HBV宫内传播机制的蛋白质组学和相关miRNA研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是乙型肝炎病毒(hepatitis B virus,HBV)感染高流行区,HBV感染及其导致的肝硬化和肝癌等疾病严重影响人们的健康。HBV主要通过血液、母婴及性接触传播,其中母婴垂直传播主要发生在围产期,阻断母婴传播是目前控制HBV感染流行的关键,而HBV宫内跨胎盘传播机制是母婴传播阻断研究的重点和难点。
     HBV宫内传播机制主要有胎盘渗漏学说、胎盘感染学说及外周血单核细胞感染学说等几种假说,但病毒感染宿主细胞是一个复杂的内化过程,多层次多个分子可能参与该过程,目前有关HBV跨胎盘宫内感染的机制研究尚不够深入也远未阐明,亦无有效阻断措施,深入探讨HBV宫内传播机制对于HBV宫内跨胎盘传播的有效阻断具有理论和实际意义。
     蛋白质组学技术可用来比较疾病与正常蛋白质样品间的表达水平,是揭示疾病分子机制、发现诊断标志物以及寻找药物新靶标的有效平台,尚未见HBV宫内跨胎盘传播机制的蛋白质组学研究报道。此外,病毒感染宿主细胞后,可导致宿主细胞中的miRNA表达谱发生变化,HBV和宿主细胞之间通过miRNA进行的相互调节对于HBV宫内感染的发生发展可能具有一定作用,亦未见相关研究报道。因此,本论文利用蛋白质组学技术筛选HBV阳性产妇胎盘差异表达蛋白,并建立胎盘滋养层细胞体外HBV感染模型,探讨HBV感染后细胞中miRNA的表达变化,从蛋白质组和miRNA两个层次深入探讨HBV如何跨胎盘宫内传播,可望从新的角度对HBV宫内跨胎盘传播的机制予以揭示。
     方法:
     1.以HBV阳性产妇胎盘为研究对象,以正常产妇胎盘为对照,利用MALDI-TOF和ESI-MS/MS进行分析,建立正常胎盘蛋白双向电泳(2-DE)参考图谱;采用比较蛋白质组学方法,筛选HBV阳性与正常产妇胎盘组织的差异表达蛋白,分析评价部分差异蛋白在HBV跨胎盘传播中的功能及意义。
     2.体外培养胎盘滋养层细胞(JEG-3),应用HBV阳性血清处理,采用ELISA法检测感染细胞培养上清中的HBsAg、免疫组织化学SP法检测细胞中HBsAg蛋白的表达、PCR法检测细胞中HBV DNA的表达、AnnexinⅤ/PI双标法检测细胞凋亡和坏死,透射电镜观察细胞超微结构的变化并寻找病毒颗粒。
     3.应用HBV阳性血清处理JEG-3细胞,采用miRNA芯片进行处理前后细胞miRNA表达谱的比较,并对差异miRNA的靶基因进行预测和生物学功能分析。
     结果:
     1.建立了正常足月胎盘总蛋白2-DE参考图谱;在pH4-10的合成图谱上检测到405个蛋白质点,鉴定出157个蛋白点对应的104个蛋白,其中24个蛋白对应多个蛋白质点,包括细胞结构蛋白、细胞支架蛋白等;所鉴定蛋白质中有部分功能不明蛋白质存在。共筛选出HBV感染产妇胎盘蛋白中的56个差异表达蛋白点,鉴定出24个差异蛋白;差异蛋白中有14个表达上调,10个下调;差异蛋白质中包括了酶类、调节蛋白、转运蛋白、结构蛋白、支架蛋白、保护蛋白及功能未知蛋白等。
     2.HBV阳性血清处理后,胎盘滋养层细胞JEG-3培养上清中HBsAg呈阳性;JEG-3细胞中HBsAg和HBV DNA呈阳性;HBV阳性血清处理后细胞坏死率显著增加,凋亡率无明显变化;HBV阳性血清处理后JEG-3细胞超微结构的改变表现为胞浆内出现较多空泡状结构,溶酶体明显增多,并可见病毒样颗粒。
     3.与正常血清处理细胞相比,HBV阳性血清处理后JEG-3细胞中高表达的miRNA包括:has-miR-197、has-miR-32、has-miR-125a-3p、has-miR-20a、has-miR-210和has-miR-574-3p;未发现差异显著的低表达has-miRNA。
     结论:
     1.成功建立了正常足月胎盘总蛋白2-DE参考图谱;鉴定得到104个蛋白质,其中部分蛋白质可能存在较多翻译后修饰,其修饰的多样性反映出这些蛋白在胎盘发育中的重要性;发现功能不明蛋白在胎盘发育过程中的存在。筛选鉴定得到HBV感染产妇胎盘蛋白表达谱中的24个差异蛋白;其中包括多种类别,热休克蛋白、肌动蛋白、膜联蛋白等差异蛋白可能与HBV跨胎盘传播有关。
     2.HBV阳性血清可导致体外培养胎盘滋养层细胞的HBV感染,建立与体内HBV感染胎盘滋养层细胞条件接近的细胞感染模型;HBV阳性血清可导致胎盘滋养层细胞出现溶酶体大量增多等形态结构改变,并可导致细胞坏死。
     3.HBV阳性血清处理胎盘滋养层细胞后,细胞miRNA表达谱发生变化,差异表达的miRNA包括:has-miR-197、has-miR-32、has-miR-125a-3p、has-miR-20a、has-miR-210和has-miR-574-3p,表明miRNA可能在HBV感染中发挥调控作用。
Hepatitis B virus (HBV), widely spread in China, which causes acute or chronic HBV infection and leads to hepatoma cirrhosis and eventually hepatocellular carcinoma has been a main threaten to public health. HBV could spread by blood, mother-infant transmission or sexual contact. Mother-infant transmission of HBV occurred in the perinatal period, so the blockade of the mother-infant transmission of HBV is the key to control HBV spread. The exploration of the mechanisms of HBV intra-uterine transplacental transmission is the emphasis and difficulty in the prevention of mother-infant transmission of HBV.
     HBV intra-uterine transmission could be caused by placenta leakage, placenta infection or peripheral blood mononuclear cell infection. However, the process of virus infects host cells is complicated, many molecules may play a role in this process. Till now, the underlying mechanisms of HBV intra-uterine transplacental transmission remain unclear and there are no effective measures to block the transmission. Therefore, it is requisite to explore the mechanisms of HBV intra-uterine transplacental transmission, which will conduce to the blockade of the HBV intra-uterine transmission.
     Proteome methods, which may be used to detecet the protein expression patterns in the diseased samples compared to the normal samples, are effectively means to clarify the mechanisms of disease and find novel therapeutic targets or biomarkers to serve as diagnostic indicators of disease. Besides that, the infection of virus may lead to the changes of miRNA(microRNA) expression in the host cells, so the interaction of HBV with host cells regulated by miRNA may play a role in HBV infection. This study is to detect protein expression patterns in the placentas derived from HBV-positive pregnant women by proteome methods compared to that of normal pregnant women, and then to explore the changes of miRNA expressions in placental trophoblasts infected with HBV on the basis of the establishment of cell model infected by HBV. Therefore, the mechanisms of HBV intra-uterine transmission may be clarified from new points of view on both proteome and miRNA.
     Methods
     1.The placentas derived from HBV-positive pregnant women were used as experimental objects and the placentas derived from HBV-negative pregnant women were used as control. By MALDI-TOF and ESI–MS/MS, the 2-DE map of normal placentas was established. The comparative proteome methods were used to detect protein expression patterns in the HBV-positive and negative placentas, and then the functions and roles of the proteins different in expression were analyzed.
     2.Placental trophoblast cells JEG-3 were treated with HBV positive or negative serum, HBsAg in the cell supernatant or in cells was determined by ELISA or immunohistochemistry SP method respectively, and HBV DNA in JEG-3 was detected by PCR. Besides that, apoptosis and necrosis of JEG-3 was determined by AnnexinⅤ/PI staining and then FACS detection. Transmission Electro Microscope was used to observe cell ultra structure and find virus granule.
     3.JEG-3 were treated with HBV positive or normal serum, miRNA chip was used to detect the differences in miRNA expression between the HBV positive serum treated cells and normal serum treated cells. Then the target genes of the miRNA different in expression were predicted and then their biological functions were analyzed.
