CUEDC2与SOX4基因在肿瘤细胞生长调控中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本项工作主要研究了CUEDC2和SOX4蛋白质在肿瘤细胞生长调控中的作用,并发现了上述蛋白质的重要新功能:
     (一)CUEDC2是一个包含CUE结构域,但功能尚不明确的基因。CUE结构域,约含40个氨基酸残基的保守结构,广泛存在于真核细胞的蛋白质中。它能与泛素结合,既能识别单泛素也能识别多泛素,并能够促进分子内的单泛素化。我们在发现CUEDC2能够与孕激素受体(PR)结合,促进孕激素依赖的PR泛素化降解基础上(The EMBO Journal,2007),进一步研究了CUEDC2对雌激素受体α(ERα)功能的调控。研究发现CUEDC2可以通过雌激素非依赖的方式与ERα发生相互作用,并通过泛素-蛋白酶体通路促进ERα的降解。通过比较MCF-7对照细胞和MCF-7 CUEDC2干涉细胞中ERα的蛋白量,我们发现CUEDC2的干涉与ERα蛋白质水平的上调正相关。进一步的结果显示,CUEDC2抑制了ERα介导的下游靶基因的转录,并且染色质免疫沉淀实验进一步证明CUEDC2能够减少ERα与靶基因启动子区域雌激素反应元件的结合。与这些结果一致的是,CUEDC2能够抑制雌激素诱导的乳腺癌细胞增殖。以上显示,CUEDC2促进ERα蛋白质的泛素化降解,并抑制ERα功能,在乳腺癌细胞生长中发挥了重要作用。
     (二)SOX4在许多发育进程中发挥了关键作用,如胚胎心脏发育、胸腺发育和神经系统发育等。越来越多的研究还表明,SOX4蛋白质在许多肿瘤细胞中过量表达,并与疾病预后相关。但是到目前为止,SOX4在肿瘤发生和发展中的作用机制还不明确。在本研究中,我们发现SOX4蛋白质表达水平被DNA损伤信号诱导上调;更为重要的是,利用RNA干涉技术干涉内源SOX4的表达能显著抑制p53抑癌蛋白质在DNA损伤反应中的激活。以上提示,SOX4参与了DNA损伤反应中p53的激活。通过进一步研究,我们发现SOX4能结合p53,并且其相互作用随DNA损伤信号的刺激而增强。更深入的研究发现,SOX4干扰了Mdm2与p53的相互作用,抑制p53泛素化降解进而使p53稳定性增加。我们还发现,SOX4能结合p300/CBP并促进其与p53的相互作用,从而促进p53乙酰化修饰。综上,我们发现SOX4在DNA损伤激活p53的过程中发挥了关键作用及其机制,为今后更深入研究SOX4在DNA损伤和肿瘤发生中的作用提供了重要线索。
In this work,we study the roles of CUEDC2 and SOX4 in regulating the growth of tumor cells,and our findings provide novel function of these proteins.
     (1) CUEDC2 is a CUE domain-contained gene,whose function is not clear. Identified as ubiquitin binding motifs,the CUE domains are small, moderately-conserved domains of about 40 amino acid residues that are found in a variety of eukaryotic proteins.CUE domains interact with both mono- and poly-ubiquitin,and have a dual role in mono- and poly-ubiquitin recognition as well as in facilitating intramolecular monoubiquitination.Based on the finding that CUEDC2 interacts with progesterone receptor(PR) and promotes progesterone-dependent PR degradation by the ubiquitin-proteasome pathway,we further investigate the regulation of estrogen receptorα(ERα) function by CUEDC2.In this study,we identified that CUEDC2 interacts with ERαand promotes ERαdegradation through the ubiquitin-proteasome pathway in a ligand independent manner.Assessment of ERαlevels in the MCF-7/Control shRNA and MCF-7/CUE shRNA cells demonstrated that knocking down CUEDC2 is associated with increased ERαexpression level.We also show that CUEDC2 represses the transcription of ERαtarget genes,and chromatin immunoprecipitation assays further demonstrate that CUEDC2 associates with the reduced occupancy of ERαto ERE.In concern with these results,we show that CUEDC2 inhibites estrogen-mediated proliferation of breast cancer cells.These findings provide evidence that CUEDC2 promotes the ubiquitination and degradation of ERα,inhibits its transcriptional activity and that this protein is of importance in regulating the growth of breast cancer cells.
