superior photostability[J]. ACSapplied materials&interfaces,2012,4(10):5416-5421
    [78] Xu H., Lan L., Xu M., et al. High performance indium-zinc-oxide thin-filmtransistors fabricated with a back-channel-etch-technique[J]. Applied PhysicsLetters,2011,99(25):253501
    [79] Kim M., Jeong J. H., Lee H. J., et al. High mobility bottom gate InGaZnO thinfilm transistors with SiO x etch stopper[J]. Applied Physics Letters,2007,90(21):212114-212114-3
    [80] Park J. S., Kim T. S., Son K. S., et al. High-performance and stable transparentHf-In-Zn-O thin-film transistors with a double-etch-stopper layer[J]. ElectronDevice Letters, IEEE,2010,31(11):1248-1250
    [81] Park J., Song I., Kim S., et al. Self-aligned top-gate amorphous gallium indiumzinc oxide thin film transistors[J]. Applied Physics Letters,2008,93(5):053501-053501-3
    [82] Ahn B. D., Shin H. S., Kim H. J., et al. Comparison of the effects of Ar and H2plasmas on the performance of homojunctioned amorphous indium gallium zincoxide thin film transistors[J]. Applied Physics Letters,2008,93(20):203506-203506-3
    [83] Sato A., Abe K., Hayashi R., et al. Amorphous In-Ga-Zn-O coplanarhomojunction thin-film transistor[J]. Applied Physics Letters,2009,94(13):133502-133502-3
    [84] Kim S., Park J., Kim C., et al. Source/Drain Formation of Self-Aligned Top-GateAmorphous GaInZnO Thin-Film Transistors by Plasma Treatment[J]. ElectronDevice Letters, IEEE,2009,30(4):374-376
    [85] Chen R., Zhou W., Zhang M., et al. Self-Aligned Indium-Gallium-Zinc OxideThin-Film Transistor With Phosphorus-Doped Source/Drain Regions[J]. ElectronDevice Letters, IEEE,2012,33(8):1150-1152
    [86] Chen R., Zhou W., Zhang M., et al. Self-Aligned Indium-Gallium-Zinc OxideThin-Film Transistor With Source/Drain Regions Doped by Implanted Arsenic[J].Electron Device Letters, IEEE,2013,34(1):60-62
    [87] Morosawa N., Ohshima Y., Morooka M., et al. Self-Aligned Top-Gate OxideThin-Film Transistor Formed by Aluminum Reaction Method[J]. JapaneseJournal of Applied Physics,2011,50(9):6502
    [88] Nakata M., Tsuji H., Fujisaki Y., et al. Fabrication method for self-alignedbottom-gate oxide thin-film transistors by utilizing backside excimer-laserirradiation through substrate[J]. Applied Physics Letters,2013,103(14):142111
    [89] Kwon J. Y., Son K. S., Jung J. S., et al. Bottom-gate gallium indium zinc oxidethin-film transistor array for high-resolution AMOLED display[J]. ElectronDevice Letters, IEEE,2008,29(12):1309-1311
    [90] Luo D., Lan L., Xu M., et al. High reliability amorphous oxide semiconductorthin-film transistors gated by buried thick aluminum[J]. physica status solidi(RRL)-Rapid Research Letters,2012,6(9‐10):403-405
    [91]尼曼(Neamen, D.A)著;赵毅强等译.半导体物理与器件[M].第三版.北京:电子工业出版社,2010:339-350
    [92] Choi H. S., Jeon S., Kim H., et al. Influence of Hf contents on interface stateproperties in a-HfInZnO thin-film transistors with SiNx/SiOxgate dielectrics[J].Applied Physics Letters,2011,99(18):183502
    [93]梁敬魁编著.粉末衍射法测定晶体结构(上、下册)[M].北京:科学出版社,2003:96-100
    [94]周清编著.电子能谱学[M].南开大学出版社,1995:198-210
    [95] Hall E. H. On a new action of the magnet on electric currents[J]. AmericanJournal of Mathematics,1879,2(3):287-292
    [96] Chen W. T., Lo S. Y., Kao S. C., et al. Oxygen-dependent instability andannealing/passivation effects in amorphous In-Ga-Zn-O thin-film transistors[J].Electron Device Letters, IEEE,2011,32(11):1552-1554
    [97] Yun M. G., Kim S. H., Ahn C. H., et al. Effects of channel thickness on electricalproperties and stability of zinc tin oxide thin-film transistors[J]. Journal ofPhysics D: Applied Physics,2013,46(47):475106
    [98] Barquinha P., Pereira L., Goncalves G., et al. Toward high-performanceamorphous GIZO TFTs[J]. Journal of the Electrochemical Society,2009,156(3):H161-H168
    [99] Lee S., Bierig B., Paine D. C., Amorphous structure and electrical performanceof low-temperature annealed amorphous indium zinc oxide transparent thin filmtransistors[J]. Thin Solid Films,2012,520(10):3764-3768
    [100] Li M., Lan L., Xu M., et al. Gate bias stress stability under light irradiation forindium zinc oxide thin-film transistors based on anodic aluminium oxide gatedielectrics[J]. Journal of Physics D: Applied Physics,2011,44(45):455102.