     Results
     1.The 2-DE map of normal mature placenta was established. 405 protein spots were detected in the pH4-10 compositive map, 104 proteins correspond to 157 protein spots were identified, 24 proteins of which were found to correspond to multi-protein spots in the map, including structural proteins and scaffolding protein, et al. The functions of some identified proteins were unknown. 56 proteins displayed significant differences in expression in the placenta derived from HBV-positive placenta compared to the control placenta, and then 24 proteins were identified, 14 of these proteins were up-regulated while 10 proteins displayed reduced expression. These proteins different in expression include enzymes, regulated proteins, transport proteins, structural proteins, scaffolding protein, protective proteins and some proteins with unknown functions.
     2.HBsAg in cell supernatant of placental trophoblast cells JEG-3 treated with HBV-positive serum was positive. HBsAg and HBV DNA in JEG-3 cells were also positive. Besides that, the necrosis rate of JEG-3 cells treated with HBV-positive serum significantly increased compared to control cells, but the apoptosis rate was not changed. The changes of ultra structure of JEG-3 cells treated with HBV-positive serum was as follows: many vacuoles appeared in cytoplasma and lysosome increased significantly, besides that, virus-like granules were found in cytoplasma.
     3.Compared to cells treated with normal serum, some miRNA in JEG-3 cells treated with HBV-positive serum were up-regulated, including has-miR-197, has-miR-32, has-miR-125a-3p, has-miR-20a, has-miR-210 and has-miR-574-3p, there was no significantly down-regulated miRNA was detected.
     Conclusions
     1.The 2-DE map of normal mature placenta was established and 104 proteins were identified. Some proteins may have post-translational modifications, suggesting the important role of these proteins in the development of placenta. 24 proteins different in expression in placenta derived from HBV–positive pregnant women compare to control placenta were identified. HSPs, actin and Annecxin may play a role in the HBV intra-uterine transmission
     2.Placental trophoblast cells treated with HBV-positive serum could be infected by HBV, so the HBV infection cell model was established with the method which was most consistent to the conditions of HBV infection in vivo. HBV-positive serum may cause significant increase of lysosome and cell necrosis.
     3.miRNA expressed in JEG-3 cells treated with HBV-positive serum changed compared to control cells. Some up-regulated miRNA were detected, including has-miR-197, has-miR-32, has-miR-125a-3p, has-miR-20a, has-miR-210 and has-miR-574-3p, suggesting miRNA may play a role in the regulation of HBV infection.
引文
1. Ganem D, Prince AM. Hepatitis B virus infection--natural history and clinical consequences. N Engl J Med, 2004,350(11):1118-29.
    2. Organization., W. H. Hepatitis B. World Health Organization Fact Sheet 204 dex. (Revised October 2000). WHO Web site .http://www.who.int/mediacentre/ factsheets/ fs204/en/ in html .
    3. Lu FM, Zhuang H. Management of hepatitis B in China. Chin Med J (Engl), 2009,122(1):3-4.
    4. Xiao XM,Li AZ,Chen X,et al.Prevention of vertical hepatitis B transmission by hepatitis B immunoglobulin in the third trimester on pregnancyJ..Int J Gynaecol Obstet, 2007,96(3):167-170.
    5. Zhang R, Barker L, Pinchev D, et al. Mining biomarkers in human sera using proteomic toolsJ.. Proteomics, 2004, 4(1):244-56.
    6.中华医学会肝病学分会、感染病学分会.慢性乙型肝炎防治指南.中华肝脏病杂志, 2005,13:881-891.
    7. Gorg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R., and Weiss, W. (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21, 1037-1053.
    8. Gorg, A., Weiss, W., and Dunn, M. J. (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics. 4, 3665-3685.
    9. Mine K, Katayama A, Matsumura T, Nishino T, Kuwabara Y, Ishikawa G, et al. Proteome analysis of human placentae: pre-eclampsia versus normal pregnancy. Placenta 2007;28:676-87.
    10. Liao X, Ying TY, Wang HL, et al. A two-dimensional proteome map of Shigella flexneri. Electrophoresis, 2003, 24, 2664-2882.
    11. Liang X, Bi S, Yang W, et al. Epidemiological serosurvey of hepatitis B in China- declining HBV prevalence due to hepatitis B vaccination. Vaccine, 2009,27(47):6550-7.
    12. Liang X, Bi S, Yang W, et al. Evaluation of the impact of hepatitis B vaccination among children born during 1992-2005 in China. J Infect Dis, 2009,200(1):39-47.
    13. Lai CL, Ratziu V, Yuen MF, et al. Viral hepatitis B. Lancet, 2003,362(9401):2089-94.
    14. Tian-Hua Huang.Presence and integration of HBV DNA in mouse oocytes.World J Gastroenterology, 2005,11(19):2869.
    15.陈桂兰.卵母细胞携带的HBV DNA在小鼠早期胚胎中的复制与表达.癌变·畸变·突变, 2005, 17(3):179.
    16. Chen LZ,Fan XG,Gao JM.Detection of HBsAg,HBcAg,and HBV DNA in ovarian tissues from patients with HBV infection.World J Gastroenterology,2005,11(35):5565.
    17. Xu DZ, Yan YP, Choi BC, et al. Risk factors and mechanism of transplacental transmission of hepatitis B virus: a case-control study. J Med Virol 2002; 67: 20–6.
    18. Bai H, Zhang L, Ma L, et al. Relationship of hepatitis B virus infection of placental barrier and hepatitis B virus intrauterine transmission mechanism. World J Gastroenterol 2007;13: 3625–30.
    19. Li X-M, Shi M-F, Yang Y-B, et al. Effect of hepatitis B immunoglobulin on interruption of HBV intrauterine infection.World J Gastroenterol 2004; 10: 3215–7.
    20. Su HX,Xu DZ,Li D,Zhang JX,Lu J,Choi BC,Yan YP.Heterogeneity analysis of the hepatitis B virus genome in intrauterine infection.J Med Virol; 2005,77:180-187.
    21. Zhu QR, Ge YL, Gu SQ, et al. Relationship between cytokines gene polymorphism and susceptibility to hepatitis B virus intrauterine infection. Chin Med J 2005; 118: 1604–9.
    22. Yu H, Zhu QR, Gu SQ, et al. Relationship between IFN-gamma gene polymorphism and susceptibility to intrauterine HBV infection. World J Gastroenterol 2006; 12:2928–31.
    23. Fiore AE.Chronic maternal hepatitis B infection and premature rupture of membranesJ..Pediatr Infect Dis J,2002,21(4):357-358.
    24. Mast EE, Margolis HS, Fiore AE, et al. A comprehensive immunization strategy to eliminate transmission of hepatitis B virus infection in the United States: recommendations of the Advisory Committee on Immunization Practices (ACIP) part 1: immunization of infants, children, and adolescents. MMWR Recomm Rep, 2005,54(RR-16):1-31.
    25.夏国良,龚健,王继杰,等.重组乙型肝炎疫苗阻断乙型肝炎病毒母婴传播方案的保护效果评价.中华流行病学杂志, 2003,24: 362-365.
    26.闫永平,徐德忠,王文亮等.胎盘乙型肝炎病毒感染与宫内传播的关系.中华妇产科杂志; 1999, 34(7),392-5.
    27.汤光凤,邓爽.乙肝病毒母婴垂直传播阻断的分析.中国优生与遗传杂志2006;14:72-73.
    28.刘冬云,刘平英,张文馥.应用HBIG阻断乙肝病毒母婴传播的研究.天津医科大学学报2005; 11: 274-275.
    29.陈忠年,杜心谷,刘伯宁.妇产科病理学M..上海:上海医科大学出版社.1996.307-312.
    30.刘斌,高英茂.人体胚胎学M..北京:人民卫生出版社,1996.231-233.
    31. Shen HD,Choo KB,Wu TC,et a1.Hepatitis Bvirus infection of cord blood lieukocyteaJ..J Med Virol,1987,22:211.
    32. Feiberg AP et a1.A technique for radiolabelling DNA restriction elldonuclease fragmentto high specific activity.Analytical Biochemistry ;1983,132.
    33. Lin HH,LeeTY,ChenDS,el a1.Trans placental leakege 0f HBsAg-positive maternal blood as the most likely routein causing intrauterine infection with hepati-tisBvirusJ..J Pediatr, 1987, 111: 877-881.
