大豆植株再生和遗传转化技术体系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆[Glycine max (L.) Merr.]起源于我国,在中国已有五千年左右的栽培历史,它也是世界上重要的粮食和油料作物之一,是人类食物中植物蛋白质和油脂的主要来源,与人们的日常生活息息相关。鉴于大豆的重要性,人们一直利用传统育种手段来提高大豆的产量。由于受物种间杂交不亲和性及不良连锁等因素影响,使常规育种方法的应用受到限制。近年来,随着生物技术的飞速发展,尤其是植物基因工程技术的日趋成熟,为大豆的品种改良提供了新的途径,大豆再生和遗传转化技术体系成为当前研究的热点和重点。大豆的组织培养再生主要有器官发生和体细胞胚发生两种诱导途径,两种发生途径具有不同的遗传基础,同时需要与不同的遗传转化方法结合进行转基因工作。本研究拟对大豆器官发生和体细胞胚发生两种再生途径分别进行植株再生技术、再生特性遗传基础以及相应遗传转化方法的研究,由于时间和条件的限制,部分实验未取得成功结果。目前所获的主要内容包括大豆的器官发生、体细胞胚胎发生和植株再生;大豆再生能力相关性状的QTL定位;大豆体细胞胚胎受体蛋白激酶基因的克隆和功能鉴定;农杆菌介导的大豆子叶节遗传转化体系的优化和应用。取得的主要研究结果如下:
     1.大豆植株再生技术体系方面:
     (1)以大豆子叶节为外植体对25份资源进行再生能力和丛生芽诱导培养基激素组合进行筛选,结果发现不同品种问再生频率有很大差异,其中N23676、N25277和N00060相对较高,分别是90.35%、86.53%和84.48%;添加不同激素种类(6-BA、2,4-D和TDZ)的丛生芽诱导培养基对大豆子叶节的丛生芽诱导率也不同,只添加1.67mg/L 6-BA就可以得到较高的丛生芽诱导率。
     (2)以大豆未成熟子叶为外植体对98份中国大豆资源进行了体细胞胚胎发生能力的筛选,同时研究了不同甘露醇浓度、不同ABA浓度和不同外植体大小等三个因子对大豆体细胞胚胎发生能力和植株再生能力的影响,结果发现不同基因型之间体细胞胚胎发生能力具有明显差异,基因型N25281、N25263和N06499具有较高的体细胞胚发生能力;选取4-5mm大小的外植体,基本培养基添加5mg/L ABA和3.0%甘露醇的组合可以提高大豆的体细胞胚胎发生能力,基因型N25281表现出较高的再生率(82.95%),平均每个外植体出苗数为1.35。
     2.大豆再生特性的遗传基础:
     (1)利用国家大豆改良中心提供的重组自交家系群体(NJRIKY),开展了大豆幼胚培养再生能力的QTL遗传定位研究。该群体的遗传图谱该群体的遗传图谱共整合了834个标记,分布在24个连锁群上,覆盖大豆基因组2307.83cM,每个连锁群上平均34.75个标记,标记间的平均距离为2.77cM。选用大豆愈伤组织诱导率和体细胞胚诱导率作为反映大豆幼胚培养再生能力的评价指标,采用复合区间作图法(CIM)进行QTL分析,结果共检测到3个与出愈率有关的QTL,位于B2和D2连锁群上,可解释5.84%-16.60%的表型变异;检测到4个与体细胞胚诱导率有关的QTL,全部位于G连锁群上,对表型性状变异的解释率为7.79%-14.16%。大豆幼胚培养再生性状的QTL定位研究为大豆再生性状的改良提供了标记辅助选择的依据。
     (2)从大豆中克隆了1个编码体细胞胚发生相关的类受体蛋白激酶(GmSERK1)基因,该基因编码624个氨基酸,与其它的SERK蛋白具有很高的同源性,其中包括有SP、ZIP、SPP、TM、LRR、胞内激酶活性结构域以及C端结构域,同时该基因也具有与其它SERK家族基因相似的内含子/外显子结构特征。系统发育分析表明植物SERK蛋白有三个分支,GmSERK1蛋白所在的分支主要由双子叶植物组成,该蛋白与豆科模式植物蒺藜苜蓿中的MtSERK1蛋白亲缘关系最近。Southern blot分析表明GmSERK1基因在大豆基因组中有1个拷贝。组织表达谱分析表明GmSERK1基因在叶、花芽和未成熟子叶中有表达,但是在根和茎中基本上不表达。在体细胞胚发生过程中,GmSERK1基因在早期培养时就有表达,在15天时达到最高点,15天后该基因的表达量反而开始降低,同时该基因在胚状物中有很高的表达量,而在非胚状物中检测不到表达。诱导表达分析表明在受到甘露醇、ABA.JA和SA等处理后,GmSERK1基因的表达方式不尽相同。采用Gateway技术构建了GmSERK1基因与GFP融合的过量表达载体并利用洋葱表皮细胞瞬时表达方法对GmSERK1蛋白进行了的定位研究,结果表明该蛋白被定位到细胞膜上,属于膜结合蛋白。
     3.大豆遗传转化技术体系:对影响农杆菌介导大豆子叶节遗传转化体系的主要因素进行了研究,包括外植体侵染时间、共培养时间、超声波处理以及AgNO3处理等,结果表明30分钟侵染时间、共培养3天和10秒超声波处理可以提高转化效率,在丛生芽诱导培养基中加入2mg/LAgNO3可以提高丛生芽诱导率;利用该遗传转化方法,将编码逆向转运蛋白的小麦TaNHX2基因导入大豆,PCR检测结果显示TaNHX2基因已经整合到了大豆基因组中,在250mmol/L NaCl溶液处理下发现非转化大豆植株表现出叶片变黄迹象逐渐死亡,而转基因植株则生长正常,以上结果表明TaNHX2基因可以提高了大豆的耐盐性。同时,利用Gateway技术构建了GmFAD2-3基因的RNAi表达载体,为利用转基因技术改良大豆脂肪酸品质奠定了基础。
