纳米硅在SIMOX材料抗辐照加固中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SOI材料以及SOI器件及有良好的抗单粒子效应和瞬间辐射的能力,但绝缘埋层的存在使得其抗总剂量能力受到限制。在埋层中注入硅离子被认为是一种有效的材料加固方法,这与注入产生的纳米晶硅电子陷阱有关。本文主要研究了离子注入形成的纳米硅在SIMOX材料抗辐照加固中的应用,主要包括两部分内容,一是在SIMOX材料中注入了一定剂量和能量的硅离子并退火,并用MOS器件(包括各种不同的栅结构)和pseudo-MOS两种方法研究了其总剂量辐照效应,并用MEDICI模拟了辐照偏置依赖关系。二是注入硅离子的热氧化物的物理研究,主要研究了纳米硅晶的形成、注入后氧化物的结构、缺陷与注入、退火参数的关系。
     研究了在经过硅离子注入加固SIMOX晶片上流片得到的、具有环栅、H型栅、条形栅等不同栅结构的部分耗尽NMOSFET/SIMOX器件,在三种不同偏置下的总剂量辐照效应。实验发现,加固器件的背栅阈值电压漂移和漏电流都比未加固的对比样品大为减小,特别是环栅和H型栅,加固效应非常明显。用亚阈电荷分离技术得到了辐照过程中氧化物固定电荷和界面态的变化量及其对阈值电压漂移的贡献,表明加固器件主要是通过减小辐照过程中氧化物净正电荷积累来抑制阈值电压负漂的。还利用Pseudo-MOS的方法研究了SIMOX材料的总剂量辐射效应,这种方法简便易行,证实了硅离子注入能降低辐照引起的阈值电压漂移以及氧化物电荷和界面态增加,提高材料的抗总剂量辐照能力。MEDICI模拟结果证实了背沟道阈值电压漂移与辐照的偏置状态有关。PG偏置是背栅的最劣偏置。
     研究了热氧化物中注入硅离子后的光致发光谱(PL)、X射线光电子能谱(XPS)、傅立叶红外谱(FTIR)和电子自旋共振谱(ESE)。PL谱研究验证了硅纳米团簇的存在,并证实了这一结构的形成是由于化学变化而非物理损伤引起,且纳米晶的尺寸随着注入剂量的增大而增大。硅纳米团簇能俘获电子,补偿辐照引起的氧化物中的正电荷积累,从而减小SOI器件的背栅阈值电压漂移。XPS研究得到了与硅的不同氧化态对应的化学结构随硅离子注入剂量、退火温度和退火时间的变化。研究表明增大注入剂量将提高纳米硅晶的含量。1000℃和1h的退火情况纳米硅晶的含量最大。FTIR谱研究表明增大注入剂量将导致SiO_2结构的减少,伸展频率的红移可以解释为注入Si原子取代O原子导致了O-Si-O键角的窄化以及Si-Si键的形成。ESR研究确定了不同注入能量和剂量样品的g因子和悬挂键密度,证实了经过退火的纳米Si-SiO_2体系的主要缺陷是P_b中心,即位于Si-SiO_2界面处的Si悬键。
Si implantation have been proved to be an effective method to harden the buriedoxide of SOl materials, which limits the application of SOI devices in total-doseenvironment. Si implantation will produce Si nanocystals which can be electron trapsduring the irradiation. My research is focused on the application of Si nanocrystals inthe irradiation hardening of SIMOX materials, which can be devided into two mainparts. One is the total-dose irradiation effect of MOSFET and pseudo-MOS structureon Si-implanted SIMOX, with MEDICI simulation to verify the bias dependence. Theother part is the physical research of Si-implanted thermal oxide to understand theformation of Si nanocrystals and implantation-induced defects, and their relation withimplantation and annealing conditions.
     Ⅰ-Ⅴcharacteristics of partially-depleted NMOSFETs with various gate structuresfabricated on SIMOX which is hardened by silicon ions implantation were studiedunder total-dose irradiation of three bias conditions. It has been found experimentallythat back gate threshold shift and leakage current was greatly reduced during irradiationfor hardened transistors, comparing to NMOSFETs fabricated on unimplanted wafers,especially for the enclosed gate and H gate structure. Subthreshold charge separationtechnique is employed to estimate the buildup of oxide charge and interface trapsduring irradiation, showing that the reduced⊿V_(th) for NMOSFET/SIMOX (implanted)is mainly due to the much less buildup of oxide charge than NMOSFET/SIMOX(unimplanted). The total-dose irradiation effect of SIMOX pseudo-MOS structuresare also investigated. This easy and convenient method testified that Si-implantationcan significantly decrease the irradiation-induced⊿V_(th) and the buildup of oxide charge and interface traps. MEDICI simulation confirmed that⊿V_(th) is relevant to the bias stateand PG is the wprst bias condition.