    34. LuciforaG, CalabroS,CarroccioG,et a1.Immunocytochemical HBsAg,evidence in placenta so fasymptomatic carrier othersJ..Am J 0bstet Gynecol.1988,159:839-842.
    35. LuciforaG,MartinesF, CalabroS,et al.HBcAg identification in the placantalcy-to type sofsymptom-free HBsAg-carrier mothers:A study with the immunoperox-idase methodJ..Am J ObstetGynecol, 1990, 163:235-239.
    36.唐时幸,于光烈,程绍尧.乙肝病毒宫内感染机制及影响因素的研究.中华流行病学杂志. 1991, 12:325-326.
    37.闫永平,徐德忠.HBsAg阳性孕妇足月分娩胎盘HBV感染状态的免疫组织化学研究.第四军医大学学报,1997,18(5):409-411.
    38.刘颖琳,张建平,张睿,等.乙型肝炎病毒感染胎盘的免疫组织病理学研究.中华妇产科杂志,2002,37(5):278-280.
    39.闫永平,李端,徐德忠,等.不同孕期乙型肝炎病毒宫内感染率差别的荟萃分析.第四军医大学学报,2002,23(9):853-855.
    40.闫永平,徐德忠,王文亮,等.乙型肝炎表面抗原阳性孕妇不同孕期胎盘乙型肝炎病毒的感染状态.中华医学杂志,1998,78(1):76-77.
    41.徐德忠,闫永平,徐剑秋,等.乙型肝炎病毒宫内传播因素和机制的分子流行病学研究.中华医学杂志,1999; (79): 24-72.
    42. Liu PB,Xu DZ,Wang X,et al.Distribution of Fcr receptor in human plaxentaJ.J Fourth Mil Med univ,200l,22(5):459-461.
    43. Xu DZ,Yan YP,Xu JQ,et a1.A molecular epidemiology study on risk factors andmechanism of HBV intrauterine transmission. Natl Med J chin,1999,79(1):24-27.
    44. Xu DZ,Yan YP,Zou S,et a1.Role of placental tissues in the intrauterine transmission of hepatitis B virusJ..Am J Obstet Gynecol,200l,185(4):981-987.
    45. Wang Xp,Xu DZ,L YG,et a1.HBsAg uptake into human trophoblasts in vitroJ..J Fourth Mil Med univ.2003,23(11):16-23.
    46.郭皓宇,谭德明,刘洪波.多重PCR法检测外周血单个核细胞中的HBV DNA与HBV cccDNAJ..中国医师杂志,2005,7(4):457-459.
    47.冯永亮,王素萍,史晓红,等.PBMC中HBV cccDNA与HBV宫内感染关系的研究.预防医学,2005,32(2):192-194.
    48. Xu Q,Xiao L,Lu XB,et al.A randomized controlled clinical trial: interruption of intrauterine transmission of hepatitis B virus infection with HBIG. World J Gastroenterol, 2006,12(21): 3434-3437.
    49. Ranger-Rogez S, Alain S, Denis F. Hepatitis viruses:mother to child transmissionJ..Pathol Biol, 2002,50(9):568-575.
    50.俞蕙,朱启殚,顾绍庆,等. IFN-γ+874基因单核苷酸多态性与宫内HBV感染易感性关系的研究.中华儿科杂志,2004,42(6):421-423.
    51.王素萍,李铁钢,魏俊妮,等.乙型肝炎病毒宫内感染相关因素的研究.中华妇产科杂志,2005, 40(10): 670-672.
    52.刘志华,徐德忠,闫永平,等.乙型肝炎病毒宫内感染危险因素的病例对照研究.中国公共卫生学报, 1997, 16(5):265-266.
    53.于鸿志,徐德忠,承海,等.乙型肝炎病毒宫内感染危险因素的病例对照研究.现代生物医学进展, 2008;(8)7:1289-1291.
    54.晏路标,肖昕,熊爱华.胎盘Hofbauer细胞在乙型肝炎病毒垂直传播中的作用.实用儿科临床杂志, 2006, 21: 351-357.
    55.刘伯宁.病毒感染的胎儿胎盘病理.中国实用妇科与产科杂志, 1995,ll(3):147-148.
    56.刘颖琳,张建平,张睿,等.乙型肝炎病毒感染胎盘的免疫组织病理学研究.中华妇产科杂志,2002,37(5):278-280.
    57.禤庆山,朱志琴,温秀兰,等.胎盘Hofbauer细胞在HBV母婴垂直传播的作用.中国优生及遗传学杂志, 2007,15 (10):58-60.
    58.王爱莉,戴笙,初兆荣,等.乙肝病毒母婴垂宣传播胎盘超徽结构变化.中华围产医学杂志, 2001,4(1): 7-9.
    59. Papadakis MA, Elefsiniotis IS, Vlahos G, et al. Intrauterine-transplacental transmissi-on of hepatitis B virus (HBV) from hepatitis B e antigen negative (precore mutan-t, G1896A) chronic HBV infected mothers to their infants. Preliminary results of a prospective study. J Clin Virol, 2007, 38(2):181-3.
    60. Sawicki G, Dakour J, Morrish DW. Functional proteomics of neurokinin B in the placenta indicated a novel role in regulating cytotrophoblast antioxidant defenses. Proteomics 2003;3:2044-51.
    61. Page NM, Woods RJ, Gardiner SM, Lomthaisong K, Gladwell RT, Butlin DJ, et al. Excessive placental secretion of neurokinin B during the third trimester causes pre-eclampsia. Nature 2000;405:797-800.
    62. Hoang VM, Foulk R, Clauser K, Burlinggame A, Gibson BW, Fisher SJ. Functional proteomics: examining the effects of hypoxia on the cytotrophoblast protein repertoire. Biochemistry 2001;40:4077-86.
    63. Sun LZ, Yang NN, De W, Xiao YS. Proteomics analysis of proteins differentially expressed in pre-eclamptic trophoblasts. Gynecol Obstet Invest 2007;64:17-23.
    64. Mine K, Katayama A, Matsumura T, et al. Proteome analysis of human placentae: pre-eclampsia versus normal pregnancy. Placenta, 2007, 28(7):676-87.
    65. Luciano-Montalvo C, Ciborowski P, Duan F, et al. Proteomic analyses associate cystatin B with restricted HIV-1 replication in placental macrophages.Placenta, 2008, 29(12):1016-23.
    66. Feng JT, Liu YK, Song HY, et al.Heat-shock protein 27: a potential biomarker for hepatocellular carcinoma identified by serum proteome analysis. Proteomics. 2005 ,5(17):4581-8.
    67. Zhang D, Lim SG, Koay ESProteomic identification of down-regulation of oncoprotein DJ-1 and proteasome activator subunit 1 in hepatitis B virus-infected well-differentiated hepatocellular carcinoma. Int J Oncol. 2007,31(3):577-84.
    68. Kim W, Oe Lim S, Kim JS,et al.Comparison of proteome between hepatitis B virus- and hepatitis C virus-associated hepatocellular carcinoma. Clin Cancer Res. 2003,9(15):5493-500.
    69. Zhang L, Peng X, Zhang Z, et al. Subcellular proteome analysis unraveled annexin A2 related to immune liver fibrosis. J Cell Biochem. 2010,110(1):219-28.
    70. Marrocco C, Rinalducci S, Mohamadkhani A,et al. Plasma gelsolin protein: a candidate biomarker for hepatitis B-associated liver cirrhosis identified by proteomic approach. Blood Transfus. 2010, Suppl 3:s105-12.
    71. Ren F, Chen Y, Wang Y, et al. Comparative serum proteomic analysis of patients with acute-on- chronic liver failure: alpha-1-acid glycoprotein maybe a candidate marker for prognosis of hepatitis B virus infection. J Viral Hepat. 2010,17(11):816-24.
    72. Ding C, Wei H, Sun R, et al. Hepatocytes proteomic alteration and seroproteome analysis of HBV-transgenic mice. Proteomics. 2009,9(1):87-105.
    73. Liu K, Qian L, Wang J, et al. Two-dimensional blue native/SDS-PAGE analysis reveals heat shock protein chaperone machinery involved in hepatitis B virus production in HepG2.2.15 cells. Mol Cell Proteomics. 2009,8(3):495-505.
    74. Mota S, Mendes M, Penque D, et al. Changes in the proteome of Huh7 cells induced by transient expression of hepatitis D virus RNA and antigens. J Proteomics. 2008,71(1):71-9.