Cultivated soybean [Glycine max (L.) Merr.] has its origin from wild soybean [Glycine soja Sieb. et Zucc.] in China and has been a major source of edible vegetable protein and oil supplement for livestock for several thousand years. The importance of the crop has led efforts to improve its production through conventional breeding, and more recently it has integrated with modern genetic engineering technologies to avoid some of the limitations in traditional breeding procedures. Application of biotechnology is effective way for soybean improvement, for example the establishment of highly efficient regeneration system and transformation system. In the past, the scientists have paid more attention to study how to develop and optimize the methods on plant regeneration and transformation procedures, but the molecular mechanism and genetic basis of tissue culture response has not been well examined. Genetic studies of tissue-culture traits, such as callus growth, embryogenesis and differentiation, will make it possible to transfer genes controlling desirable tissue-culture traits into recalcitrant cultivars or species. With the development of molecular biology, the traditional quantitative genetics has run to the stage of molecular quantitative genetics, which provides a new route to study the complicated quantitative traits. Therefore, detailed genetic studies are required to identify the genes or QTLs associated with the tissue culture response. The present research was intended to study the plant regeneration system, genetic basis and genetic transformation system of organogenesis and somatic embryogenesis, but there was no good results obtained for partial experiments because of the restriction of time and energy. Our studies involved organogenesis, somatic embryogenesis and plant regeneration in soybean; optimization of Agrobacterium-mediated cotyledonary nodes transformation system and its utilization on transgenic soybean; isolation and functional characterization of a novel SERK gene (somatic embryogenesis receptor kinase) from soybean; mapping QTLs for tissue culture response in soybean. The main results of this research were listed as follows:
     1. Plant regeneration system:
     (1) Twenty five varieties mainly from Jiangsu province were screened for their regeneration ability. Significant differences in regeneration frequency of these soybean varieties were found. Among them, the regeneration frequencies of N23676, N25277 and N00060 were relatively higher with 90.35%,86.53% and 84.48%, respectively. High shoot induction frequency was found when the cotyledonary node explants were incubated in the SIM only supplemented with 1.67 mg/L 6-BA.