     We also studied the photoluminescence (PL), X-ray Photoelectro-Spectroscopy(XPS), Fourier Transform Infra-Red (FTIR) and Electron Spin Resonance(ESR) of Sinanocrystals embedded in thermal oxide implanted with Si. PL analysis proved theexistence of Si nanocrystals and demonstrated the effect of Si implantation dose, energyand the annealing time on the growth of Si nanocrystals and its emission intensity. Thesize of Si nanocrystals and the PL intensity increase with the Si implantation dose. Thenanocrystals can trap electrons to compensate the positive charge buildup in the buriedoxide during irradiation, thus reduce the threshold voltage negative shift. The XPSresults clearly show the evolution of various chemical structures and the formation of Sinanocrystals in the oxide of our samples. It is found that the concentration of Sinanocrystals increases with Si implantation dose. The 1h annealing at 1000℃willproduce the most Si nanocrystals among all the annealing conditions. FTIRmeasurement showed that the absorption intensity decreases with the Si implantationdose, indicating that increasing the Si implantation dose leads to the reduction of theSiO_2 structure. It is also found that the redshift of stretching frequency of the Si-O bond,which could be interpreted as the narrowing of the O-Si-O bond angle as a result of thereplacement of O atoms by the implanted Si atoms and the formation of Si-Si bonds.ESR research determined the g factors and the density of suspending bonds of samplesimplanted with different energy or dose. It proved that existence of P_b center, i. e., Sisuspending bonds located in the Si-SiO_2 interface.
引文
[1] J.R.Schwank, V.Ferlet-Cavrois, M.R.Shaneyfelt, P.Paillet and P.E.Dodd, Radiation effect in SOI technology, IEEE Transactions of nuclear science, 1999 (46) : 1817-1823
    [2] Thomas Romanko and Brian Clegg, SOI eases radiation-hardened AS1C designs, http://www.eetimes.com/showArticle.jhtml?articlelD=165700727&pgno=2, July, 2005
    [3] J. B. Kuo and S. C. Lin, Low-Voltage SOI CMOS VLSI Devices and Circuits, New York:Wiley, 2001:
    [4] R. C. Hughes, E. P. EerNisse, and H. J. Stein, Hole Transport in MOS Oxides, IEEE Transactions on Nuclear Science, 1975(22): 2227-2234
    [5] R. C. Hughes, Time-Resolved Hole Transport in a-SiO_2, Physical Review B, 1977(15):2012-2020.
    [6] J.P.Colinge, Silicon-on-insulator Techonology from Materials to VLSI, Boston: Kluwer Academic Pub., 1991:164-165
    [7] G.C. Messenger and M.S. Ash, The Effects of Radiation on Electronic Systems, New York: Van Nostrand Reinhold Company, 1986:243-245
    [8] J.L. Leray, E.Dupont-Nivert, O.Musseau, Y.M.Coyc, A.Umbert, P.Lalande, J.E Pere, A.J. Auberton-Herve, M.Bruel, C.Jaussaud, J.Margail, B.Giffard, R.Truche, and F.Martin, From substrate to VLSI: investigation of hardened SIMOX without epitaxy, for dose, dose rate and SEU phenomena, IEEE Transaction On Nuclear Science, 1988(35): 1355-1360