    [101] Hwang S. S., Jung S. Y., Joo Y. C., The electric field dependence of Cumigration induced dielectric failure in interlayer dielectric for integratedcircuits[J]. Journal of applied physics,2007,101(7):074501.
    [102] Luo D., Lan L., Xu M., et al. Role of rare earth ions in anodic gate dielectricsfor indium-zinc-oxide thin-film transistors[J]. Journal of The ElectrochemicalSociety,2012,159(5): H502-H506
    [103] Kiani A., Hasko D. G., Milne W. I., et al. Analysis of amorphousindium-gallium-zinc-oxide thin-film transistor contact metal usingPilling-Bedworth theory and a variable capacitance diode model[J]. AppliedPhysics Letters,2013,102(15):152102
    [104] Lan L., Xu M., Peng J., et al. Influence of source and drain contacts on theproperties of the indium-zinc oxide thin-film transistors based on anodicaluminum oxide gate dielectrics[J]. Journal of Applied Physics,2011,110(10):103703
    [105] Kamiya T., Nomura K., Hosono H., Present status of amorphous In-Ga-Zn-Othin-film transistors[J]. Science and Technology of Advanced Materials,2010,11(4):044305
    [106] Kim H., Kim K. K., Lee S. N., et al. Low resistance Ti/Au contacts toamorphous gallium indium zinc oxides[J]. Applied Physics Letters,2011,98(11):112107
    [107] Hosono H., Ionic amorphous oxide semiconductors: Material design, carriertransport, and device application[J]. Journal of Non-Crystalline Solids,2006,352(9):851-858
    [108] Ryu B, Noh H. K., Choi E. A., et al. O-vacancy as the origin of negative biasillumination stress instability in amorphous In-Ga-Zn-O thin film transistors[J].Applied physics letters,2010,97(2):022108-022108-3
    [109] Lee, S. H., Seo,B. H. and J. H. Seo, Wet Etching of a Gallium Indium ZincOxide Semiconductor for Thin-Film Transistor Application[J]. J. Korean Phys.Soc.,2008,53,2603-2607
    [110] zgür ü, Alivov Y. I, Liu C., et al. A comprehensive review of ZnO materialsand devices[J]. Journal of applied physics,2005,98(4):041301
    [111] Kwon J. Y., Son K. S., Jung J. S., et al. Bottom-gate gallium indium zinc oxidethin-film transistor array for high-resolution AMOLED display[J]. ElectronDevice Letters, IEEE,2008,29(12):1309-1311
    [112] Kwon J. Y., Lee D. J., Kim K. B., Review paper: Transparent amorphous oxidesemiconductor thin film transistor[J]. Electronic Materials Letters,2011,7(1):1-11
    [113] Kwon J. Y., Son K. S., Jung J. S., et al. The impact of device configuration onthe photon-enhanced negative bias thermal instability of GaInZnO thin filmtransistors[J]. Electrochemical and Solid-State Letters,2010,13(6): H213-H215
    [114] Jeong J. K., Jeong J. H., Choi J. H., et al.3.1: Distinguished Paper:12.1-InchWXGA AMOLED Display Driven by Indium-Gallium-Zinc-Oxide TFTsArray[C]//SID Symposium Digest of Technical Papers. Blackwell Publishing Ltd,2008,39(1):1-4
    [115] Kim M., Jeong J. H., Lee H. J., et al. High mobility bottom gate InGaZnO thinfilm transistors with SiOxetch stopper[J]. Applied Physics Letters,2007,90(21):212114-212114-3
    [116] Arai T., Morosawa N., Tokunaga K., et al.69.2: Highly ReliableOxide‐Semiconductor TFT for AM-OLED Display[C]//SID Symposium Digestof Technical Papers. Blackwell Publishing Ltd,2010,41(1):1033-1036
    [117] Mo Y. G., Kim M., Kang C. K., et al.69.3: Amorphous oxide TFT backplane forlarge size AMOLED TVs[C]//SID symposium digest of technical papers.Blackwell Publishing Ltd,2010,41(1):1037-1040
    [118] Kimura M., Nakanishi T., Nomura K., et al. Trap densities inamorphous-InGaZnO4thin-film transistors[J]. Applied Physics Letters,2008,92(13):133512
    [119] Kang D., Lim H., Kim C., et al. Amorphous gallium indium zinc oxide thin filmtransistors: Sensitive to oxygen molecules[J]. Applied physics letters,2007,90(19):192101
    [120] Seo H. S., Bae J. U., Kim D. H., et al. Reliable Bottom Gate AmorphousIndium-Gallium-Zinc Oxide Thin-Film Transistors with TiOxPassivationLayer[J]. Electrochemical and Solid-State Letters,2009,12(9): H348-H351
