B细胞淋巴瘤内miR-17-92基因转录调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MicroRNA (miRNAs)是一类由内源基因编码的长度约为22个核苷酸的非编码单链RNA分子,其在动植物体内对调控某些基因的表达具有重要作用。近期,miRNAs被发现存在于细菌,绿藻类,病毒及广泛的动物体中。其通过对信使RNA的调控使其降解或者抑制其转录使得miRNAs在真核生物基因转录调节中具有重要作用。miRNAs的重要功能还包括调控细胞增值,细胞凋亡,调控发育时间,分化及胚胎发生
     越来越多证据表明,miRNAs与癌症中有着重要的关系,它既可以是癌基因又可以是抑癌基因,并且在特定的情况下具有双重的角色。目前,在HomoSapiens中已有677个miRNAs被发现,并且越来越多的科学研究关注于miRNAs的基因调控功能。
     miR—17-92基因簇位于C13orf25基因的第一个内含子中,因含此基因的染色体在恶性淋巴瘤中扩增而被首次描述。miR—17-92基因簇可产生有六个不同的成熟miRNA:miR-17, miR-18a, miR-19a, miR-19b, miR-20a and miR-92a。miR—17~92基因簇具有癌基因的功能。具体表现在,抑制癌细胞的细胞凋亡,促进细胞增殖,促使肿瘤血管生成。人类miR—17-92基因簇位于C13orf25基因的第三个内含子的中,它通常过表达于不同类型的B细胞淋巴瘤中,包括Burkitt淋巴瘤,弥漫性大壁淋巴瘤,滤泡性淋巴瘤,套细胞淋巴瘤,也过表达于其它实体肿瘤中,例如肺癌,胰腺癌,前列腺癌,乳房癌,胃癌,结肠癌。
     虽然对miR—17Y92基因簇的基因调控功能了解到越来越多,但是对于miR-17~92簇基因本身的转录调控机制知之甚少。近期研究仅仅发现其可被转录因子c-Myc和E2F激活。因此,本论文对miR—17~92基因簇的转录调控机制进行了研究。
     通过荧光素酶检测试验,本研究鉴定了此基因的核心启动子区域。通过对基因启动子的删除和突变研究发现,此启动子被多个转录因子所共同调控,每个单独的转录因子对启动子有适度的调控作用。本研究发现,对转录因子SP1的假定结合点进行突变后,减少了70%的启动子活性。已知c-Myc可以诱导此基因的的转录,我们发现在启动子区将c-Myc的结合位点突变后,启动子的活性非但没有减弱,反而被增强。通过进一步研究证实发现,具有转录抑制活性的MYC家族转录因子Mxi1直接结合在启动子区域。为了进一步了解启动子附近区域对基因转录调节的影响,本文对包含此基因22.5kb的区域进行了研究。试验证明,此基因具有DNaseⅠ超敏感区域和组蛋白修饰活跃区,预示了其具有增强子元件。通过研究,本文证实了在启动子附近至少两个区域具有增强子活性。
     在一些肿瘤中C13orf25基因是一个重要的癌基因,其转录产物microRNA所调控的基因对细胞增殖以及存活有重要的调控作用,因此,需要对miR-17Y92的转录水平调控进行进一步的研究。
MicroRNAs (miRNAs) are endogenous-22 nucleotide (nt) non-conding RNAs that regulate gene expression in plants and animals. Rencently, miRNAs have been found in bacteria, green algae, viruses and more deep branching animals. They play an important gene-regulatory roles in eukaryotic organisms by pairing to the mRNAs of protein-coding genes inducing mRNA degradation or translational inhibition. The important functions of miRNAs include regulation of cell proliferation, apoptosis, control of developmental timing, organogensis and differentiation, embryogenesis. miRNAs have diverse functions, including the regulation of cellular differentiation, proliferation and apoptosis. Recent studies show that some miRNAs play a role in cancer.
     More and more evidence indicates that miRNAs plays an important role in cancer and they can either act as oncogenes or tumor suppressors but also can act both depending on certain situation. Now more and more studies are focus on the importance of regulation by miRNAs and 677 miRNAs are found in Homo Sapiens by now.