    [9] A.C. Ipri, L.Jastrzebski, and D.Peters, The. effect of heavy metal contamination in SIMOX. on.radiation hardness of MOS transistors, IEEE Electron Device Letters, 1989(10): 571-573
    [10] O.Flament, A.Torres and V.Ferlet-Cavrois, Bias dependence of FD transistor response to tatal dose irradiation, IEEE Transactions of nuclear science, 2003 (50) : 2316-2321
    [11] J.A.Felix, J.R.Schwank, C.R.Cirba, et al., Influence of total-dose radiation on the electrical characteristics of SOI MOSFETs, Microelectronic Engineering, 2004(72): 332-341
    [12] S.Y.Liu, S.Bslster, S.Sinha and W.C.Jenkins, Worst case total dose radiation response of 0.35 μm SOI bCMOSFETs, IEEE Transactions of nuclear science, 1999(46): 1817-1823
    [13] R.E.Stahlbush, H.L.Huges and W.A.Krull, Reduction of charge trapping and electron tunneling in SIMOX supplemental implantation of oxygen, IEEE Transactions of nuclear science, 1993(40):1740-1747
    [14] B.Y.Mao, C.E.Chen, G.Pollack, H.L.Huges and G.E.Davis, Total dose hardening of buried insulator in implanted silicon-on-insulator structures, IEEE Transactions of nuclear science,1987(34):1692-1697
    [15] http://www.ssec.honeywell.com:/aerospace/radhard/mcm.html http://www.ssec.honeywell.com/aerospace/radhard/asic.html
    [16] B.Dance, Semiconductor International, November 1994:83-85
    [17] http://www.sandia.gov/ASIC/apps/annReport04_05Ir.pdf
    [18] 林成鲁,张正选,刘卫丽,SOI材料和器件及其应用的新进展,核技术,2003(26):658-663
    [19] E.X. Zhang, C. Qian, Z.X. Zhang, Improvement of total-dose irradiation hardness of silicon-on-insulator materials by modifying the buried oxide layer with ion implantation, Chinese Physics, 2006(15): 792-797
    [20] 张恩霞,钱聪,张正选,王曦等,注氮工艺对SOI材料抗辐照性能的影响,半导体学报,2005(26):1269-1272
    [21] 李宁,张国强,刘忠立等,部分耗尽型注氟SIMOX器件的电离辐射效应,半导体学报,2005(26):349-353
    [22] Z.S. Zheng, Z.L. Liu, GQ. Zhang, et al., Effect of the technology of implanting nitrogen into buried oxide on the radiation hardness of the top gate oxide for partially depleted SOI PMOSFET,Chinese Physics, 2005(14): 565-570
    [23] Z.Q. Xiao, G.S. Hong, B. Zhang, Z.L. Liu, Total Dose Radiation-Hard 0.8μm SOI CMOS Transistors and ASIC, Chinese Journal of Semiconductors, 2006(27): 1750-1754
    [24] 赵洪辰、海潮和、韩郑生、钱鹤,抗辐照H型栅PD SOI NMOSFETs,功能材料与器件学报,2005(11):71-74
    [25] Harold Hughes, Patrick MaMarr, Rediation Hardening of SOI by Ion Implantation to the Buried Oxide Layer, US Patent 5,795,813, Aug 18,1998
    [26] C.J.Nicklaw, M.P.Pagey, et al., Defects and Nanocrystals Generated by Si Implantation into a-SiO_2, IEEE Transactions on Nuclear Science, 2000 (47): 2269-2275
    [27] S.Karna, H. Kurtz, et al. , New Fundamental Defects in a-SiO_2 , IEEE Transactions on Nuclear Science, 1999(46): 1544-1552
    [28] R. Kalyanaraman, T.E. Haynes, O.W. Holland, and G.H. Gilmer, Character of Defects at an Ion-irradiated Buried Thin-film Interface , Applied Physics Letters , 2002 (91): 6325- 6332
    
