不同来源CD3AK细胞的体外扩增和杀伤活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:
     肿瘤生物治疗是通过肿瘤宿主防御机制或生物制剂的作用以调节机体自身生物学反应,从而抑制或消除肿瘤生长的治疗方法。肿瘤生物治疗是当前肿瘤治疗的前沿和热点。以肿瘤免疫治疗为代表肿瘤生物治疗已成为继手术、化疗和放疗后肿瘤治疗的第四种模式。过继性细胞免疫治疗(adoptire cellularimmunotherapy,ACI)或过继性免疫治疗(adoptive immunotherapy,AIT)是肿瘤生物治疗的一种,是指向肿瘤患者转输具有抗肿瘤活性的免疫细胞,直接杀伤肿瘤细胞或激发机体免疫效应,从而达到治疗肿瘤的目的。目前,ACI/AIT已被认为是有诸多优势的恶性肿瘤的治疗方法。
     LAK(lymphokine activated killer)细胞和TIL(tumor infiltratinglymphocyte)细胞都是ACI/AIT的一种,但是LAK和TIL都因其有比较明显多系统的毒副作用,或其前体细胞分离过程复杂,或培养时间长等原因而限制了它们应用。CD3AK(anti-CD3 antibody induced activated killer cells)是抗CD3单克隆抗体(anti-CD3 antibody,CD3McAb)和重组人白细胞介素-2(rIL-2)诱导产生的免疫效应细胞,目前CD3AK细胞正因其快速扩增,长期存活,高抗肿瘤活性及低毒副作用的优点而倍受重视。但是哪一种来源的细胞作为CD3AK细胞的前体细胞,扩增更快,杀伤肿瘤细胞的活性更强却少有研究,同一种来源的CD3AK细胞对不同肿瘤的杀伤活性有何区别,杀伤机制有何不同也都少有研究。本实验比较脐血(cord blood,CB)和外周血(peripheral blood,PB)来源的CD3AK细胞在扩增速度、杀伤活性及杀伤机制方面的区别,并比较CB来源的CD3AK细胞对不同肿
    
    矛粼洲大学2004年硕毖研疙全毕业葱之
    不间块穿C刀3月K细对功徽
    瘤细胞的杀伤活性的差异。
    材料和方法:
     脐带血来自正常分娩的健康胎儿胎盘血,共16例;PB取自健康成年人,共
    16例。CB及PB经淋巴结细胞分离液密度梯度离心获得脐血单个核细胞(cord
    blood mononuClear eell,CMNC)和外周血单个核细胞(peripheral blood
    mononuclear cell,PMNC),在CD3MeAb和rIL一2联合诱导下获得CD3AK细胞,
    计算并比较不同培养时期的CD3AK细胞的扩增倍数;用2种 CD3AK细胞作用于不
    同的肿瘤细胞株,MTT法比较CD3AK细胞对不同肿瘤细胞株的杀伤活性,电镜下
    观察被杀伤后肿瘤细胞的超微结构变化。统计学分析:应用SPSSIO.0统计软件
    包的t检验和重复测量的方差分析对统计数据进行分析,a=0 .05为显著性水准。
    结果:
     (1) CD3AK细胞增殖动力学观察和比较:CB与PB来源的CD3AK细胞在培
    养的第4天扩增速度前者稍快,二者相比较差异无统计学意义(乃0.05);以后随
    培养时间的延长,CB CD3AK细胞的扩增倍数均大于PB来源的CD3AK细胞,二者
    比较差异具有统计学意义(尸<0.05),CD3AK细胞的增长趋势至少可以维持3周。
     (2)不同来源的CD3AK细胞杀瘤活性的比较:CD3AK细胞与食管癌细胞株
    Ecal09共育结果发现,培养至第4天的CD3AK细胞既有了一定的杀伤活性,培养
    至第12天杀伤活性达到高峰,其杀伤活性可维持3周以上。CB来源的CD3AK细
    胞对Ecal09肿瘤细胞株细胞的杀伤活性在不同培养时间均高于PB来源的CD3AK
    细胞,二者比较差异有统计学意义(尸<0.05),二者的杀伤活性均可维持3周以
    上。
     (3)CB CD3AK细胞对不同的肿瘤细胞株(食管癌细胞株Eca109,胃癌细
    胞株BGC823,肺癌细胞株A549,白血病细胞株HL一60)的杀伤活性是不同的,
    CB CD3AK细胞对3种实体肿瘤细胞株的杀伤率无明显差异(乃0.05),而对HL一60
    的杀伤率显著高于对3种实体瘤细胞株的杀伤率有明显的差异,其差异有统计学
    意义(P<0.05)。
    