     The miR-17~92 cluster locate in the first intron of the gene C13orf25 which was first described as target for chromosomal amplification in malignant lymphoma. The miR-17~92 cluster produces a single polycistronic primary transcript that yields six miRNAs (miR-17, miR-18a, miR-19a, miR-19b, miR-20a and miR-92a) locating within the third intron of the open reading frame 13 over 800 nt on 13q31.3The miR-17~92 cluster and its paralogs are known to act as oncogenes. The oncogenic role of these miRNAs includes suppressing apoptosis of cancer cells, promoting cell proliferation and inducing tumor angiogenesis. The human miR-17~92 cluster is located in the third intron of the primary transcript C13orf25. It is amplified and overexpressed in different types of B-cell lymphoma, including Burkitt lyphoma, diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, and other solid tumors such as those derived from lung, pancreas, prostate, breast, stomach, and colon.
     The transcriptional regulation of the miR-17~92 cluster is poorly understood. Recent studies only have shown that C13orf25 is activated by c-Myc and E2F transcription factors. Thus, the thesis is focous on the transcriptional regulation of the miR-17-92 cluster.
     Using luciferase reporter assays, we identified the region required for full promoter activity. Additional deletions and mutations indicated that the promoter is regulated by the collaborative activity of several transcription factors, most of which individually has only a moderate effect; mutation of a cluster of putative SP1-binding sites, however, reduces promoter activity by 70%. c-Myc is known to regulate the gene; surprisingly, mutation of a putative promoter Myc binding site enhanced promoter activity. We found that the inhibitory MYC family member Mxi1 bound to this region. To determine whether more distal regions also contribute to transcriptional regulation, we mapped the chromatin structure of a>22.5 kb region encompassing the gene. We found DNase hypersensivity and peaks of activating histone marks within the gene, suggesting the presence of enhancers, and confirmed that at least two regions have enhancer activity. Because C13orf25 acts as an important oncogene in several cancers and its product microRNAs target genes important in regulating cell proliferation and survival, further studies of its transcriptional control are warranted.
引文
1. Ambros V. The functions of animal microRNAs. Nature.2004;431:350-355.
    2. Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell. 2004;116:281-297.
    3. He L, Hannon GJ. MicroRNAs:small RNAs with a big role in gene regulation. Nat Rev Genet.2004;5:522-531.
    4. Zamore PD, Haley B. Ribo-gnome:the big world of small RNAs. Science. 2005;309:1519-1524.
    5. He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature.2005;435:828-833.
    6. Johnson J, Bagley J, Skaznik-Wikiel M, et al. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell. 2005;122:303-315.
    7. Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family. Cell.2005; 120:635-647.
    8. O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature.2005;435:839-843.
    9. Costinean S, Zanesi N, Pekarsky Y, et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci U S A.2006; 103:7024-7029.
    10. Voorhoeve PM, le Sage C, Schrier M, et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell. 2006;124:1169-1181.
    11. He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature.2007;447:1130-1134.
    12. Mestdagh P, Fredlund E, Pattyn F, et al. MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors. Oncogene.2009.
    13. Trang P, Medina PP, Wiggins JF, et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene.2009.
    14. Ota A, Tagawa H, Karnan S, et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res.2004;64:3087-3095.
    15. Hayashita Y, Osada H, Tatematsu Y, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res.2005;65:9628-9632.
    16. Tagawa H, Seto M. A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia.2005;19:2013-2016.
    17. Rinaldi A, Poretti G, Kwee I, et al. Concomitant MYC and microRNA cluster miR-17-92 (C13orf25) amplification in human mantle cell lymphoma. Leuk Lymphoma.2007;48:410-412.
    18. Koralov SB, Muljo SA, Galler GR, et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell.2008; 132:860-874.
    19. Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 2008;132:875-886.
    20. Xiao C, Srinivasan L, Calado DP, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol.2008;9:405-414.
    21. Sylvestre Y, De Guire V, Querido E, et al. An E2F/miR-20a autoregulatory feedback loop. J Biol Chem.2007;282:2135-2143.
    22. Pickering MT, Stadler BM, Kowalik TF. miR-17 and miR-20a temper an E2F1-induced G1 checkpoint to regulate cell cycle progression. Oncogene. 2009;28:140-145.
    23. Woods K, Thomson JM, Hammond SM. Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J Biol Chem.2007;282:2130-2134.
    24. Brock M, Trenkmann M, Gay RE, et al. Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway. Circ Res.2009; 104:1184-1191.
    25. Huang YW, Liu JC, Deatherage DE, et al. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res.2009;69:9038-9046.
    26. Roman-Gomez J, Agirre X, Jimenez-Velasco A, et al. Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J Clin Oncol.2009;27:1316-1322.
    27. Tsai KW, Kao HW, Chen HC, Chen SJ, Lin WC. Epigenetic control of the expression of a primate-specific microRNA cluster in human cancer cells. Epigenetics. 2009;4.