    [121] Laux S. E., Accuracy of an effective channel length/external resistanceextraction algorithm for MOSFET's[J]. Electron Devices, IEEE Transactions on,1984,31(9):1245-1251
    [122] Park J. S., Kim T. W., Stryakhilev D., et al. Flexible full color organiclight-emitting diode display on polyimide plastic substrate driven by amorphousindium gallium zinc oxide thin-film transistors[J]. Applied Physics Letters,2009,95(1):013503-013503-3
    [123] Jeong J. K., The status and perspectives of metal oxide thin-film transistors foractive matrix flexible displays[J]. Semiconductor Science and Technology,2011,26(3):034008
    [124] Ito M., Kon M., Miyazaki C., et al. Amorphous oxide TFT and theirapplications in electrophoretic displays[J]. physica status solidi (a),2008,205(8):1885-1894
    [125] Lee H. N., Kyung J., Sung M. C., et al. Oxide TFT with multilayer gateinsulator for backplane of AMOLED device[J]. Journal of the Society forInformation Display,2008,16(2):265-272
    [126] Kim Y. H., Heo J. S., Kim T. H., et al. Flexible metal-oxide devices made byroom-temperature photochemical activation of sol-gel films[J]. Nature,2012,489(7414):128-132
    [127] Kim M. G., Kanatzidis M. G., Facchetti A., et al. Low-temperature fabricationof high-performance metal oxide thin-film electronics via combustionprocessing[J]. Nature materials,2011,10(5):382-388
    [128] Kamiya T., Hiramatsu H., Nomura K., et al. Device applications of transparentoxide semiconductors: Excitonic blue LED and transparent flexible TFT[J].Journal of electroceramics,2006,17(2-4):267-275
    [129] Chien C. W., Wu C. H., Tsai Y. T., et al. High-performance flexible a-IGZOTFTs adopting stacked electrodes and transparent polyimide-basednanocomposite substrates[J]. Electron Devices, IEEE Transactions on,2011,58(5):1440-1446
    [130] Yang S., Bak J. Y., Yoon S. M., et al. Low-temperature processed flexibleIn-Ga-Zn-O thin-film transistors exhibiting high electrical performance[J].Electron Device Letters, IEEE,2011,32(12):1692-1694
    [131] Kim H., Lee Y., Ra Y., et al. Low temperature silicon nitride deposition byinductively coupled plasma CVD for GaAs applications[J]. ECS Transactions,2007,6(3):531-547
    [132] Li F. M., Bayer B. C., Hofmann S., et al. High-k (k=30) amorphous hafniumoxide films from high rate room temperature deposition[J]. Applied PhysicsLetters,2011,98(25):252903
    [133] Chen F. H., Her J. L., Mondal S., et al. Impact of Ti doping in Sm2O3dielectricon electrical characteristics of a-InGaZnO thin-film transistors[J]. AppliedPhysics Letters,2013,102(19):193515
    [134] Huang H. Y., Wang S. J., Wu C. H., et al. Low driving voltage amorphousIn-Ga-Zn-O thin film transistors with small subthreshold swing using high-κHf-Si-O dielectrics[J]. Applied Physics Express,2010,3(12):121501
    [135] Barquinha P., Pereira L., Gon alves G., et al. Low-temperature sputteredmixtures of high-κ and high bandgap dielectrics for GIZO TFTs[J]. Journal of theSociety for Information Display,2010,18(10):762-772
    [136] Carcia P. F., McLean R. S., Reilly M. H., High-performance ZnO thin-filmtransistors on gate dielectrics grown by atomic layer deposition[J]. Appliedphysics letters,2006,88(12):123509-123509-3
    [137] Kim D., Kang H., Kim J. M., et al. The properties of plasma-enhanced atomiclayer deposition (ALD) ZnO thin films and comparison with thermal ALD[J].Applied Surface Science,2011,257(8):3776-3779
    [138]徐华;兰林锋;李民等,源漏电极的制备对氧化物薄膜晶体管性能的影响[J].物理学报,2014,63(3),038501-038501-6
    [139] Li M., Lan L., Xu M., et al. Impact of Deposition Temperature of the SiliconOxide Passivation on the Performance of Indium Zinc Oxide Thin-FilmTransistors[J]. Japanese Journal of Applied Physics,2012,51(7R):076501
    [140] Lan L., Peng J., High-performance indium-gallium-zinc oxide thin-filmtransistors based on anodic aluminum oxide[J]. Electron Devices, IEEETransactions on,2011,58(5):1452-1455
    [141] Woo C. H., Ahn C. H., Kwon Y. H., et al. Transparent and flexible oxidethin-film-transistors using an aluminum oxide gate insulator grown at lowtemperature by atomic layer deposition[J]. Metals and Materials International,2012,18(6):1055-1060