    [29] R.Kalyanaraman , T. E. Haynes, et al. , Quantitative Evolution of Vacancy-type Defects in High-energy Ion-implanted Si: Au Labeling and the Vacancy Implanter , Nuclear Instruments and Methods in Physics Research B, 2001(175): 182-186
    
    [30] R.Kalyanaraman , T. E. Haynes, et al., Binding Energy of Vacancies to Clusters Formed in Si by High-energy Ion Implantation , Applied Physics Letters, 2001 (79): 1983-1985
    
    [31] Elizabeth A. Boer , Synthesis , Passivation and Charging of Silicon Nanocrystals , Thesis for the Degree of Doctor of Philosophy , California Institute of Technology , Jan 26 , 2001
    
    [32] C.J.Mrstik , H.L.Hughes , etc., Hole and Electron Trapping in Ion Implanted Thermal Oxides and SIMOX , IEEE Transactions on Nuclear Science , 2000,47(6): 2189-2195
    
    [33] E.Harari, B.S. H.Royce , Oxide Charge Trapping Induced by Ion Implantation in SiO_2, IEEE Transactions on Nuclear Science , 1973, 20: 288
    
    [34] J. F. Conley , P. M. Lenahan , etc. , Evidence for a Deep Electron Trap and Charge Compensation in SIMOX Oxides , IEEE Transactions on Nuclear Science , 1992, 39: 2114-2120
    
    [35] C.J.Mrstik , H.L.Hughes , etc. , The Role of Nanoclusters in Reducing Hole Trapping in Ion Implanted Oxides , IEEE Transactions on Nuclear Science , 2003, 50(6): 1947-1953
    
    [36] B. J. Mrstik , H. L.Hughes , etc., Electron and Hole Trapping in Thermal Oxides That Have Been Ion Implanted , Microelectronic Engineering , 2001, 59: 285-289
    
    [37] V. Lakshmanna , A. S. Vengurlekar , etc. , Contrasts in Electron and Hole Trapping Phenomena in Pyrogenic Oxides Grown with Different H_2O Partial Pressures on Si , Journal of Applied Physics , 1987, 62: 2337-2341
    
    [38] V. V. Afanas'ev , A. Stesmans , etc. , Photoionization of Silicon Particles in SiO_2 , Physics Review , 1999, B59(3): 2025-2034
    
    [39] V. V. Afanas'ev , A. Stesmans , etc. , Structural Inhomogeneity and Silicon Enrichment of Buried SiO_2 Layers Fromed by Oxygen Ion Implantation in Silicon , Journal of Applied Physics ,1997, 82(5): 2184-2199
    
    [40] D. R. Young , D. J. DiMaria , etc., The Electron Trapping Behaviour of Silicon Dioxide with Ion Implanted Aluminum , Journal of Electronic Materials , 1997(6): 569-579
    
    [41] P. M. Lenahan and P. V. Dressendorfer , Hole Traps and Trivalent Silicon Centers in Metal/Oxide/Silicon Devices , Journal of Applied Physics, 1984(55): 3495-3499
    [42] H. Neitzert , M. Offenberg , et al., Hole Capture in SiO_2 Films after Ion Implantation,Applied Surface Science, 1987(30): 272-277
    [43] J.R.Schwank, D.M.Fleetwood, et al. , Generation of Metastable Electron Traps in the Near Interfacial Region of SOI Buried Oxides by Ion Implantation and Their Effect on Device Properties, Microelectronic Engineering, 2004(72): 362-366
    [44] D.N.Kouvatsos, et al., Charging Effects in Silicon Nanocrystals Embedded in SiO_2 Films,Materials Science and Engineeringm B, 2003 (101 ): 270-274
    [45] 唐文浩,刘之景等,纳米晶存储特性的研究,半导体技术,2004(10):15-19
    [46] Tsutomu Shimizu-lwayama, Norihiro Kurumado, et al., Optical properties of silicon nanoclusters fabricated by ion implantation, Journal of Appied Physics, 1998 (83): 6018-6022
    [47] B.Garrido, M.Lopez, O.Gonzalez, et al., Correlation between structural and optical properties of Si nanocrystald embedded in SiO_2: The mechanism of visible light emission, Applied Physics Letters, 2000 (77) : 3143-3145
    [48] D. Kovalev, H. Heckler, G. Polisski, F. Koch, Optical Properties of Si Nanocrystals, physica status solidi(b),1999(215):871-932
    [49] B. Garrido Fernandez, M. Lopez, C. Garcia, et al., Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in SiO_2 , Journal of Applied Physics, 2002, (91): 798-807
    [50] M. V. Rama Krishna and R. A. Friesner, Quantum confinement effects in semiconductor clusters, The Journal of Chemical Physics, 1991 (95): 8309-8322
    [51] Sun Baoquanl, Xu Yonglan, Yi Guangshun, Chen Depu, Photoluminescence Properties of Semiconductor Nanocrystals and Their Applications in Biological Fluorescent Probes, Chinese Journal of Analytical Chemistry, 2002(30): 1130-1136
    [52] V. loannou-Sougleridis, B. Kamenev, et al., Influence of a high electric field on the photoluminescence from silicon nanocrystals in SiO_2, Materials Science and Engineering, 2003,B101:324-328
    [53] P. Photopoulos, A. G. Nassiopoulou, D. N. Kouvatsos, et al. , Photoluminescence from nanocrystalline silicon in Si/SiO_2 superlattices, Applied Physics Letters, 2000 (76): 3588-3590
    [54] P. Photopoulos and A.G. Nassiopoulou, Room- and low-temperature voltage tunable electroluminescence from a single layer of silicon quantum dots in between two thin SiO_2 layers, Applied Physics Letters, 2000 (77): 1816-1818
    