     粼种丈.学2004字烫亡解芜全月毕业老戈不词璐零c刀及刁K潮撇时粼办犷著冲决份籽璧必斑穷
     (4)不同来源的CD3AK细胞对肿瘤细胞株细胞杀伤机制的比较:CB来源的
    CD3AK细胞可能主要以直接杀伤肿瘤细胞株细胞从而使其发生坏死的方式为主;
    而PB来源的CD3AK细胞主要以诱导肿瘤细胞株细胞发生调亡的方式为主,二者
    比较差异具有统计学意义(尸<0.01)。
    结论:
     (1) CB来源的CD3AK细胞在同样条件下的扩增速度和杀伤活性均明显高于
    PB来源的CD3AK细胞。
     (2)2种CD3AK细胞杀伤肿瘤细胞的机制是有区别的,CB CD3AK细胞以使
    肿瘤细胞发生坏死为主,而PB CD3AK细胞则以诱导肿瘤细胞株细胞发生凋亡为
    主。
     (3)同一来源的CD3AK细胞对不同的肿瘤细胞株细胞的杀伤活性是不同的,
    不同组织起源的肿瘤细胞株细胞对同一CD3AK细胞的敏感性是不同的。
Background and Objective
    Tumor's biological therapy is one of the methods of suppressing or removing tumor's growth through tumor's defense mechanism or the biological pharmaceutics and it has become the focus and front line of tumor's therapy, now. Tumor's biological therapy presented by adoptive cellular immunotherapy (ACI/AIT) has become the fourth model of tumor's treatment following operation, chemotherapy and radiotherapy. ACI/AIT is one of the methods of tumor's biological therapy, which is to inject activated immunized cells, which can kill tumor cells directly or activate immunity effect, to deal with tumor. Now, tumor's biological therapy has been thought one of the effective treatments of malignant tumor with such advantages.
    LAK (lymphokine activated killer) cells and TIL (tumor infiltrating lymphocyte) cells is one of ACI / AIT. But LAK and TIL cells all were limited to be used because of their obvious multi-system-side-effect, or complex process of separating original cells, or lone time of culturine. CD3Ak cells, which is induced bv anti-CD3 monoclonal
    
    
    antibody and rIL-2, is attaching importance based on it's rapid expansion, long time of living, strong anti-tumor activity and low side -effect. But there is few research on which origin cells is the best choice to obtain rapider speed of expansion, and stronger activity of killing tumor cells, nor does what is the difference of killing activity among different tumor cells line killed by one kind of CDSAk cells, and nor does the killing mechanism. This experiment plans to compare the expansion speed, cytotoxicity between two-origin CD3AK cells, from umbilical cord blood and peripheral blood, and the difference of umbilical cord blood CDSAk cells'cytotoxicity.
    Material and Methods
    16 pieces of umbilical cord blood and peripheral blood come from normal healthy fetus' peripheral and healthy adult respectively. Obtain cord blood mononuclear cells (CMNC) and peripheral blood mononuclear cells (PMNC) by density gradient centrifugation, culture and harvest CDSAK cells induced by CDSMcAb and rIL-2, calculate and compare the expansion times of CDSAK cells from two origins. Put CDSAK cells and different tumors cells line together cultured, and compare the cytotoxicity of them with MTT. Observe super-microstructure and changes of tumor cells killed. Process the data using f-test and analysis of variance of repetive metrical data with SPSS 10.0 statistical software, a (equals 0.05) was considered significant test level.
    Results
    (l).CDSAK cells' dynamics effect comparison: CDSAK cells from two origins, umbilical cord blood CD3AK cells expansion speed is higher, and there is no significant difference (P>0.05)on the fourth day of culturing. With culture time passing by, umbilical cord blood CDSAK cells' expansion speed is obviously higher than peripheral blood CD3AK cells', and there is significant difference (8d, 12d, 16d, 21d,), (P<0.05). The expansion effect can maintain at least three weeks.
    (2).Comparison of CDSAK cells' cytotoxicity; put two kinds of CDSAK cells and
    