    75. Zhao Y, Ben H, Qu S,et al. Proteomic analysis of primary duck hepatocytes infected with duck hepatitis B virus. Proteome Sci. 2010 Jun 7;8:28.
    76. Spano D, Cimmino F, Capasso M,et al. Changes of the hepatic proteome in hepatitis B-infected mouse model at early stages of fibrosis.J Proteome Res. 2008,7(7):2642-53.
    77. Stangl K, Gun ther C, Frank T, et al Inhibition of the ubiquit in Protresom pathway induces differential heat shock protein response in cardiomyocytes and renders early cardiac protection . Biochem BiophysRes Commun, 2002, 291 ( 3) : 542 - 549.
    78.朱复希,刘刚,卢光琇.生精相关HSP40家族蛋白的研究进展.现代生物医学进展,2009, 9(10): 1960-1963.
    79.刘缨,朱美财,王荫静等. DnaJ类分子伴侣PBP的基因克隆及亚细胞定位研究.细胞与分子免疫学杂志, 2003, 19(6): 531-534.
    80. Zhang L, Cai X, Chen K,et al. Hepatitis B virus protein up-regulated HLJ1 expression via the transcription factor YY1 in human hepatocarcinoma cells. Virus Res. 2011,157(1):76-81.
    81. Sohn SY, Kim JH, Baek KW, et al. Turnover of hepatitis B virus X protein is facilitated by Hdj1, a human Hsp40/DnaJ protein. Biochem Biophys Res Commun. 2006,347(3):764-8.
    82. Sohn SY, Kim SB, Kim J, et al. Negative regulation of hepatitis B virus replication by cellular Hsp40/DnaJ proteins through destabilization of viral core and X proteins. J Gen Virol. 2006 ,87(Pt 7):1883-91.
    83.傅茂英,李海,邓志勇等. HBsAg、HBcAg及actin蛋白在乙肝病毒携带者肝穿组织中的表达及意义.临床和实验医学杂志, 2009, 8(10): 65-66.
    84. Arcangelettim C,Pinardi F, Medicim C,et al. Cyto skeleton involvement during human cyto- megalovirus replicative cycle in human embryo fibroblasts . New Microbiol,2000, 23: 241-256.
    85. Castillo J P, Yurochko A D, Kowalik T F, et al. Role of human cytomegalovirus immediate-early proteins in cell growth control. J Virol, 2000, 74: 8028-8037.
    86. Huang CJ, Chen YH, Ting LP.Hepatitis B virus core protein interacts with the C-terminal region of actin-binding protein. J Biomed Sci. 2000,7(2):160-8.
    87. Kim S, Kim HY, Lee S, et al.Hepatitis B virus x protein induces perinuclear mitochondrial clustering in microtubule- and Dynein-dependent manners. J Virol. 2007,81(4):1714-26.
    88. Levee MG, DebrowS MI, Lelli JL, et al. Actin polymerization and depolymerization during apoptosis in HL- 60 cells .Am J Physiol, 1996, 271( 6 pt 1) : C1981- C1982.
    89. De Meyer S,Gong Z J,Hert ogs K, et al. Influence of the administration of human annexinV on in vit ro binding of small hepatit is B surface antigen to human and to rat hepatocytes and on in vitro hepatitis B virus infection .J Viral Hepatol, 2000, 7( 2) : 104- 114.
    90. Gong ZJ, De Meyer S, van Pelt J, et al.Transfection of a rat hepatoma cell line with a construct expressing human liver annexin V confers susceptibility to hepatitis B virus infection. Hepatology, 1999, 29( 2) : 576- 84.
    91.李想,郭虹敏,薛世伟.乙型肝炎病毒受体研究进展.生物技术通讯,21(3):438-442.
    92.叶峰,李淑红,陈天燕等.人膜联蛋白在胎儿不同组织中的表达.南方医科大学学报,2006, 26(2): 193-195.
    93.李淑红,岳亚飞,赵小鸽等. Human Annexin在不同胎盘中的表达的定量分析.中国优生与遗传杂志, 2005,13(10):31-33.
    94.陈江涛,吉艳红,王光祥等.膜联蛋白A2参与病毒复制循环研究进展.中国人兽共患病学报,2010, 26( 6):592-595.
    95. Derry MC, Sutherland MR, Restall CM, et al. Annexin 2-mediated enhancement of cytomega- lovirus infection opposes inhibition by annexin 1 or annexin 5. J Gen Virol. 2007,88(Pt 1):19-27.
    96. Katoh N. Detection of annexins I and IV in bronchoalveolar lavage fluids from calves inoculated with bovine herpes virus-1. J Vet Med Sci. 2000, 62(1):37-41.
    97. Sun J, Shi Z, Guo H, et al. Changes in the porcine peripheral blood mononuclear cell proteome induced by infection with highly virulent classical swine fever virus. J Gen Virol. 2010,91(Pt 9): 2254-62.
    98. Chen Z, Yoshihara E, Son A, et al. Differential roles of Annexin A1 (ANXA1/ lipocortin-1/ lipomo- dulin) and thioredoxin binding protein-2 (TBP-2/VDUP1/TXNIP) in glucocorticoid signaling of HTLV-I-transformed T cells. Immunol Lett. 2010 Jun 15;131(1):11-8. Epub 2010 Apr 14.
    99. Al Ghumlas AK, Abdel Gader AG, Al Faleh FZ.Natural anticoagulants and fibrinolytic activity following nterferon therapy in chronic viral hepatitis. Blood Coagul Fibrinolysis, 2008,19: 263- 267.
    100.Yang Q, Cheng J, Dong J, et al.Molecular epidemiological study on pre-X region of hepatitis B virus and identifi cation of hepatocyte proteins interacting with whole-X protein by yeast two- hybrid. World J Gastroenterol 2005,11: 3473-347.
    101.Chen JY, Chen WN, Liu LL,et al. Hepatitis B spliced protein (HBSP) generated by a spliced hepatitis B virus RNA participates in abnormality of fibrin formation and functions by binding to fibrinogenγchain. J Med Virol. 2010 Dec;82(12):2019-26.
    102.周飞,任建林,卢雅丕等.乙型肝炎病毒全S蛋白与纤维蛋白原α链的相互作用.世界华人消化杂志, 2008,16(23): 2581-2586
    103.Hashimoto M, Takeda Y, Sato T, et al. Dynamic changes of NADH fluorescence images and NADH content during spreading depression in the cerebral cortex of gerbils. Brain Res, 2000, 872(1-2): 294-300
    104.Brain A, Joseph L, Batya C, et al. In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy. Photochem Photobiol, 2001, 74(6): 817-21.
    105.刘发全,张积仁. NADH抗紫外线诱导的肝细胞株LO2凋亡.第一军医大学学报,2002, 22(3): 232-234
    106.Irshad M, Chaudhuri PS, Joshi YK.Superoxide dismutase and total anti-oxidant levels invarious forms of liver diseases. Hepatol Res. 2002,23(3):178-184.
    107.Lin CC, Liu WH, Wang ZH, et al. Vitamins B status and antioxidative defense in patients with chronic hepatitis B or hepatitis C virus infection. Eur J Nutr. 2011,50(7):499-506.
    108.Tsai SM, Lin SK, Lee KT, et al. Evaluation of redox statuses in patients with hepatitis B virus- associated hepatocellular carcinoma. Ann Clin Biochem. 2009,46(Pt 5):394-400.
    109.Yao D, Li H, Gou Y, et al. Betulinic acid-mediated inhibitory effect on hepatitis B virus by suppression of manganese superoxide dismutase expression. FEBS J. 2009 May;276(9):2599-614.
    110.Otegbayo JA, Arinola OG, Aje A,et al.Usefulness of acute phase proteins for monitoring development of hepatocellular carcinoma in hepatitis B virus carriers. West Afr J Med. 2005,24(2): 124-7.
    111.张宏,李强,李友生等.乙肝肝硬化患者血清铁蛋白、转铁蛋白水平检测及意义.标记免疫分析与临床, 2009,16(2):75-76.
    112.Gagliardi MC, Nisini R, Benvenuto R, et al.Soluble transferrin mediates targeting of hepatitis B envelope antigen to transferrin receptor and its presentation by activated T cells. Eur J Immunol. 1994,24(6):1372-6.
    1.徐德忠,闫永平,徐剑秋等.乙型肝炎病毒宫内传播因素和机制的分子流行病学研究.中华医学杂志, 1999,79(1):24-28.