    28. Saetrom P, Snove O, Jr., Rossi JJ. Epigenetics and microRNAs. Pediatr Res. 2007;61:17R-23R.
    29. Saito Y, Jones PA. Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle.2006;5:2220-2222.
    30. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase:tools for microRNA genomics. Nucleic Acids Res.2008;36:D154-158.
    31. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A.2004; 101:2999-3004.
    32. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843-854.
    33. He S, Su H, Liu C, et al. MicroRNA-encoding long non-coding RNAs. BMC Genomics.2008;9:236.
    34. Saraiya AA, Wang CC. snoRNA, a novel precursor of microRNA in Giardia lamblia. PLoS Pathog.2008;4:e 1000224.
    35. Bartel DP, Chen CZ. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet.2004;5:396-400.
    36. Abbott AL, Alvarez-Saavedra E, Miska EA, et al. The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell.2005;9:403-414.
    37. Knight SW, Bass BL. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science. 2001;293:2269-2271.
    38. Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H. Stem cell division is regulated by the microRNA pathway. Nature. 2005;435:974-978.
    39. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science.2004;303:83-86.
    40. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell.2003;113:25-36.
    41. Wienholds E, Koudijs MJ, van Eeden FJ, Cuppen E, Plasterk RH. The microRNA-producing enzyme Dicerl is essential for zebrafish development. Nat Genet.2003;35:217-218.
    42. Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development.2005; 132:4653-4662.
    43. Miska EA. How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev.2005;15:563-568.
    44. Peng Y, Laser J, Shi G, et al. Antiproliferative effects by Let-7 repression of high-mobility group A2 in uterine leiomyoma. Mol Cancer Res.2008;6:663-673.
    45. Lee YS, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev.2007;21:1025-1030.
    46. Lankat-Buttgereit B, Goke R. Programmed cell death protein 4 (pdcd4):a novel target for antineoplastic therapy? Biol Cell.2003;95:515-519.
    47. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem.2008;283:1026-1033.
    48. Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem.2007;282:14328-14336.
    49. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology.2007; 133:647-658.
    50. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature.2005;435:834-838.
    51. Liu CG, Calin GA, Meloon B, et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci U S A.2004;101:9740-9744.
    52. Calin GA, Liu CG, Sevignani C, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A. 2004;101:11755-11760.
    53. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A.2002;99:15524-15529.
    54. Dohner H, Stilgenbauer S, Dohner K, Bentz M, Lichter P. Chromosome aberrations in B-cell chronic lymphocytic leukemia: reassessment based on molecular cytogenetic analysis. J Mol Med.1999;77:266-281.
    55. Bigoni R, Cuneo A, Roberti MG, et al. Chromosome aberrations in atypical chronic lymphocytic leukemia:a cytogenetic and interphase cytogenetic study. Leukemia.1997;11:1933-1940.
    56. Stilgenbauer S, Nickolenko J, Wilhelm J, et al. Expressed sequences as candidates for a novel tumor suppressor gene at band 13q14 in B-cell chronic lymphocytic leukemia and mantle cell lymphoma. Oncogene.1998;16:1891-1897.
    57. Desikan R, Barlogie B, Sawyer J, et al. Results of high-dose therapy for 1000 patients with multiple myeloma:durable complete remissions and superior survival in the absence of chromosome 13 abnormalities. Blood.2000;95:4008-4010.
    58. Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature.2000;403:901-906.
    59. Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res.2004;64:3753-3756.
    60. Olive V, Bennett MJ, Walker JC, et al. miR-19 is a key oncogenic component of mir-17-92. Genes Dev.2009;23:2839-2849.
    61. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell.2003; 115:787-798.
    62. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15-20.
    63. Petrocca F, Vecchione A, Croce CM. Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor beta signaling. Cancer Res. 2008;68:8191-8194.
    64. Landais S, Landry S, Legault P, Rassart E. Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res. 2007;67:5699-5707.
    65. Uren AG, Kool J, Matentzoglu K, et al. Large-scale mutagenesis in pl9(ARF)-and p53-deficient mice identifies cancer genes and their collaborative networks. Cell. 2008;133:727-741.
    66. Dews M, Homayouni A, Yu D, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet.2006;38:1060-1065.
    67. Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL. Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol. 2007;310:442-453.