    tumor cells line Ecal09 together cultured, the fourth day's CD3Ak cells shows some cytotoxicity and reachs the highest level at the twelfth day of culturing, umbilical cord blood CD3AK cells' cytotoxicity are higher than peripheral blood CD3AK cells at 8d, 12d, 16d, 2Id, and there are significant difference (P<0.05). Two kinds of CD3AK cells can maintain their cytotoxicity at least three weeks
    (3).Comparison of cytotoxicity mechanism: perhaps umbilical cord blood CD3AK cells kill tumor cells to necrosis mainly, and peripheral blood CD3AK cells induced tumor cells to apoptosis mainly. And there is significant difference (P<0.01).
    (4).Umbilical cord blood CD3AK cells' cytotoxicity to different tumor cells(esophageal cancer cells line Ecal09,stomach cancer cells line BGC823, lung cancer cells line A549, and leukemia cells line HL-60): To these tumor cells, the cytotoxicity of umbilical cord blood CD3AK cells were different, there is significant difference between leukemia cells line HL-60's
引文
1. Rosenberg SA,New opportunities for the development of cancer immunotherapies. Cancer J Sci Am, 1998, Suppl 1: S1-4.
    2. Grimm EA, Mazumder A, Zhang HZ, et al. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by intedeukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982, 155(6): 1823-1841.
    3. Damle NK, Doyle LV, Bradley EC. Interleukin 2-activated human killer cells are derived from phenotypically heterogeneous precursors. J Immunol. 1986,137(9): 2814-2822.
    4. Rosenberg SA, Lotze MT, Mule JJ. NIH conference. New approaches to the immunotherapy of cancer using interleukin-2. Ann Intern Med. 1988, 108(6): 853-864.
    5. Rosenberg SA, Packard BS, Aebersold PM, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988, 319(25): 1676-1680.
    6. Topalian SL, Solomon D, Avis FP, et al. Immunotherapy of patients with advanced cancer using tumor-infiltrating lymphocytes and recombinant interleukin-2: a pilot study.J Clin Oncol. 1988, 6(5): 839-853.
    7. Oldham RK, Dillman RO, Yannelli JR, et al. Continuous infusion interleukin-2 and tumor-derived activated cells as treatment of advanced solid tumors: a National Biotherapy Study Group Trial. Mol Biother. 1991, 3(2): 68-73.
    8. Carlens S, Gilljam M, Chambers BJ, et al. A new method for in vitro expansion of cytotoxic human CD3-CD56+ natural killer cells. Hum Immunal, 2001, 62(10):1092-1098
    
    
    9. Lowdell MW, Lafmb L,Hoyle C,et al.Non-MHC-restricted cytotoxic cells:Their in the control and treatment of leukaemias. Br J of Haem, 2001,114(1):11-24
    10. Anderson PM, Bach FH, Ochoa AC. Augmentation of cell number and LAK activity in peripheral blood mononuclear cells activated with anti-CD3 and interleukin-2. Preliminary results in children with acute lymphocytic leukemia and neuroblastoma. Cancer Immunol Immunother. 1988, 27(1):82-88.
    11. Curti BD,Longo DL,Ochoa AC,et al,Treatment of cancer patients with ex vivo anti-CD3-activated killer cells and interleukin-2 J Clin Oncol. 1993,11(1):652-670
    12.袁跃传,孙秉中,杨平地等,CD3AK细胞在肿瘤病患者治疗中的疗效观察。第四军医大学报 1994;15(6):467-467
    13.马胜林,冯建国,许沈华等,淋巴结来源的CD3AK细胞的增殖和表型变化分析。中国肿瘤生物治疗杂志,2003,10(2):134-136
    14. Almici C, Carlo-Stella C, Wagner JE, et al. Biological and phenotypic analysis of early hematopoietic progenitor cells in umbilical cord blood. Leukemia, 1997, 11 (1):2143-2149.
    15. Devine SM, Lazarus HM, Emerson SG. Clinical application of hematopoietic progenitor cell expansion: current status and future prospect. Bone Marrow Transplant. 2003, 31 (4):241-252.
    16. Isoyama k, Ohnuma K, Kato K, et al. Cord blood transplantation from unrelated domors: a preliminary report from the Japanese Cord Blood Bank Network. Leuk Lymphoma, 2003, 44(3): 429-438.
    17. Roncarolo MG, Bigler M, Ciuti E, et al. Immuno responses by cord blood cells. Blood Cells, 1994, 20(1):573-586.
    18. Nomura A, Takada H, Jin CH, et al. Functional analyses of cord blood natural killer cells and T cells: a distinctive enterleukin-18 response. Exp Hematol, 2001, 29(10): 1169-1176
    