     (2) Ninety eight Chinese soybean varieties were screened for their capacity to generate somatic embryos. From these 12 varieties were selected for further study to enhance the efficiency of somatic embryogenesis and plant regeneration. The effects of different mannitol concentrations, abscisic acid (ABA) and embryo explant age size were investigated. The results showed that all three factors were relevant for raising rates of callus initiation and somatic embryogenesis, but with differential responses among the genotypes. The three soybean varieties N25281, N25263 and N06499, all agronomically important to the Lower and Middle Changjiang Valleys, were found to have a high somatic embryogenic capacity and therefore recommended in cultivar development through genetic engineering. The treatment of 3.0% w/v mannitol,5 mg/L ABA and a 4-5 mm sized explant was found to be optimal for somatic embryogenesis generating the highest regeneration rate at 82.95%. The greatest average number of plantlets regenerated per explant (1.35) was observed in N25281. The above results provide a basis for efficient regeneration of soybean, and are informative for the development of genetic transformation systems in Chinese soybean germplasms.
     2. Genetic basis of the regeneration trait:
     (1) Using a RIL population (NJRIKY) provided by the National Center for Soybean Improvement, the identification of QTLs for tissue culture response in soybean were conducted. The linkage map of NJRIKY contained 834 molecular markers on 24 molecular linkage groups and spaned 2307.83 cM of the soybean genome with an average interval distance of 2.77 cM, the average markers per group of 34.75. Two characters (callus induction and somatic embryogenesis ability) were chosen to evaluate the tissue culture response of soybean. With the method of composite interval mapping (CIM) described in Windows QTL Cartographer Version 2.5,3 quantitative trait loci (QTL) were identified for the frequency of callus induction, on chromosomes B2 and D2, accounting for phenotypic variation from 5.84% to 16.60%; 4 QTLs located on chromosome G were revealed for the frequency of somatic embryo initiation and explained the phenotypic variation from 7.79%-14.16%. The present results will be contributing for genetic improvement for regeneration traits with marker-assisted selection (MAS) in soybean.
     (2) A novel gene designated GmSERK1 was isolated from soybean [Glycine max (L.) Merr.]. Sequence and structural analysis determined that the GmSERK1 protein, which encodes 624 amino acids, belongs to the SERK gene family. GmSERK1 shared all the characteristic domains of the SERK family, including five LRRs, a SPP motif, TM, and kinase domains. GmSERK1 showed very high homology to rice OsSERK1 (87%), maize ZmSERK1 (85%), alfalfa MtSERKl (94%), and Arabisopsis AtSERKl (88%). As expected from the multiple deduced amino-acid sequences alignment, the result from phylogenetic analysis also revealed that GmSERK1 is closest to MtSERK1 from Medicago, the model plant of legume. DNA gel blot analysis indicated that a single copy of the GmSERKl gene resides in the soybean genome. We also explored GmSERK1 tissue-specific and induced expression patterns using quantitative real-time PCR. The analysis revealed dissimilar expression levels in various tissues and under different treatments. It is obviously that GmSERK1 shows lower expression level in roots and stems, but higher level in leaves and floral buds. For the immature zygotic embryos, there was no significant difference among immature zygotic embryos of <3mm,4-5mm and 6-8mm, while the visible decline occurred for immature zygotic embryos of>8mm in length. An increase in the transcript accumulation could be observed at the early period. The expression level of GmSERK1 reached the maximum at 15d, when the globular-stage embryos firstly occurred. Past 15d of culture, the GmSERK1 transcript level decreased. Meanwhile, GmSERK1 was highly expressed in embryogenic cultures, but no expression was seen in the non-embryogenic cultures. In addition, transient expression experiments in onion epidermal cells indicated that the GmSERK1 protein was located on the plasma membrane. The results of this study suggested that GmSERK1,a member of the SERK gene family, exhibits a broader role in various aspects of plant development and function, in addition to its basic functions in somatic embryogenesis.
     3. Genetic transformation system:
     The factors influencing the transformation frequency were investigated, such as the infection time on T-DNA delivery into explants, the co-culture time, the sonication-assisted treatment. The results indicated that infection time of 30 min, co-cultivation time of 3 days, the sonication-assisted treatment can enhance the transformation frequency.2 mg/L AgNO3 supplemented to SIM enhanced the shoot induction frequency of soybean explants. The TaNHX2 gene (GenBank Accession No. AY040246) encoding a Na+/H+ antiporter was transferred to soybean using the above transformation system. The results of PCR detection showed that the transgenic soybeans were obtained. At the same time, the salt tolerant character of transgenic soybean was determined under NaCl treatment. Transgenic soybean could normally grow under the treatment of 250 mmol/L NaCl, while the growth of control soybean was seriously inhibited. From the results, it concluded that transgenic soybean plants were acquired by transformation of a vacuolar Na+/H+ antiporter gene, and TaNHX2 confers soybean resistant against salt stress. Meanwhile, the vector GmFAD2-3-RNAi was produced using the Gateway Technology.