    2.李铁钢,王素萍.胎盘组织HBV感染及其机制的研究状况.现代预防医学,2008,35(2):4241-4244.
    3.马建新,白刚钻,冯丽萍等.妊娠中晚期乙型肝炎表面抗原阳性妇女胎盘感染的研究.中华妇产科杂志,2000,35(11):654-657.
    4.王爱莉,戴笙,初兆荣,等.乙肝病毒母婴垂直传播胎盘超微结构变化.中华围产医学杂志,2001, 4(1):7-9.
    5. Xu DZ,Yan YP,Zou SM,et al. Role of placental tissues in the intrauterine transmission of hepatitis B virus. Am J Obstet Gynecol , 2001 ,185: 2981-987.
    6. Xu D, Yan Y, Choi B, et al. Risk factors and mechanisms of transplacental transmission of hepatitis B virus: a case-control study. J Med Virol, 2002,67(1):20-26.
    7.侯稳,王健,高克发.HBV垂直传播途径细胞分子机制.现代预防医学, 2007,34(5):847-850.
    8. Walter E , Keist R , Niederost B , et al. Hepatitis B virus infection of tupaia hepatocytes in vitro and in vivo1 Hepatol , 1996,24:1-5.
    9. Ochiya T ,Tsurimoto T ,Uead TK, et al. An in vitro system for infection with hepatitis B virus that uses primary human fetal hepatocytes1 Proc Natl Acad Sci U S A , 1989 , 86 :1875-1879.
    10. Gripon P , Rumin S , Urban S , et al. Infection of a human hepatoma cell line by hepatitis B virus.Proc Natl Acad Sci U S A , 2002 ,99 : 15655- 15660.
    11. Para N ,Geiger B , Shaul Y. HBV infection of cell culture : evidence for multivalent and cooperative attachment.J EMBO , 2001 ,20 : 4443-4453.
    12. Zhang L, Zhang W, Shao C, et al. Establishment and characterization of a spontaneously immortalized trophoblast cell line (HPT-8) and its hepatitis B virus-expressing clone. Hum Reprod. 2011, 26(8):2146-56.
    13.王安辉,门可,张景霞等. HBV阳性血清体外感染HepG2细胞的实验研究.第四军医大学学报, 2003 ,24:2287-2289.
    14.王安辉,门可,徐德忠等.乙型肝炎病毒阳性血清体外感染HepG2细胞的实验研究.中华实验和临床病毒学杂志,2005,19(2):169-172.
    15.王爱莉,戴笙,初兆荣等.乙肝病毒母婴垂直传播胎盘超微结构变化.中华围产医学杂志,2001, 4(1):7-10.
    16.白菡,何丽霞,张琳. HBV的宫内传播与人绒毛膜滋养层细胞的HBV感染和凋亡关系的研究.中国现代医学杂志2008,18(1):8-14.
    1. Lewis B P, Burge C B, Bartel D P. Conserved seed pairing often flanked by adenosines indicates that thousands of human genes are microRNA targets. Cell, 2005,120(1):15-20.
    2. Qi P, Han J X,Lu Y Q, et al. Virus-encoed microRNAs future therapeutic targets ?Cell Mol Immunol,2006,3(6) :411-419.
    3. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001, 294(5543):853-858.
    4. Beuvink I, Kolb FA, Budach W, Garnier A, Lange J, et al. A novel microarray approach reveals new tissue-specific signatures of known andpredicted mammalian microRNAs. NucleicAcids Res. 2007;35(7):e52.
    5. Reinhart BJ, Bartel DP. Small RNAs correspond to centromere heterochromatic repeats. Science. 2002,297(5588):1831.
    6. Hutvágner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002,297(5589):2056-2060.
    7. Sun BK, Tsao H. Small RNAs in development and disease. J Am Acad Dermatol. 2008, 59(5):725-37.
    8. Hofacker IL. How microRNAs choose their targets . Nat Genet, 2007, 39( 10) : 1191- 1192
    9. Griffiths- Jones S. miRBase: the microRNA sequence database .Methods Mol Biol, 2006, 342: 129- 138.
    10. Betel D, Wilson M, Gabow A, et al. The microRNA. org resource:targets and expression . Nucleic Acids Res, 2008, 36: D149- D153.
    11.张海峰,吴炳礼,方国强等.建立在芯片与生物信息学预测基础上的miRNA靶基因鉴定研究进展.癌变畸变突变,21(2):153-155.
    12. Gottwein E, Cullen BR. Viral and cellu lar m icroRNA s as determinants of viral pathogenesis and immunity. Cell H ost M icrobe,2008, 3 ( 6) : 375-387.
    13. Skalsky RL, SamolsMA, Plaisance KB, et al. Kaposis sarcoma associated herpesv irus encodes an ortholog of miR-155 . J Virol,2007, 81( 23) : 12836-12845.
    14. Berkhout, B., Jeang, K.T., 2007. RISCy business: microRNAs, pathogenesis, and viruses. J. Biol. Chem. 282, 26641–26645.
    15. De Vries, W., Berkhout, B., 2008. RNAi suppressors encoded by pathogenic human viruses. Int. J. Biochem. Cell Biol. 40, 2007–2012.
    16. Sullivan CS, Ganem D MicroRNAs and viral infection. Mol Cell. 2005,20(1): 3-7.
    17. Sullivan CS, Grundhoff AT, Tevethia S, et al. SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature. 2005; 435(7042): 682-686.
    18. Lecellier CH, Dunoyer P, Arar K, et al. A cellular microRNA mediates antiviral defense in human cells. Science. 2005; 308(5721): 557-560.
    19. Ji F, Yang B, Peng X,et al. Circulating microRNAs in hepatitis B virus-infected patients. J Viral Hepat. 2011,18(7):e242-51.
    20. Li LM, Hu ZB, Zhou ZX,et al. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res. 2010,70 (23):9798-807.
    21. Wang Y, Lu Y, Toh ST, et al. Lethal-7 is down-regulated by the hepatitis B virus x protein and targets signal transducer and activator of transcription 3. J Hepatol. 2010,53(1): 57-66.
    22. Liu Y, Zhao JJ, Wang CM, et al. Altered expression profiles of microRNAs in a stable hepatitis B virus-expressing cell line. Chin Med J (Engl). 2009,122(1):10-4.
    23. Su C, Hou Z, Zhang C,et al. Ectopic expression of microRNA-155 enhances innate antiviral immunity against HBV infection in human hepatoma cells. Virol J. 2011 J,8:354.
    24. Fan CG, Wang CM, Tian C,et al.miR-122 inhibits viral replication and cell proliferation in hepatitis B virus-related hepatocellular carcinoma and targets NDRG3. Oncol Rep. 2011 ,26(5):1281-6.
    25. Tang L, Pu Y, Wong DK, et al. The hepatitis B virus-associated estrogen receptor alpha (ERalpha) was regulated by microRNA-130a in HepG2.2.15 human hepatocellular carcinoma cells. Acta Biochim Biophys Sin (Shanghai). 2011,43(8):640-6.
    26. Xie QH, He XX, Chang Y, et al. MiR-192 inhibits nucleotide excision repair by targeting ERCC3 and ERCC4 in HepG2.2.15 cells. Biochem Biophys Res Commun. 2011,410(3): 440-5.
    27. Guo H, Liu H, Mitchelson K,et al. MicroRNAs-372/373 promote the expression of hepatitis B virus through the targeting of nuclear factor I/B. Hepatology. 2011 May 23.doi: 10.1002/hep.24441. [Epub ahead of print]
    28. Zhang X, Zhang E, Ma Z,et al. Modulation of hepatitis B virus replication and hepatocyte differentiation by MicroRNA-1. Hepatology. 2011,53(5):1476-85.
    29. Huang J, Wang Y, Guo Y,et al. Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1 (DNMT1.)Hepatology. 2010,52(1):60-70.
    30. Gao YF, Yu L, Wei W, et al. Inhibition of hepatitis B virus gene expression and replication by artificial microRNA. World J Gastroenterol. 2008,14(29):4684-9.
    31. Wu FL, Jin WB, Li JH,et al. Targets for human encoded microRNAs in HBV genes. Virus Genes. 2011,42(2):157-61.
    32. Potenza N, Papa U, Mosca N, et al. Human microRNA hsa-miR-125a-5p interferes with expression of hepatitis B virus surface antigen. Nucleic Acids Res. 2011,39(12):5157-63.