     (2) SOX4 plays important roles in many developmental processes,such as embryonic cardiac development,thymocyte development and nervous system development.Recently,increasing evidence has shown that SOX4 is highly up-regulated in a number of tumors and correlates with better survival in some tumor patients.However,the precise mechanism by which SOX4 is involved in tumorigenesis remains largely unknown.Here we show that SOX4 protein level is elevated following DNA damage treatment.Notably,knocking down of endogenous SOX4 by RNA interfering inhibits the stabilization and activation of p53 tumor suppressor in response to DNA damage.SOX4 interacts with p53 under normal conditions and DNA damage signals enhance their interaction.SOX4 stabilizes p53 protein by blocking Mdm2-mediated p53 ubiquitination and degradation.Furthermore,SOX4 enhances p53 acetylation by interacting with p300/CBP and facilitating p300/CBP/p53 complex formation.Thus,SOX4 may be a novel critical protein involved in the regulation of p53 stability and activity upon DNA damage.In conclusion,our findings provide insight into the roles of SOX4 in the complicated regulation network of p53 in response to DNA damage,and drugs targeting SOX4 may be a potential anti-cancer therapeutic approach for future studies.
引文
1.Deroo,B.J.& Korach,K.S.Estrogen receptors and human disease.J Clin Invest 116,561-570(2006).
    2.Nilsson,S.et al.Mechanisms of estrogen action.Physiol Rev 81,1535-1565(2001).
    3.Onate,S.A.,Tsai,S.Y.,Tsai,M.J.& O'Malley,B.W.Sequence and characterization of a coactivator for the steroid hormone receptor superfamily.Science 270,1354-1357(1995).
    4.Shiau,A.K.et al.The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen.Cell 95,927-937(1998).
    5.Tsai,M.J.& O'Malley,B.W.Molecular mechanisms of action of steroid/thyroid receptor superfamily members.Annu Rev Biochem 63,451-486(1994).
    6.Mangelsdorf,D.J.et al.The nuclear receptor superfamily:the second decade.Cell 83,835-839(1995).
    7.Shang,Y,Hu,X.,DiRenzo,J.,Lazar,M.A.& Brown,M.Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription.Cell 103,843-852(2000).
    8.McKenna,N.J.& O'Malley,B.W.Combinatorial control of gene expression by nuclear receptors and coregulators.Cell 108,465-474(2002).
    9.Kato,S.et al.Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase.Science 270,1491-1494(1995).
    10.Bourguet,W.,Ruff,M.,Chambon,P.,Gronemeyer,H.& Moras,D.Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha.Nature 375,377-382(1995).
    11.Lannigan,D.A.Estrogen receptor phosphorylation.Steroids 68,1-9(2003).
    12.Wang,C.et al.Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity.J Biol Chem 276,18375-18383(2001).
    13.Kim,M.Y.,Woo,E.M.,Chong,Y.T.,Homenko,D.R.& Kraus,W.L.Acetylation of estrogen receptor alpha by p300 at lysines 266 and 268 enhances the deoxyribonucleic acid binding and transactivation activities of the receptor.Mol Endocrinous,1479-1493(2006).
    14.Wijayaratne,A.L.& McDonnell,D.P.The human estrogen receptor-alpha is a ubiquitinated protein whose stability is affected differentially by agonists,antagonists,and selective estrogen receptor modulators.J Biol Chem 276,35684-35692(2001).
    15.Sentis,S.,Le Romancer,M.,Bianchin,C,Rostan,M.C.& Corbo,L.Sumoylation of the estrogen receptor alpha hinge region regulates its transcriptional activity.Mol Endocrinol 19,2671-2684(2005).
    16.Zhang,P.J.et al.CUE domain containing 2 regulates degradation of progesterone receptor by ubiquitin-proteasome.EMBO J 26,1831-1842(2007).
    17.Ponting,C.P.Proteins of the endoplasmic-reticulum-associated degradation pathway:domain detection and function prediction.Biochem J 351 Pt 2,527-535(2000).
    18.Donaldson,K.M.,Yin,H.,Gekakis,N.,Supek,F.& Joazeiro,C.A.Ubiquitin signals protein trafficking via interaction with a novel ubiquitin binding domain in the membrane fusion regulator,Vps9p.Curr Biol 13,258-262(2003).