    
    19. Chipeta J, Komada Y, Zhang XL, et al. Neonatal (cord blood)T cell can competently raise type 1 and 2 immune responses upon polyclonal activation. Cell-Immunol, 2000, 205(2): 110-119
    20. Sato K, Kawasaki H, Nagayama H, et al. Chemokine receptor expression and responsiveness of cord blood T cells. J Immunol, 2001, 166(3): 1659-1666
    21. Hidge S, Hodge G, Flower R, et al. Cord blood leucocyte expression of functionally significant molecules involved in the regulation of celltlar immunity. Scand J Immunol, 2001, 53(1): 72-78
    22. Borras FE, Mstthews NS, Lowdell MW, et al. Identification of both myeloid CD11c+ and lymphoid CD11c- dendritic cell subsets in cord blood. Br J Haematol, 2001, 113(4): 925-931
    23. El Marsafy S, Dosquet C,Coudert MC, et al. Study of cord blood natural killer cell suppressor activity. Eur J Haematol, 2001, 66(4): 215-220
    24. Cohen SB, Morgan CL, Perez-Cruz I, et al. Cord blood serum does not increase lymphocyte responses in comparison to adult serum. Hum Immunol, 2000, 61(2): 111-114
    25. Cohen SB, Woolley J, Bogunia Kubik K, et al. Macrophage colony stimulating factor(M-CSF) within cord blood sera may be partially responsible for the reduced proliferation of cord blood T cells. Eur Cytokine Netw, 2000, 11 (4): 608-617
    26. Stankova J, Hoskin DW, Roder JC. Murine anti-CD3 monoclonal antibody induces potent cytolytic activity in both T and NK cell populations. Cell Immunol. 1989, 121(1): 13-29.
    27. Yun YS, Hargrove ME, Ting CC, Heterogeneity of long-term cultured activated killer cells induced by anti-T3 antibody. J Immunol. 1988, 141(4): 1390-1397.
    28. Saito T, Weiss A, Gunter KC, et al. Cell surface T3 expression requires the presence of both alpha- and beta-chains of the T cell receptor. J Immunol. 1987, 139(2):
    
    625-628.
    29. Kabelitz D,Pohl T, Pechhold K,Activated-induced cell death (apoptosis) of mature peripheral T lymphocytes .Immunol Today, 1993,14(7):338-339
    30. Ting CC,Hargrove ME,Wang J,et al,Differential requirement of protein tyrosime protein kinase C in the generation of IL-2-induced LAK cell and α CD3-induced CD3AK cell response.J .Cell Immunol,1995,160(2):286-296
    31.赵武述,丛笑,周同亮。人脐血不同组分对CD3AK细胞增殖的影响。中华微生物学和免疫学杂志,1997,17(3):200-203。
    32. Gardiner CM, Meara AO,Reen DJ,et,al.Differential cytotoxicity of cord blood and bone marrow-derived natural killer cells .J Blood, 1998,91 (1):207-213
    33. Garderet L,Dulphy N,Douay C,et,al.The umbilical cord blood alphabeta T-cell repertoire:characteristics of polyclonal and nave but compeletely formed repertoire.J Blood, 1998,91 (1):340-346
    34. Robinsin KL, Ayello J, Hughes R, et,al.Ex vivo expansion,maturation ,and activation of umbilical cord blood -derived Tlymphocytes with IL-2,IL-12,anti-CD3,and IL-7.Potential for adoptive cellular immunotherapy post-umbilical cord blood transplantation.Exp Hematol,2002,30(3):245-251
    35. Verneris MR, Komacker M, Mailander V, et al. Resistance of ex vivo expanded CD3+ CD56+ T cells to Fas-mediated apoptosis. Cancer Immunol Immunolther, 2000, 49(6): 335-345.
    36. Curti BD, Longo DL, Dchoa AC, et al, Treatment of cancer patients with fx vivo anti-CD3-activated killer cells and interleukin-2. J Clin Oncol, 1993, 11 (1) : 652-660
    37.赵群,李勇,陈少轩等,CIK细胞对胃癌OCUM-2MD3细胞体内外杀瘤活性的实验研究,免疫学杂志,2003,19(2):113-116
    38.钟竑,单根法,隆桂麟等,CD3AK细胞对人肺癌细胞株的细胞毒作用,上海
    