    33. Zhang GL, Li YX, Zheng SQ,et al. Suppression of hepatitis B virus replication by microRNA-199a-3p and microRNA-210. Antiviral Res. 2010,88(2):169-75.
    34. Kotlabova K, Doucha J, Hromadnikova I. Placental-specific microRNA in maternal circulation--identification of appropriate pregnancy-associated microRNAs with diagnostic potential. J Reprod Immunol. 2011, 89(2):185-91.
    35. Prieto DM, Markert UR. MicroRNAs in pregnancy. J Reprod Immunol. 2011,88(2): 106-11.
    36. Miura K, Miura S, Yamasaki K, et al. Identification of pregnancy-associated microRNAs in maternal plasma. Clin Chem. 2010,56(11):1767-71.
    37. Luo SS, Ishibashi O, Ishikawa G, et al. Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. Biol Reprod. 2009, 81(4):717-29.
    38. Montenegro D, Romero R, Kim SS, et al. Expression patterns of microRNAs in the chorioamniotic membranes: a role for microRNAs in human pregnancy and parturition. J Pathol. 2009,217(1):113-21.
    39. Enquobahrie DA, Abetew DF, Sorensen TK, et al. Placental microRNA expression in pregnancies complicated by preeclampsia. Am J Obstet Gynecol. 2011,204(2): 178.e 12-21.
    40. Mayor-Lynn K, Toloubeydokhti T, Cruz AC, et al. Expression profile of microRNAs andmRNAs in human placentas from pregnancies complicated by preeclampsia and preterm labor. Reprod Sci. 2011,18(1):46-56.
    41. Maccani MA, Avissar-Whiting M, Banister CE, et al. Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics. 2010,5(7):583-9.
    42. Maccani MA, Padbury JF, Marsit CJ. miR-16 and miR-21 expression in the placenta is associated with fetal growth. PLoS One. 2011;6(6):e21210.
    43. Zhu XM, Han T, Wang XH, et al. Overexpression of miR-152 leads to reduced expression of human leukocyte antigen-G and increased natural killer cell mediated cytolysis in JEG-3 cells. Am J Obstet Gynecol. 2010,202(6):592.e1-7.
    44. Morales-Prieto DM, Schleussner E, Markert UR.Reduction in miR-141 is induced by leukemia inhibitory factor and inhibits proliferation in choriocarcinoma cell line JEG-3. Am J Reprod Immunol. 2011,66 Suppl 1:57-62.
    45. Zheng D, Haddadin S, Wang Y, et al. Plasma miRNAs as novel biomarkers for early detection of lung cancer. Int J Clin Exp Pathol. 2011,4(6):575-86.
    46. Li X, Zhang Y, Zhang H, et al. miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3. Mol Cancer Res. 2011,9(7):824-33.
    47. Dai Y, Xie CH, Neis JP, et al. MiRNA expression profiles of head and neck squamous cell carcinoma with docetaxel-induced multidrug resistance. Head Neck. 2011,33(6):786-91.
    48. Zampetaki A, Kiechl S, Drozdov I, et al. Plasma miRNA profiling reveals loss of endothelial miRNA-126 and other miRNAs in type 2 diabetes. Circ Res. 2010,107(6): 810-7.
    49. Zampetaki A, Willeit P, Yin X, et al. 45 Prospective study on plasma miRNAs and risk of myocardial infarction. Heart. 2011,97(20):349-54.
    50. Li X, Luo F, Li Q, Xu M, et al. Identification of new aberrantly expressed miRNAs in intestinal-type gastric cancer and its clinical significance. Oncol Rep. 2011,26(6):1431-9.
    51. Gocek E, Wang X, Liu X,et al.MiRNA-32 Upregulation by 1,25-Dihydroxyvitamin D3 in Human Myeloid Leukemia Cells Leads to Bim Targeting and Inhibition of AraC-Induced Apoptosis. C ancer Res. 2011 Sep 20. [Epub ahead of print]
    52. Dacic S, Kelly L, Shuai Y, et al. miRNA expression profiling of lung adenocarcinomas: correlation with mutational status. Mod Pathol. 2010,23(12):1577-82.
    53. Devlin C, Greco S, Martelli F, et al. miRNA-210: More than a silent player in hypoxia. IUBMB Life. 2011,;63(2):94-100.
    54. Kelly TJ, Souza AL, Clish CB, et al. A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1alpha stability through miRNA-210 suppression of glycerol-3-phosphate dehydrogenase 1-like. Mol Cell Biol. 2011,31(13):2696-706.
    55. Tsuchiya S, Fujiwara T, Sato F, et al. MiRNA-210 regulates cancer cell proliferation through targeting fibroblast growth factor receptor-like 1 (FGFRL1). J Biol Chem. 2011,286(1):420-8.
    56. Neal CS, Michael MZ, Rawlings LH, et al. The VHL-dependent regulation of miRNAs in renal cancer. BMC Med. 2010, 8:64.
    57. Puisségur MP, Mazure NM, Bertero T, et al. miRNA-210 is overexpressed in late stages of lung cancer and mediates mitochondrialalterations associated with modulation of HIF-1 activity. Cell Death Differ. 2011,18(3):465-78.
    58. Gee HE, Camps C, Buffa FM, et al. hsa-miRNA-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer. 2010,116(9):2148-58.
    59. Chen Z, Li Y, Zhang H, et al. Hypoxia-regulated miRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene. 2010,29(30):4362-8.
    60. Soares MR, Huber J, Rios AF, et al.Investigation of IGF2/ApaI and H19/RsaI polymorphisms in patients with cutaneous melanoma. Growth Horm IGF Res. 2010,20(4): 295-7.
    61. Gui J, Tian Y, Wen X,et al. Serum miRNA characterization identifies miRNA-885-5p as a potential marker for detecting liver pathologies. Clin Sci (Lond). 2011,120(5):183-93.
    62. Trompeter HI, Abbad H, Iwaniuk KM,et al MiRNAs MiRNA-17, MiRNA-20a, and MiRNA-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC. PLoS One. 2011,6(1):e16138.
    63. Pickering MT, Stadler BM, Kowalik TF.miRNA-17 and miRNA-20a temper an E2F1-induced G1 checkpoint to regulate cell cycle progression. Oncogene. 2009,28(1): 140-5.
    64. Zhang M, Liu Q, Mi S, et al. Both miRNA-17-5p and miRNA-20a alleviate suppressive potential of myeloid-derived suppressor cells by modulating STAT3 expression. J Immunol. 2011,186(8):4716-24
    65. Cox MB, Cairns MJ, Gandhi KS, et al. MiRNAs miRNA-17 and miRNA-20a inhibit T cell activation genes and are under-expressed in MS whole blood. PLoS One. 2010,5(8): e12132.
    66. Yan H, Wu J, Liu W, et al. MiRNA-20a overexpression inhibited proliferation and metastasis of pancreatic carcinoma cells. Hum Gene Ther. 2010,21(12):1723-34.
    67. Yu Z, Willmarth NE, Zhou J, et al. miRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci U S A. 2010,107 (18):8231-6.
    1. Bhat P, Anderson DA. Hepatitis B virus translocates across a trophoblastic barrier[J].J Virol. 2007, 81(13):7200-7207.
    2. Ohto H, Lin HH, Kawana T, et al. Intrauterine transmission of hepatitis B virus is closely related to placental leakage[J]. J Med Virol, 1987, 21(1):1-6.
    3. Xiao XM, Li AZ, Chen X, et al. Prevention of vertical hepatitis B transmission by hepatitis Bimmunoglobulin in the third trimester of pregnancy[J]. Int J Gynaecol Obs-tet., 2007, 96(3):167-70.
    4. WANG Xue-ping, XU De-zhong, LI Yuan-gui, et al. HBsAg uptake into human trophoblasts cultured in vitro[J]. Journal of First Military Medical University, 2003,23(1): 16-20.
    5.王雪萍,徐德忠,李远贵,等.HBsAg进入体外培养的人绒毛膜滋养层细胞的初步研究[J].第一军医大学学报,2003,23(1):16-20.
    6.徐德忠,闫永平,王素萍,等.胎盘组织在乙型肝炎病毒宫内传播中的作用及其机制研究[J].中华医学杂志,2001,81(3):176-177.