    19.Shih,S.C.et al.A ubiquitin-binding motif required for intramolecular monoubiquitylation,the CUE domain.EMBO J 22,1273-1281(2003).
    20.Reid,G.et al.Cyclic,proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling.Mol Cell 11,695-707(2003).
    21.Pike,A.C.,Brzozowski,A.M.& Hubbard,R.E.A structural biologist's view of the oestrogen receptor.J Steroid Biochem Mol Biol 74,261-268(2000).
    22.Likhite,VS.,Stossi,R,Kim,K.,Katzenellenbogen,B.S.& Katzenellenbogen,J.A.Kinase-specific phosphorylation of the estrogen receptor changes receptor interactions with ligand,deoxyribonucleic acid,and coregulators associated with alterations in estrogen and tamoxifen activity.Mol Endocrinol 20,3120-3132(2006).
    23.Joel,P.B.,Traish,A.M.& Lannigan,D.A.Estradiol and phorbol ester cause phosphorylation of serine 118 in the human estrogen receptor.Mol Endocrinol 9,1041-1052(1995).
    24.Gburcik,V.& Picard,D.The cell-specific activity of the estrogen receptor alpha may be fine-tuned by phosphorylation-induced structural gymnastics.Nucl Recept Signal 4,e005(2006).
    25.Ogryzko,V.V.,Schiltz,R.L.,Russanova,V.,Howard,B.H.& Nakatani,Y.The transcriptional coactivators p300 and CBP are histone acetyltransferases.Cell 87,953-959(1996).
    26.Chen,H.et al.Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300.Cell 90,569-580(1997).
    27.Spencer,T.E.et al.Steroid receptor coactivator-1 is a histone acetyltransferase.Nature 389,194-198(1997).
    28.Nirmala,P.B.& Thampan,R.V.Ubiquitination of the rat uterine estrogen receptor:dependence on estradiol.Biochem Biophys Res Commun 213,24-31(1995).
    29.Alarid,E.T.,Bakopoulos,N.& Solodin,N.Proteasome-mediated proteolysis of estrogen receptor:a novel component in autologous down-regulation.Mol Endocrinol 13,1522-1534(1999).
    30.Nawaz,Z.,Lonard,D.M.,Dennis,A.P.,Smith,C.L.& O'Malley,B.W.Proteasome-dependent degradation of the human estrogen receptor.Proc Natl AcadSci USA 96,1858-1862(1999).
    31.Lonard,D.M.,Nawaz,Z.,Smith,C.L.& O'Malley,B.W.The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor-alpha transactivation.Mol Cell 5,939-948(2000).
    32.Ricketts,D.et al.Estrogen and progesterone receptors in the normal female breast.Cancer Res 51,1817-1822(1991).
    33.Khan,S.A.,Rogers,M.A.,Khurana,K.K.,Meguid,M.M.& Numann,P.J.Estrogen receptor expression in benign breast epithelium and breast cancer risk.J Natl Cancer Inst 90,37-42(1998).
    34.Kubbutat,M.H.,Jones,S.N.& Vousden,K.H.Regulation of p53 stability by Mdm2.Nature 387,299-303(1997).
    35.Haupt,Y.,Maya,R.,Kazaz,A.& Oren,M.Mdm2 promotes the rapid degradation of p53.Nature 387,296-299(1997).
    36.el-Deiry,W.S.et al.WAF1,a potential mediator of p53 tumor suppression.Cell 75,817-825(1993).
    37.Miyashita,T.& Reed,J.C.Tumor suppressor p53 is a direct transcriptional activator of the human bax gene.Cell 80,293-299(1995).
    38.Nakano,K.& Vousden,K.H.PUMA,a novel proapoptotic gene,is induced by p53.Mol Cell 7,683-694(2001).
    39.Aylon,Y.& Oren,M.Living with p53,dying of p53.Cell 130,597-600(2007).
    40.Craig,A.L.et al.Novel phosphorylation sites of human tumour suppressor protein p53 at Ser20 and Thrl8 that disrupt the binding of mdm2(mouse double minute 2)protein are modified in human cancers.Biochem J342(Pt 1),133-141(1999).
    41.Barlev,N.A.et al.Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases.Mol Cell 8,1243-1254(2001).
    42.Lavin,M.F.& Gueven,N.The complexity of p53 stabilization and activation.Cell Death Differ 13,941-950(2006).