引文
1. Aida R, Hirose Y, Kishimoto S, Shibata M. Agrobacterium tumefaciens-mediated transformation of Cyclamen persicum Mill. Plant Sci,1999,148:1-7
    2. Albrecht C, Russinova E, Hecht V, Baaijens E, de Vries SC. The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES 1 and 2 control male sporogenesis. The Plant Cell,2005,17:3337-3349
    3. Amarasinghe AAY, Yang Y. Screening of high somatic embryogenic soybean varieties and innovation of culture methods. Journal of South China Agricultural University,2005,26:84-88
    4. Apes MP, Aharon GS, Snedden WA, Blumwald E. Salt tolerance conferred by overexpression of a vacuolae Na+/H+ antiport in Arabidopsis. Science,1999,285:1256-1258
    5. Aragao FJL, Sarokin L, Vianna GR, Rech EL. Selection of transgenic meristematic cells utilizing herbicidal molecule results in the recovery of fertile transgenic soybean plants at high frequency. Theor Appl Genet,2000,101:1-6
    6. Armstrong CL, Romero-Severson J, Hodges TK. Improved tissue culture response of an elite maize inbred through backcross breeding and identification of chromosomal regions important for regeneration by RFLP analysis. Theor Appl Genet,1992,84:755-762
    7. Barfield DG, Pua EC. Gene transfer in Brassicajuncea using Agrobacterium tumefaciens-mediated transformation. Plant Cell Reports,1991,10:308-314
    8. Barwale UB, Kerns HR, Widholm JM. Plant regeneration from callus cultures of several soybean genotypes via embryogenesis and organogenesis. Planta,1986,167:473-481
    9. Baudina S, Hansen S, Brettschneider R, Hecht VFG, Dresselhaus T, Lorz H, Dumas C, Rogowsky PM. Molecular characterization of two novel maize LRR receptor-like kinases, which belong to the SERK gene family. Planta,2001,213:1-10
    10. Becraft PW. Receptor kinases in plant development. Trends Plant Sci,1998,3(10):384-388
    11. Becraf PW. Receptor kinase signaling in plant development. Annu Rev Cell Dev Biol,2002,18: 163-192
    12. Ben Amer IM, Korzun V, Worland AJ, Borner A. Genetic mapping of QTL controlling tissue-culture response on chromosome 2B of wheat (Triticum aestivum L.) in relation to major genes and RFLP markers. Theor Appl Genet,1997,94:1047-1052
    13. Beyer EM. Plant Physiol,1979,63:169-173
    14. Blumwald E, Aharon GS, Apes MP. Sodium transport in plant cells. Biochem Biophys Acta,2000, 1465:140-151
    15. Bolibok and Rakoczy-Trojanowska. Genetic mapping of QTLs for tissue-culture response in plants. Euphytica,2006,149:73-83
    16. Bolibok H, Gruszczynska A, Hromada-Judycka A, Rakoczy-Trojanowska M. The identification of QTLs associated with the in vitro response of rye (Secale cereale L.). Cellular & Molecular Biology Letters,2007,12:523-535
    17. Bregitzer P, Campbell RD. Genetic markers associated with green and albino plant regeneration from embryogenic barley callus. Crop Sci,2001,41:173-179
    18. Catherine A, Eugenia R, Valerie H, de Vries SC. The Arabidopsis thaliana somatic embryogenesis receptor-kinases 1 and 2 control male sporogenesis. Plant Cell,2005,17(12):3337-3349
    19. Chen H, An R, Tang J, Cui X, Hao F, Chen J, Wang X. Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice. Mol Breeding,2007,19:215-225
    20. Cheng TY, Saka H, Voqiu-Dinh TH. Plant regeneration from soybean cotyledonary node segments in culture. Plant Sci.Lett,1980,19:91-99
    21. Christianson ML, Warnick DA, Carlson PS. A Morphogenetically Competent Soybean Suspension Culture. Science,1983,222:632-634
    22. Clemente T, LaValle BJ, Howe AR, Ward DC, Rozman RJ, Hunte PE, Broyles DL, Kasten DS, Hinchee MA. Progeny analysis of glyphosate selected transgenic soybeans derived from Agrobacterium-mediated transformation. Crop Sci,2000,40:797-803