    68. Zhang L, Huang J, Yang N, et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A.2006; 103:9136-9141.
    69. Mendell JT. miRiad roles for the miR-17-92 cluster in development and disease. Cell.2008; 133:217-222.
    70. Ivanovska I, Ball AS, Diaz RL, et al. MicroRNAs in the miR-106b family regulate p21/CDKNlA and promote cell cycle progression. Mol Cell Biol. 2008;28:2167-2174.
    71. Petrocca F, Visone R, Onelli MR, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell. 2008;13:272-286.
    72. Mu P, Han YC, Betel D, et al. Genetic dissection of the miR-17-92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev.2009;23:2806-2811.
    73. Blackwell TK, Huang J, Ma A, et al. Binding of myc proteins to canonical and noncanonical DNA sequences. Mol Cell Biol.1993;13:5216-5224.
    74. Ma A, Moroy T, Collum R, Weintraub H, Alt FW, Blackwell TK. DNA binding by N- and L-Myc proteins. Oncogene.1993;8:1093-1098.
    75. Blackwell TK, Kretzner L, Blackwood EM, Eisenman RN, Weintraub H. Sequence-specific DNA binding by the c-Myc protein. Science.1990;250:1149-1151.
    76. Ayer DE, Kretzner L, Eisenman RN. Mad:a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell.1993;72:211-222.
    77. Ayer DE, Eisenman RN. A switch from Myc:Max to Mad:Max heterocomplexes accompanies monocyte/macrophage differentiation. Genes Dev.1993;7:2110-2119.
    78. Hurlin PJ, Queva C, Eisenman RN. Mnt:a novel Max-interacting protein and Myc antagonist. Curr Top Microbiol Immunol.1997;224:115-121.
    79. Hurlin PJ, Queva C, Eisenman RN. Mnt, a novel Max-interacting protein is coexpressed with Myc in proliferating cells and mediates repression at Myc binding sites. Genes Dev.1997; 11:44-58.
    80. Cam H, Dynlacht BD. Emerging roles for E2F:beyond the G1/S transition and DNA replication. Cancer Cell.2003;3:311-316.
    81. DeGregori J. The genetics of the E2F family of transcription factors: shared functions and unique roles. Biochim Biophys Acta.2002;1602:131-150.
    82. Trimarchi JM, Lees JA. Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol. 2002;3:11-20.
    83. Yan HL, Xue G, Mei Q, et al. Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J.2009;28:2719-2732.
    84. Ranuncolo SM, Polo JM, Dierov J, et al. Bcl-6 mediates the germinal center B cell phenotype and lymphomagenesis through transcriptional repression of the DNA-damage sensor ATR. Nat Immunol.2007;8:705-714.
    85. Follows GA, Janes ME, Vallier L, Green AR, Gottgens B. Real-time PCR mapping of DNaseI-hypersensitive sites using a novel ligation-mediated amplification technique. Nucleic Acids Res.2007;35:e56.
    86. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10:1957-1966.
    87. Hooker CW, Hurlin PJ. Of Myc and Mnt. J Cell Sci.2006;119:208-216.
    88. Jaffe ES, Harris NL, Stein H, Vardiman J. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues (ed 1st). Lyon: IARC Press; 2001.
    89. Bosch F, Lopez-Guillermo A, Campo E, et al. Mantle cell lymphoma: presenting features, response to therapy, and prognostic factors. Cancer.1998;82:567-575.
    90. Argatoff LH, Connors JM, Klasa RJ, Horsman DE, Gascoyne RD. Mantle cell lymphoma:a clinicopathologic study of 80 cases. Blood.1997;89:2067-2078.
    91. Meeker TC, Sellers W, Harvey R, et al. Cloning of the t(11;14)(q13;q32) translocation breakpoints from two human leukemia cell lines. Leukemia. 1991;5:733-737.
    92. Tsujimoto Y, Jaffe E, Cossman J, Gorham J, Nowell PC, Croce CM. Clustering of breakpoints on chromosome 11 in human B-cell neoplasms with the t(11;14) chromosome translocation. Nature.1985;315:340-343.
    93. Cerutti A, Zan H, Schaffer A, et al. CD40 ligand and appropriate cytokines induce switching to IgG, IgA, and IgE and coordinated germinal center and plasmacytoid phenotypic differentiation in a human monoclonal IgM+IgD+ B cell line. J Immunol. 1998;160:2145-2157.
    94. Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylations in the human genome. Cell.2007;129:823-837.
    95. Ting AH, McGarvey KM, Baylin SB. The cancer epigenome--components and functional correlates. Genes Dev.2006;20:3215-3231.