    43.Tang,Y,Zhao,W.,Chen,Y,Zhao,Y.& Gu,W.Acetylation is indispensable for p53 activation.Cell 133,612-626(2008).
    44.Wilson,M.& Koopman,R Matching SOX:partner proteins and co-factors of the SOX family of transcriptional regulators.Curr Opin Genet Dev 12,441-446(2002).
    45.van de Wetering,M.,Oosterwegel,M.,van Norren,K.& Clevers,H.Sox-4,an Sry-like HMG box protein,is a transcriptional activator in lymphocytes.EMBO J 12,3847-3854(1993).
    46.Schilham,M.W.et al.Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4.Nature 380,711-714(1996).
    47.Cheung,M,Abu-Elmagd,M,Clevers,H.& Scotting,P.J.Roles of Sox4 in central nervous system development.Brain Res Mol Brain Res 79,180-191(2000).
    48.Schilham,M.W.,Moerer,P.,Cumano,A.& Clevers,H.C.Sox-4 facilitates thymocyte differentiation.Eur J Immunol 27,1292-1295(1997).
    49.Graham,J.D.,Hunt,S.M.,Tran,N.& Clarke,C.L.Regulation of the expression and activity by progestins of a member of the SOX gene family of transcriptional modulators.J Mol Endocrinol 22,295-304(1999).
    50.Ahn,S.G.et al.Sox-4 is a positive regulator of Hep3B and HepG2 cells'apoptosis induced by prostaglandin(PG)A(2)and delta(12)-PGJ(2).Exp Mol Med 34,243-249(2002).
    51.Kim,B.E.et al.Involvement of Sox-4 in the cytochrome c-dependent AIF-independent apoptotic pathway in HeLa cells induced by Delta 12-prostaglandin J2.Exp Mol Med 36,444-453(2004).
    52.Frierson,H.F.,Jr.et al.Large scale molecular analysis identifies genes with altered expression in salivary adenoid cystic carcinoma.Am J Pathol 161,1315-1323(2002).
    53.Reichling,T.et al.Transcriptional profiles of intestinal tumors in Apc(Min)mice are unique from those of embryonic intestine and identify novel gene targets dysregulated in human colorectal tumors.Cancer Res 65,166-176(2005).
    54.Friedman,R.S.et al.Molecular and immunological evaluation of the transcription factor SOX-4 as a lung tumor vaccine antigen.J Immunol 172,3319-3327(2004).
    55.Lee,C.J.,Appleby,V.J.,Orme,A.T.,Chan,W.I.& Scotting,P.J.Differential expression of SOX4 and SOX11 in medulloblastoma.J Neurooncol 57,201-214(2002).
    56.Sinner,D.et al.Sox 17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells.Mol Cell Biol 27,7802-7815(2007).
    57.Zacchi,P.et al.The prolyl isomerase Pinl reveals a mechanism to control p53 functions after genotoxic insults.Nature 419,853-857(2002).
    58.Zheng,H.et al.The prolyl isomerase Pinl is a regulator of p53 in genotoxic response.Nature 419,849-853(2002).
    59.Roe,J.S.et al.p53 stabilization and transactivation by a von Hippel-Lindau protein.Mol Cell 22,395-405(2006).
    60.Yan,C,Lu,D.,Hai,T.& Boyd,D.D.Activating transcription factor 3,a stress sensor,activates p53 by blocking its ubiquitination.Embo J 24,2425-2435(2005).
    61.Maya,R.et al.ATM-dependent phosphorylation of Mdm2 on serine 395:role in p53 activation by DNA damage.Genes Dev 15,1067-1077(2001).
    62.Higashitsuji,H.et al.The oncoprotein gankyrin binds to MDM2/HDM2,enhancing ubiquitylation and degradation of p53.Cancer Cell 8,75-87(2005).
    63.Batta,K.& Kundu,T.K.Activation of p53 function by Human Transcriptional Coactivator PC4:Role of Protein-Protein Interaction,DNA Bending and Posttranslational modifications.Mol Cell Biol(2007).
    64.Das,C.et al.Transcriptional coactivator PC4,a chromatin-associated protein,induces chromatin condensation.Mol Cell Biol 26,8303-8315(2006).
    65.Jayaraman,L.et al.High mobility group protein-1(HMG-1)is a unique activator of p53.Genes Dev 12,462-472(1998).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700