    7. Xu DZ, Yan YP, Choi BC,et al.Risk factors and mechanism of transplacental transm-ission of hepatitis B virus: a case-control study[J]. J Med Virol, 2002 , 67(1): 20-26.
    8. Xu DZ, Yan YP, Zou S, et al. Role of placental tissues in the intrauterine transmis-sion of hepatiits B virus[J]. Am J Obestet Gynecol, 2001, 185(4):981-987.
    9. Ghendon Y.Perinatal transmission of hepatitis B virus in high incidence countries[J].J Virol Met h, 1987, 17(1-2):69-79.
    10. ZHU Qi rong, YU Hui, CHEN Hui, et al. Study on a combined antepartum and postpartum to interrupt the transmission of hepatitis B virus from mother with both positive HBsAg and HBeAg to infant[J]. Chinese Journal of Infectious Diseases, 2004,22 (3):160-163.
    11.朱启镕,俞惠,陈慧,等.产前和产后联合阻断HBsAg、HBeAg阳性孕妇母婴传播的研究[J].中华传染病杂志,2004,22(3):160-163.
    12. LIU Peng Bo, XU De Zhong, WANG Xin, et al. Distribution of Fcγreceptor in human placenta[J]. Journal of The Fourth Military Medical University, 2001,22(5):459-461.
    13.刘蓬勃,徐德忠,王歆,等.Fcγ受体在胎盘细胞的分布[J].第四军医大学学报,2001,22 (5):459-461.
    14. SU Hai xia, YAN Yong ping, XU De zhong, et al. Sequencing analysis of preS/S gene of hepatitis B virus in intrauterine transmission[J]. China Public Health, 2003,19(7): 770-772.
    15.苏海霞,闫永平,徐德忠,等.宫内传播中乙型肝炎病毒前S/S基因序列分析[J].中国公共卫生,2003,19(7):770-772.
    16. CHEN Su-qing, ZHU Qi-rong, WANG Jian-she, et al. Study on the S region gene mutation of hepatitis B virus during prevention of HBV transmission in uterus with hepatitis B immunoglobulin[J]. Chinese Journal of Epidemiology, 2006,27(6):522-525.
    17.陈素清,朱启镕,王建设.乙型肝炎免疫球蛋白阻断乙肝病毒母婴传播过程中病毒S区基因变异的研究[J].中华流行病学杂志,2006,27(6):522-525.
    18. LIU Hai-ying, KONG Bei-hua, LUO Xia, et al. Study on the association between maternal-infantile vertical transmission of hepatitis B virus and human leukocyte antigen DR gene domain[J]. Chinese Journal of Obstetrics and Gynecology, 2003,38(10): 599-603.
    19.刘海英,孔北华,罗霞,等.乙型肝炎病毒母婴垂直传播与人类白细胞抗原-DR区域基因相关性的研究[J].中华妇产科杂志,2003,38(10):599-603.
    20. GU Shao-qing, ZHU Qi-rong, YU Hui, et al. Relationship between genetic polymorphism of tumor necrosis factor-αand susceptibility to intrauterine HBV infection[J]. Chinese Journal of Hepatology, 2004,12(9):538-539.
    21.顾绍庆,朱启镕,俞惠,等.肿瘤坏死因子-α基因多态性与乙型肝炎病毒宫内感染易感性的关系[J].中华肝脏病杂志,2004,12(9):538-539.
    22. FENG Yong-liang, WANG Su-ping, SHI Xiao-hong, et al. STUDY ON THE RELATIONSHIP OF PBMC HBV cccDNA AND INTRAUTERI NE INFECTION[J]. Modern Preventive Medicine, 2005,32(3):192-194.
    23.冯永亮,王素萍,史晓红,等. PBMC中HBV cccDNA与HBV宫内感染关系的研究[J].现代预防医学,2005,32(3):192-194.
    24. WANG Xiao-jun, WANG Su-ping, LI Tie-gang, et al. Relationship between PBMC transportation and hepatitis B virus intrauterine transmission[J]. Chinese Journal of Public Health, 2007,23(5):571-572.
    25.王效军,王素萍,李铁钢,等. PBMC转运与乙型肝炎病毒宫内传播关系[J].中国公共卫生,2007,23(5):571-572.
    26. Papadakis MA, Elefsiniotis IS, Vlahos G, et al. Intrauterine-transplacental transmissi-on of hepatitis B virus (HBV) from hepatitis B e antigen negative (precore mutan-t, G1896A) chronic HBV infected mothers to their infants. Preliminary results of a prospective study[J]. J Clin Virol, 2007, 38(2):181-3.
    27. Zhang R, Barker L, Pinchev D, et al. Mining biomarkers in human sera using proteo-mic tools[J]. Proteomics, 2004, 4(1):244-56.
    28. Robinson JM, Ackerman WE 4th, Kniss DA, et al. Proteomics of the human placenta: promises and realities[J]. Placenta, 2008, 29(2):135-43.
    29. Luciano-Montalvo C, Ciborowski P, Duan F, et al. Proteomic analyses associate cystatin B with restricted HIV-1 replication in placental macrophages[J]. Placenta, 2008, 29(12):1016-23.
    30. Mine K, Katayama A, Matsumura T, et al. Proteome analysis of human placentae: pre-eclampsia versus normal pregnancy[J]. Placenta, 2007, 28(7):676-87.
    31. Juqiang Han, Lihua Ding, Bin Yuan, et al. The estrogen receptor variant lacking exon 5 and Hepatitis B virus X protein inhibit estrogen receptor signaling in hepatoma cells[J]. Nucleic Acids Research, 2006,34(10):3095-3106.
    1. Godovac-Zimmermann J, Kleiner O, Brown LR, Drukier AK. Perspectives in spicing up proteomics with splicing. Proteomics 2005;5:699-709.
    2. Romero R, Espinoza J, Gotsch F, Kusanovic JP, Friel LA, Erez O, et al.The use of high-dimensional biology (genomics, transcriptomics, proteomics, and metabolomics) to understand the preterm parturition syndrome. BJOG 2006;113:118-35.
    3. Archakov AI, Ivanov YD. Analytical nanobiology for medicine diagnostics.Mol Biosyst 2007;3:336-42.
    4. Moseley FL, Bicknell KA, Marber MS, Brooks G. The use of proteomics to identify novel therapeutic targets for treatment of disease. J Pharm Pharmacol 2007;59:609-28.
    5. Moro′n JA, Devi LA. Use of proteomics for the identification of novel targets in brain disease. J Neurochem 2007;102:306-15.
    6. Marko-Varga G, Ogiwara A, Nishimura T, Kawamaura T, Fujii K, Kawakami Y, et al. Personalized medicine and proteomics: lessons from non-small cell lung cancer. J Proteome Res 2007;6:2925-35.
    7. Huber LA. Is proteomics heading in the wrong direction? Nature Rev Mol Cell Biol 2003;4:74-80.
    8. Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts, and new ideas. Electrophoresis 1998;19:1853-61.
    9. Corthals GL, Wasinger VC, Hochstrasser DF, Sanchez J-C. The dynamic range of protein expression: a challenge for proteomics research. Electrophoresis 2000;21:1104-15.
    10. Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA 2000;97:9390-5.
    11. Righetti PG, Castagna A, Herbert B, Candiano G. How to bring the‘unseen’proteome to the limelight via electrophoretic pre-fractionation techniques. Biosci Rep 2005;25:3-17.
    12. Grabis S, Lubec G, Fountoulakis M. Limitations of current proteomics technologies. J Chromatogr A 2005;1077:1-18.
    13. Luche S, Santoni V, Rabilloud T. Evaluation of nonionic and zwitterionic detergents as membrane protein solubilizers in two-dimensional electrophoresis. Proteomics 2003;3:249-53.
    14. Hu Y, Huang X, Chen GYJ, Yao SQ. Recent advances in gel-based proteome profiling techniques. Mol Biotechnol 2004;28:63-76.
    15. Ahmed N, Rice GE. Strategies for revealing lower abundance proteins in two- dimensional protein maps. J Chromatogr B 2005;815:39-50.
    16. Zahedi R-P, Meisinger C, Sickmann A. Two-dimensional benzyldimethyl-n- hexadecylammonium chloride/DSD-PAGE for membrane proteomics. Proteomics 2005;5: 3581-8.
    17. Schindler J, Nothwag HG. Aqueous polymer two-phase systems: effective tools for plasma membrane proteomics. Proteomics 2006;6:5409-17.