    [55] B. J. Mrstik and H. L. Hughes, Hole and electron trapping in ion implanted thermal oxides and SIMOX, IEEE Transactions on Nuclear Science,, 2000, (47): 2189-2195
    [56] J. F. Ziegler and J. P. Biersack, SR1M 2003 Program
    
    [57] C. J. Nicklaw, M. P. Pagey, S. T. Pantelides, et al., IEEE Transactions on Nuclear Science,2000, (47):2269-2275
    
    [58] Tsutomu Shimizu-lwayama, Norihiro Kurumado, et al., Optical properties of silicon nanoclusters fabricated by ion implantation Journal of Applied Physics, 1998(83): 6018-6022
    
    [59] 1. Y. Liu, T. P. chen, Y.Q. Fu, M.S. Tse, J.H. Hsieh, P.F. Ho and Y.C. Liu, J. Phys. D: Applied.Phys., 36, p.97 (2003)
    
    [60] Y-H Kim, M. S. Hwang , H. J. Kim, J. Y. Kim and Y. Lee, Infrared spectroscopy study of low-dielectric-constant fluorine-incorporated and carbon-incorporated silicon oxide films, Journal of Applied Physics, 2001(90): 3367-3370
    
    [61] G. Lucovsky , M. J. Manitini, J. K. Srivastava and E. A. Irene, Low-temperature growth of silicon dioxide films: A study of chemical bonding, by ellipsometry and infrared spectroscopy Journal of Vacuum Science and Technology 1987(B5): 530-537
    
    [62] T. Ajioka and S. Ushio, Characterization. of the implantation. damage in SiO_2 with X-ray photoelectron. Spectroscopy, Applied Physics Letters, 1986 (48): 1398-1399
    
    [63] F. Iacona, S. Lombardo and S. U. Campisano, Characterization by x-ray photoelectron spectroscopy of the chemical structure of semi-insulating polycrystalline silicon thin films, Journal of Vacuum Science and Technology, 1996(B14): 2693-2700
    
    [64] S. Iwata and A. Ishizaka, A. Electron spectroscopic analysis of the SiO2/Si system and correlation with metal-oxide-semiconductor device characteristics, Journal of Applied Physics,Journal of Applied Physics, 1996(79): 6653 -6713
    
    [65] F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff and G. Hollinger, Microscopic structure of the SiO2/Si interface, Physics Review, 1988(B38): 6084-6096
    