    第二医科大学学报,1999,19(6):532-534
    39.第五届全国肿瘤生物治疗学术会议议论文专集,中国肿瘤生物治疗杂志,1997,3(4):212
    40.何秉燕,朱芮,李小明等,脐血CD3AK细胞诱导肿瘤细胞凋亡的研究,武汉大学学报(医学版),2001,22(2):139-141
    41.陈宝安,陈苏宁,李翠萍等,异体CD3AK细胞对白血病细胞的体外杀伤作用,中华微生物学和免疫学杂志,2002,22(2):164-165
    42.强新,于玟,宋修歧等,CD3AK细胞的培养与抗肿瘤活性的研究,青岛医学院学报,1998,34(3):163-165
    43.李兆忠,张玲,王芸等,C-myc反义寡核苷酸对肿瘤细胞表面抗原的对CD3AK杀伤敏感性的调节作用。中国免疫学杂志,2003,19(1):29-31。
    44. Gardiner CM, Reen DJ. Differential cytokine regulation of natural killer cell-mediated necrotic and apoptotic cytotoxicity. Immunology, 1998,93 (1) :511-517
    45. Gardiner CM, O'meara A, Reen DJ. Differential cytotoxicity of cord blood and bone marrow derived natural killers. Blood, 1998, 91 (1) :207-213
    46.黄倩,张渝侯,邹典定等,脐血CIK细胞的体外增殖及对K562细胞的杀伤活性的实验研究。实用医学杂志,2003,19(8):848-850。
    47. Kimura H, Yamaguchi Y. A phase Ⅲ randomized study of interleukin-2 lymphokine-activated killer cell immunotherapy combined with chemotherapy or radiotherapy after curative or noncurative resection of primary lung carcinima. Cancer, 1997, 80(1):42-49
    48. Chen J, Sanberg PR, Li Y, et al. Intravenous adinistration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke, 2001, 32 (1) : 2682-2688.
    49. Sanchez-Ramos JR, Song S, Kamath SG; et al. Expression of neural makers in
    
    human umbilical cord blood. Exp Neurol, 2001, 171 (3) : 109-115.
    50. Ende N, Chen R, Ende-Harris D. Human umbilical cord blood cell ameliorate Alzheimer's disease in transgenic mice. A brief report. J Med, 2001, 32 (6) :241-247.
    51. Ende N, Chen R. Human umbilical cord blood cells ameliorate Huntington' disease in transgenic mice. A brief report. J Med, 2001, 32 (9) : 231-240.
    52. Wu J, Lanier LL. Natural killer cells and cancer. Adv Cancer Res, 2003, 90: (1) 127-156.
    53. Albertsson PA, Basse PM, Hokland, et al. NK cells and the tumor : implication for NK-cell function and anti-tumor. Trends Immunol, 2003, 24(11): 603-609.
    54. Ende N, Lu S, Alcid MG, et al. Pooled umbilical cord blood as a possible universal donor for marrow reconstitution and use in nuclear accidents. Life Sci, 2001,69 (1): 1531-1539.
    55. Schumacher MJ, Burkhead T. Stability of fresh and preserved fetal and adult lymphocyte cell surface makers. J Clin Lab Anal, 2000,14(6):320-326
    56. Robinson KL, Ayello J, Hughes R, et al. Ex vivo expansion, maturation, and activation of umbilical cord blood-derived T lymphocyte with IL-2, IL-12, anti-CD3, and IL-7. Potential for adoptive cellular immunotherapy post-umbilical cord blood transplantation. Exp Hematol, 2002, 30(3): 245-251
    57. Elias M, Choudhury N, Sibinga CT.Cord blood from collection to expansion: feasibility in a regional blood bank. Indian J Pediatr, 2003, 70(4): 327-336.
    58. Gluckman E, Rocha V, Chevret S. Results of unrelated umbilical cord blood hematopoietic stem cell. Transfus Clin Biol, 2001, 8 (1) : 146-154.
    59. Kiselevskii MV. Adoptive immmunotherapy in malignant tumors. Vestn Ross Akad Med Nauk. 2003, 1 (6) : 40-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700