    23. Clement T, Meyer D, Himber C. Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiol Biochem,2004,42:35-42
    24. Colcombet J, Dernier AB, Palau RR, Vera CE, Schroeder JI. Arabidopsis somatic embryogenesis receptor kinases 1 and 2 are essential for tapetum development and microspore maturation. Plant Cell,2005,17(12):3350-3361
    25. Dan Y, Reichert NA. Organogenic regeneration of soybean from hypocotyl explants. In Vitro Cell. Dev. Biol. Plant,1998,34:12-21
    26. De Block M, De Brouwer D, Tenning P. Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bat and neo genes in the transgenic plants. Plant Physiol,1989,91:694-701
    27. De Block M, Herrera-Estrella L, Van Montagu M, Schell J, Zambryski P. Expression of foreign genes in regenerated plants and their progeny. EMBO J,1984,3:1681-1689
    28. Dhir SK. Cotransformation freguencies of foreign genes in soybean and cell cultures. Plant Cell Rep,1991,10:97-101
    29. Di R, Purcell V, Collons GB, Ghabrial SA. Production of transgenic soybean lines expressing the bean pod mottle virus coat protein precursor gene. Plant Cell Reports,1996,15:746-750
    30. Dibrov P, Fliegel L. Comparative molecular analysis of Na+/H+ exchangers:a unified model for Na+/H+ antiporter. FEBS Lett,1998,424:1-5
    31. Dinkins RD, Reddy M, Meurer SS. Increased sulfur amino acids in soybean plants overexpressing the maize 15kDa zein protein. In Vitro Cellular Developmental Biology Plant,2001,37:742-747
    32. Dong JZ, Perras MR, Abrams SR. Gene expression patterns and uptake and fate of fed ABA in white spruce somatic embryo tissues during maturation. Journal of Experimental Botany,1997, 48:277-287
    33. Droste A, Pasquali G, Bodanese-Zanettini MH. Transgenic fertile plants of soybean [Glycine max (L). Merr.] obtained from bombarded embryogenic tissue. Euphytica,2002,127:367-376
    34. Ellen WH, Weining T, Karl WN, Donna EF, Sharyn EP. Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like15. Plant Physiol,2003,133(2):653-663
    35. Filonava LH, Bozhkov PV, Arnold SV. Developmental pathway of somatic embryogenesis in picea abies as revealed by time-lapse tracking. Exp Bot,2000,51(343):249-264
    36. Finer JJ, Nagasawa A. Development of an embryogenic suspension culture of soybean [Glycine max (L.) Merr.]. Plant Cell Tissue Organ Culture,1988,15:125-136
    37. Flores Berrios E, Gentzbittel L, Kayyal H, Alibert G, Sarrafi A. AFLP mapping of QTLs for in vitro organogenesis traits using recombinant inbred lines in sunflower (Helianthus annuus L.). Theor Appl Genet,2000a,101:1299-1306
    38. Flores Berrios E, Sarrafi A, Fabre F, Alibert G, Gentzbittel L. Genotypic variation and chromosomal location of QTLs for somatic embryogenesis revealed by epidermal layers culture of recombinant inbred lines in the sunflower (Helianthus annuus L.). Theor Appl Genet,2000b, 101:1307-1312
    39. Franklin G, Carpenter L, Davis E, Reddy CS, Al-Abed D, Alaiw WA, Parani M, Smith B, Goldman SL, Sairam RV. Factors influencing regeneration of soybean from mature and immature cotyledons. Plant Growth Regulation,2004,43:73-79
    40. Fukuda A, Nakamura A, Tanaka Y. Molecular cloning and expression of the Na+/H+exchanger gene in Oryza sativa. Biochim Biophys Acta,1999,1446:149-155
    41. Fukuda A, Chiba K, Maeda M, Nakamura A, Maeshima M, Tanaka Y. Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+antiporter from barley. Plant Cell Physiol,2004,45:146-159
    42. Gamborg OL, Miller RA, Ojima K. Nutrient requirement of suspension cultures of soybean root cells. Exp. Cell. Res,1968,50:151-158