    [66] P. J. Grunthaner, M. H. Hechi, F. J. Grunthaner and N. M. Johnson, The localization and crystallographic dependence of Si suboxide species at the SiO_2/Si interface, Journal of Applied Physics, 1987(61): 629-638
    [67] M. L. Green, E. E Ousev, R. Degraeve and E. L. Garfunkel, Ultrathin (<4nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure and physical and electrical limits, Journal of Applied Physics, 2001(90): 2057-2060
    [68] M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt and J. Blasing, Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO_2 superlattice approach, Applied Physics Letters, 2002(80):661-663
    [69] B. J. Hinds, F. Wang, D. M. Wolfe, C. L. Hinkle and G. Lucovsky, Investioation of postoxidation thermal treatments of Si/SiO2 interface in relationship to the kinetics of amorphous Si suboxide decomposition, Journal of Vacuum Science and Technology, 1998(B16):2171-2176
    [70] 赖祖武,包宗明,宋钦岐,王长河,黄建明,抗辐射电子学——辐射效应及加固原理,北京:国防工业出版社,1998:48-50
    [71] M. Chen, H. W. Luo, Z. X. Zhang, E. X. Zhang, H. Yang, H. Tian, R. Wang, W. J. Yu, et al., lonizing Dose Response for Thermal Oxides Implanted with Si~+ Ions, Chinese Physics Letters,2007, to be published
    [72] J.R. Schwank, D.M. Fleetwood, H.D. Xiong, M.R. Shaneyfelt, B.L. Draper, Generation of metastable electron traps in the near interfacial region of SOI buried oxides by ion implantation and their effect on device properties, Microelectronic Engineering ,2004(72): 362-366
    [73] A. Giraldo, A. Paccagnella, A.Minzoni, Aspect ratio calculation in n-channel MOSFETs witha gate-enclosed layout, Solid-State Electronics, 2000(44): 981-989
    [74] S. T. Liu, S. Balster, S. Sinha, andW. C. Jenkins, Worst case total dose radiation response of 0.35_μm SOI CMOSFETs, EE TIEransactions of nuclear science,1999 (46): 1817-1823
    [75] V. Ferlet-Cavrois, T. Colladant, EPaillet, etc., Worst-case bias during total dose irradiation of SOI transistors, IEEE Transactions of nuclear science, 2000 (47): 2183-2188
    [76] P. M. Lenahan and P.V. Dressendorfer, Hole traps and trivalent silicon centers in metal/oxide/silicon devices, Journal of Applied Physics, 1984 (55): 3495-3499
    [77] P. J. McWhorter and E S.Winokur, Simple technique for separating the effects of interface traps and trapped-oxide charge in metal-oxide-semiconductor transistors, Applied Physics Letters,1986(48): 133-135
    [78] W. He, Z.X. Zhang, E.X. Zhang, C. Qian, H. Tian and X. Wang, Effect of Implanting Silicon in buried oxide on the radiation hardness of the Partially-Depleted CMOS/SOI, The 8th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT), Shanghai,October 2006
    [79] H. Tian, Z.X. Zhang, E.X. Zhang, W. He, H. Yang, W.J. Yu and X. Wang, A novel approach to compare the charge buildup induced by Co-60 and X-ray radiation in SOI buried oxides, The 8th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT), Shanghai,October 2006
    [80] J. Bardeen and W. H. Brattain, The transistor, a semiconductor triode, Phys. Rev., 1947(74):230-231
    [81] S. Cristoloveanu, S. Williams, Point-contact pseudo-MOSFET for in-situ characterization of as -grown silicon-on-insulator wafers, IEEE Electron Device Letters, 1992 (98) :102-104
    [82] S. Cristoloveanu, D. Munteanu, S.T. Liu, A review of the pseudo-MOS transistor in SOI wafers: operation, parameter extraction and applications, IEEE Transactions on Electron Devices,2000, (102): 1018-1027
    [83] Kenji Komiya, Nicolas Bresson, Shingo Sato, Sorin Cristoloveanu and Yasuhisa Omura,Detailed investigation of geometrical factor for pseudo-MOS transistor technique, IEEE Transactions on Electron Devices, 2005(52): 1018-1027
    [84] B. Jun, D. M. Fleetwood, R. D. Schrimpf, X. Zhou, E. J. Montes, and S. Cristoloveanu,Charge Separation Techniques for Irradiated pseudo-MOS SOI Transistors, IEEE Transaction. on nuclear science, 2003(50): 1891-1895
    [85] Richard J.Krantz, Lee W. Aukerman and Thomas C. Zietlow, Applied field and total dose dependence of trapped charge buildup in MOS devices, IEEE Transaction on Nuclear Science, 1987(34): 1196-1197
    [86] S.T. Liu, W.C. Jenkins, and H.L. Hughes, Total dose hard 0.35 um SOI CMOS technology, IEEE Transaction on Nuclear Science, 1998(45): 2442-2449
    [87] D. Herve, Ph. Paillet, and J.L. Leray, Space charge effects in SIMOX buried oxides, IEEE Transaction on Nuclear Science, 1994(41): 466-472
    [88] Taurus Medici TM user guide, version W-2004.09, Sept.2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700