    18. Slomianny MC, Dupont A, Bouanou F, Beseme O, Guihot AL, Amouyel P, et al. Profiling of membrane proteins from human macrophages: comparison of two approaches. Proteomics 2006;6:2365-75.
    19. Bodzon-Kulakowska A, Bierczynska-Krzysik A, Dylag T, Drabik A, Suder P, Noga M, et al. Methods for sample preparation in proteomics research. J Chromatogr B 2007;849: 1-31.
    20. Lopez JL. Two-dimensional electrophoresis in proteome expression analysis. J Chromatogr B 2007;849:190-202.
    21. Canas B, Pineiro C, Calvo E, Lopez-Ferrer D, Gallardo JM. Trends in sample preparation for classical and second generation proteomics. J Chromatogr A 2007;1153:235-58.
    22. Rabilloud T, Luche S, Santoni V, Chevallet M. Detergents and chaotropes for protein solubilization before two-dimensional electrophoresis. Methods Mol Biol 2007;355: 111-9.
    23. Rice GE, Georgiou HM, Ahmed N, Shi G, Kruppa G. Translational proteomics: Developing a predictive capacityda review. Placenta 2006;27(Suppl. A):S76-86.
    24. Stasyk LF, Huber LA. Zooming in: fractionation strategies in proteomics. Proteomics 2004;4:3704-16.
    25. Dreger M.Subcellular proteomics.Mass SpectrometryRev 2003;22:27-56.
    26. Righetti PG, Castagna A, Herbert B, Reymond F, Rossier JS. Prefractionation techniques in proteome analysis. Proteomics 2003;3: 1397-407.
    27. Au CE, Bell AW, Gilchrist A, Hiding J, Nilsson T, Bergeron JJM. Cellular proteomics tocreate the cell map. Curr Opin Cell Biol 2007;19:376-85.
    28. MacLellan DL, Steen H, Adam RM, Garlick M, Zurakowski D, Gygi SP, et al. A quantitative proteomic analysis of growth factor-induced compositional changes in lipid rafts of human smooth muscle cells. Proteomics 2005;5:4733-42.
    29. Gupta N, Wollscheid B, Watts JD, Scheer B, Aebersold R, DeFranco AL. Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics. Nat Immunol 2006;7:625-33.
    30. Dasari S, Pereira L, Reddy AP, Michaels J-E, Lu X, Jacob T, et al. Comprehensive proteomics analysis of human cervical-vaginal fluid. J Proteome Res 2007;6:1258e68.
    31. Pereira L, Reddy AP, Jacob T, Thomas A, Schneider KA, Dasari S, et al. Identification of novel biomarkers of preterm birth in human cervicale vaginal fluid. J Proteome Res 2007; 6:1269-76.
    32. Buhimschi I, Christner R, Buhimschi CS. Proteomic biomarker analysis of amniotic fluid for identification of intra-amniotic inflammation. BJOG 2005;112:173-81.
    33. Michel PE, Crettaz D, Morier P, Heller M, Gallot D, Tissot J-D, et al. Proteome analysis of human plasma and amniotic fluid by Off-Gel_ isoelectric focusing followed by nano- LC-MS/MS. Electrophoresis 2006;27:1169-81.
    34. Tsangaris GT, Karamessinis P, Kolialexi A, Garbis SD, Antsaklis A, Mavrou A, et al. Proteomics analysis of amniotic fluid in pregnancies with Down syndrome. Proteomics 2006;6:4410-9.
    35. Shankar R, Gude N, Cullinane F, Brennecke S, Purcell AW, Moses EK. An emerging role for comprehensive proteome analysis in human pregnancy research. Reproduction 2005;129:685-96.
    36. Webster RP, Myatt L. Elucidation of the molecular mechanisms of pre-eclampsia using proteomics technologies. Proteomics-Clin Appl 2007;1:1147-57.
    37. Hoang VM, Foulk R, Clauser K, Burlinggame A, Gibson BW, Fisher SJ. Functional proteomics: examining the effects of hypoxia on the cytotrophoblast protein repertoire. Biochemistry 2001;40:4077-86.
    38. Anderson JS, Lam YW, Leung AK, Ong SE, Lyon CE, et al. Nucleolar proteome dynamics. Nature 2005;433:77-83.
    39. Wittmann-Liebold B, Graack H-R, Pohl T. Two-dimensional gel electrophoresis as toolfor proteomics studies in combination with protein identification by mass spectrometry. Proteomics 2006;6:4688-703.
    40. Santoni V, Molloy M, Rabilloud T. Membrane proteins and proteomics: Un amour impossible? Electrophoresis 2000;21:1054-70.
    41. Sawicki G, Dakour J, Morrish DW. Functional proteomics of neurokinin B in the placenta indicated a novel role in regulating cytotrophoblast antioxidant defenses. Proteomics 2003;3:2044-51.
    42. Page NM, Woods RJ, Gardiner SM, Lomthaisong K, Gladwell RT, Butlin DJ, et al. Excessive placental secretion of neurokinin B during the third trimester causes pre-eclampsia. Nature 2000;405:797-800.
    43. Sun LZ, Yang NN, De W, Xiao YS. Proteomics analysis of proteins differentially expressed in pre-eclamptic trophoblasts. Gynecol Obstet Invest 2007;64:17-23.
    44. Mine K, Katayama A, Matsumura T, Nishino T, Kuwabara Y, Ishikawa G, et al. Proteome analysis of human placentae: pre-eclampsia versus normal pregnancy. Placenta 2007;28:676-87.
    45. Webster RP, Brockman D, Myatt L. Nitration of p38 MAPK in the placenta: association of nitration with reduced catalytic activity of p38 MAPK in pre-eclampsia. Mol Human Reprod 2006;12:677-85.
    46. Liu A-X, Zhang W-W, Zhou T-H, Zhou C-Y, Yao W-M, Qian Y-L, et al. Proteomics analysis on the alteration of protein expression in the placental villous tissue of early pregnancy loss. Biol Reprod 2006;75:414-20.
    47. Butt RH, Lee MWY, Pirshahid SA, Backlund PS, Wood S, Coorssen JR. An initial proteomics analysis of human preterm labor: placental membranes. J Proteome Res 2006; 5:3161-72.
    48. Vorum H, ?stergaard M, Hensechke P, Enghild JJ, Riazati M, Rice GE. Proteomic analysis of hyperoxia-induced responses in the human choriocarcinoma cell line JEG-3. Proteomics 2004;4:861-7.
    49. Hu R, Jin H, Zhou S, Yang P, Li X. Proteomics analysis of hypoxiainduced responses in the syncytialization of human placental cell line BeWo. Placenta 2007;28:399-407.
    50. Nampoothiri LP, Neelima PS, Rao AJ. Proteomic profiling of forskolininduced differentiated BeWo cells: an in-vitro model of cytotrophoblast differentiation. ReprodBioMed Online 2007;14:477-87.
    51. Ishioka S-I, Ezaka Y, Umemura K, Hayashi T, Endo T, Saito T. Proteomic analysis of mechanisms of hypoxia-induced apotosis in trophoblastic cells. Int J Med Sci 2007;4: 36-44.
    52. Paradela A, Bravo SB, Henriquez M, Riquelme G, Gavilanes F, Gonzalez-Ros JM, et al. Proteomic analysis of apical microvillous membranes of syncytiotrophoblast cells reveals a high degree of similarity with lipid rafts. J Proteome Res 2005;4:2435-41.
    53. Carr S, Abersold R, Baldwin M, Burlinggame A, Clauser K, Nesvizskii A. The need for guidelines in publication of peptide and protein identification data. Working group on publication for peptide and protein identification data. Mol Cell Proteomics 2004;3: 531-3.
    54. Wilkins MR, Appel RD, Van Eyk JE, Chung MCM, Go¨rg A, Hecker M, et al. Guidelines for the next 10 years of proteomics. Proteomics 2006;6:4-8.
    55. Rabilloud T, Kieffer S, Procaccio V, Louwagie M, Courchesne PL, Patterson SD, et al. Two-dimensional electrophoresis of human placental mitochondria and protein identification by mass spectrometry: toward a human mitochondrial proteome. Electrophoresis 1998;19:1006-14.
    56. Lescuyer P, Strub J-M, Luche S, Diemer H, Martinez P, Van Dorsselaer A, et al. Progress in the definition of a reference human mitochondrial proteome. Proteomics 2003;3: 157-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700