    96. Lennartsson A, Ekwall K. Histone modification patterns and epigenetic codes. Biochim Biophys Acta.2009; 1790:863-868.
    97. Jones PA, Baylin SB. The epigenomics of cancer. Cell.2007;128:683-692.
    98. Bandres E, Agirre X, Bitarte N, et al. Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer.2009;125:2737-2743.
    99. Bernstein BE, Humphrey EL, Erlich RL, et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci U S A.2002;99:8695-8700.
    100. Giangrande PH, Hallstrom TC, Tunyaplin C, Calame K, Nevins JR. Identification of E-box factor TFE3 as a functional partner for the E2F3 transcription factor. Mol Cell Biol.2003;23:3707-3720.
    101. Kumar AP, Butler AP. Enhanced Spl DNA-binding activity in murine keratinocyte cell lines and epidermal tumors. Cancer Lett.1999; 137:159-165.
    102. Foster KW, Frost AR, McKie-Bell P, et al. Increase of GKLF messenger RNA and protein expression during progression of breast cancer. Cancer Res. 2000;60:6488-6495.
    103. Foster KW, Ren S, Louro ID, et al. Oncogene expression cloning by retroviral transduction of adenovirus E1A-immortalized rat kidney RK3E cells: transformation of a host with epithelial features by c-MYC and the zinc finger protein GKLF. Cell Growth Differ.1999; 10:423-434.
    104. Adam PJ, Regan CP, Hautmann MB, Owens GK. Positive-and negative-acting Kruppel-like transcription factors bind a transforming growth factor beta control element required for expression of the smooth muscle cell differentiation marker SM22alpha in vivo. J Biol Chem.2000;275:37798-37806.
    105. Kaczynski J, Zhang JS, Ellenrieder V, et al. The Spl-like protein BTEB3 inhibits transcription via the basic transcription element box by interacting with mSin3A and HDAC-1 co-repressors and competing with Spl. J Biol Chem. 2001;276:36749-36756.
    106. Zhang JS, Moncrieffe MC, Kaczynski J, Ellenrieder V, Prendergast FG, Urrutia R. A conserved alpha-helical motif mediates the interaction of Spl-like transcriptional repressors with the corepressor mSin3A. Mol Cell Biol. 2001;21:5041-5049.
    107. Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D, Piccolboni A, Sementchenko V, Cheng J, Williams AJ, Wheeler R, Wong B, Drenkow J, Yamanaka M, Patel S, Brubaker S, Tammana H, Helt G, Struhl K, Gingeras TR: Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 2004,116:499-509.
    108. Wierstra I:Spl:emerging roles-beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun2008,372:1-13.
    109. Ting AH, McGarvey KM, Baylin SB:The cancer epigenome-components and functional correlates. Genes Dev 2006,20:3215-3231.
    110. Lennartsson A, Ekwall K:Histone modification patterns and epigenetic codes. Biochim Biophys Acta 2009,1790:863-868.
    111. Jones PA, Baylin SB:The epigenomics of cancer. Cell 2007,128:683-692.
    112. Agalioti T, Chen G, Thanos D:Deciphering the transcriptional histone acetylation code for a human gene. Cell 2002,111:381-392
    113. Fu Y, Sinha M, Peterson CL, Weng Z:The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet 2008,4:e1000138.
    114. Phillips JE, Corces VG: CTCF:master weaver of the genome. Cell 2009, 137:1194-1211.
    115. Guccione E, Martinato F, Finocchiaro G, Luzi L, Tizzoni L, Dall'Olio V, Zardo G, Nervi C, Bernard L, Amati B:Myc-binding-site recognition in the human genome is determined by chromatin context. Nat Cell Biol 2006,8:764-770.
    116. Maerkl SJ, Quake SR: A systems approach to measuring the binding energy landscapes of transcription factors. Science 2007,315:233-237.
    117. Teye K, Okamoto K, Tanaka Y, Umata T, Ohnuma M, Moroi M, Kimura H, Tsuneoka M:Expression of the TAF4b gene is induced by MYC through a non-canonical, but not canonical, E-box which contributes to its specific response to MYC. Int J Oncol 2008,33:1271-1280.
    118. Meroni G, Reymond A, Alcalay M, Borsani G, Tanigami A, Tonlorenzi R, Lo Nigro C, Messali S, Zollo M, Ledbetter DH, Brent R, Ballabio A, Carrozzo R: Rox, a novel bHLHZip protein expressed in quiescent cells that heterodimerizes with Max, binds a non-canonical E box and acts as a transcriptional repressor. EMBO J 1997, 16:2892-2906.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700