    [142] Hsu H. H., Chang C. Y., Cheng C. H., A Flexible IGZO Thin-Film TransistorWith Stacked TiO2Based Dielectrics Fabricated at Room Temperature[J].Electron Device Letters, IEEE,2013,34(6):768-770
    [143] Gleskova H., Wagner S., Suo Z., Failure resistance of amorphous silicontransistors under extreme in-plane strain[J]. Applied Physics Letters,1999,75(19):3011-3013
    [144] Jen S. H., Bertrand J. A., George S. M., Critical tensile and compressive strainsfor cracking of Al2O3films grown by atomic layer deposition[J]. Journal ofApplied Physics,2011,109(8):084305
    [145] Chen Z., Cotterell B., Wang W., et al. A mechanical assessment of flexibleoptoelectronic devices[J]. Thin Solid Films,2001,394(1):201-205
    [146] Gleskova H., Cheng I. C., Wagner S., et al. Mechanics of thin-film transistorsand solar cells on flexible substrates[J]. Solar Energy,2006,80(6):687-693
    [147] Baedeker K. über die elektrische Leitf higkeit und die thermoelektrische Krafteiniger Schwermetallverbindungen[J]. Annalen der Physik,1907,327(4):749-766
    [148] Minami T., Sato H., Nanto H., et al. Heat treatment in hydrogen gas and plasmafor transparent conducting oxide films such as ZnO, SnO2and indium tinoxide[J]. Thin Solid Films,1989,176(2):277-282
    [149] Minami T., Sonohara H., Kakumu T., et al. Physics of very thin ITO conductingfilms with high transparency prepared by DC magnetron sputtering[J]. ThinSolid Films,1995,270(1):37-42
    [150] Xu H., Luo D., Li M., et al. A flexible AMOLED display on the PEN substratedriven by oxide thin-film transistors using anodized aluminium oxide asdielectric[J]. Journal of Materials Chemistry C,2014,2(7):1255-1259
    [151] Xu H., Lan L., Xu M., et al. Low-roughness and easily-etched transparentconducting oxides with a stack structure of ITO and IZO[J]. ECS Journal ofSolid State Science and Technology,2013,2(11): R245-R248
    [152] Grigonis A., Knizikevi ius R., Tribandis D., Formation of polymeric layerduring silicon etching in CF2Cl2plasma[J]. Vacuum,2003,70(2):319-322
    [153] Granqvist C. G., Hult ker A., Transparent and conducting ITO films: newdevelopments and applications[J]. Thin Solid Films,2002,411(1):1-5
    [154] Cruz L. R., Legnani C., Matoso I. G., et al. Influence of pressure and annealingon the microstructural and electro-optical properties of RF magnetron sputteredITO thin films[J]. Materials research bulletin,2004,39(7):993-1003
    [155] Kulkarni A. K., Lim T., Khan M., et al. Electrical, optical, and structuralproperties of indium-tin-oxide thin films deposited on polyethylene terephthalatesubstrates by rf sputtering[J]. Journal of Vacuum Science&Technology A,1998,16(3):1636-1640
    [156] Kim J. S., Bae J. W., Kim H. J., et al. Effects of oxygen radical on the propertiesof indium tin oxide thin films deposited at room temperature by oxygen ion beamassisted evaporation[J]. Thin solid films,2000,377:103-108
    [157] Kim H., Horwitz J. S., Kushto G., et al. Effect of film thickness on theproperties of indium tin oxide thin films[J]. Journal of Applied Physics,2000,88(10):6021-6025
    [158] Jung Y. S., Lee S. S., Development of indium tin oxide film texture during DCmagnetron sputtering deposition[J]. Journal of crystal growth,2003,259(4):343-351
    [159] Tsai T. H., Wu Y. F., Organic acid mixing to improve ITO film etching in flatpanel display manufacturing[J]. Journal of the Electrochemical Society,2006,153(1): C86-C90
    [160] Nishimura E., Ohkawa H., Song P. K., et al. Microstructures of ITO filmsdeposited by dc magnetron sputtering with H2O introduction[J]. Thin Solid Films,2003,445(2):235-240
    [161] Milliron D. J., Hill I. G., Shen C., et al. Surface oxidation activates indium tinoxide for hole injection[J]. Journal of Applied Physics,2000,87(1):572-576
    [162] Haacke G., New figure of merit for transparent conductors[J]. Journal ofApplied Physics,2008,47(9):4086-4089

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700