    43. Gawronska H, Burza W, Bolesta E, Malepszy S. Zygotic and somatic embryos of cucumber (Cucumis sativus L.) substantially differ in their levels of abscisic acid. Plant Science,2000,157: 129-137
    44. Giddings G. Transgenic plants as factories for biopharmaceuticals. Nat. Biotechnol,2000, 18:1151-1155
    45. Grosse BA, Deimling S, Geiger HH. Mapping of genes for anther culture ability in rye by molecular markers. Vortr Pflanzenzeuchtg,1996,35:282-283
    46. Haley CS, Andersson L. Linkage mapping of quantitative trait loci in plants and animals. In:P.H. Dear, (Ed.) Genome Mapping A Practical Approach,1997, pp.49-71. Oxford University Press, Oxford
    47. Hammatt N, Kim HI, Davey MR, Nelson RS, Cocking EC. Plant regeneration from cotyledon protoplasts of Glycine canescens and G. Clandestina. Plant Sci,1987,48:129-135
    48. Han J, Wang H, Ye H, Liu Y, Li Z, Zhang Y, Zhang Y, Yan F, Li G. High efficiency of genetic transformation and regeneration of Artemisia annua L. via Agrobacterium tumefaciens-mediated procedure. Plant Science,2005,168:73-80
    49. Han TF, Hou WS, Wang JM. Developing transgenic soybean to promote soybean industry in China. Journal of Agricultural Science and Technology,2008,10:1-5
    50. He C, Yan J, Shen G, Fu L, Scott Holaday A, Auld D, Blumwald E, Zhang H. Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol,2005,46:1848-1854
    51. He P, Shen L, Lu C, Chen Y, Zhu L. Analysis of quantitative trait loci which contribute to anther culturability in rice (Oryza sativa L.). Molecular Breeding,4998,4:165-172
    52. Hecht V, Vielle-Calzada JP, Hartog MV. The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol,2001,127:803-816
    53. Helliwell CA, Chin-Aekins AN, Wilson IN, Chapple R, Dennis ES, Chaudhury A. The Arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase. Plant Cell,2001,13(9):2115-2125
    54. Hinchee MA, Newell CA. Production of transgenic soybean plants using Agrobactrium-mediated gene transfer. Bio/Technology,1988,6:915-922
    55. Hitz WD, Carlson TJ, Booth JJ. Cloning of a higher-plant plastid omega-6 fatty acid desaturase cDNA and its expression in a cyanobacterium. Plant Physiol,1994,105(2):635-641
    56. Hofmann N, Nelson RL, Korban SS. Influence of medium components and pH on somatic embryo induction in three genotypes of soybean. Plant Cell Tissue and Organ Culture,2004,77:157-163
    57. Holme IB, Torp AM, Hansen LN, Andersen SB. Quantitative trait loci affecting protoplast regeneration in Brassica oleracea. Theor App Genet,2004,108:1513-1520
    58. Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A, Hoffman N. Inheritance of functional foreign genes in plants. Science,1984,223:496-498.
    59. Hu CY, Wang L. In planta soybean transformation cotyledonary node explants has been standardized. technologies developed in China:procedure, confirmation and field performance. In Vitro Cell Dev. Biol. Plant,1999,35:417-420
    60. Hu H, Xiong L, Yang Y. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta,2005,222(1):107-117
    61. Ikeda-Iwai M, Umehara M, Satoh S, Kamada H. Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J,2003,34:107-114
    62. Ito Y, Takaya K, Kurata N. Expression Of SERK family receptor-like protein kinase gene in rice. Biochimica et Biophysica Acta,2005,1730(3):253-258
    63. Jianru Z, Niu QW, Yoshihisa L, Chua NH. Marker-free transformation:increasing transformation frequency by the use of regeneration-promoting genes. Curr Opi in Biol,2002,13(2):173-180
    64. Jianru Z, Niu QW, Giovanna F, Nam HC. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J,2002,30(3):349-359
    65. Kaneyoshi J, Kobayashi S, Nakamura Y, Shigemoto N, Doi Y. A simple and efficient gene transfer system of trifoliate orange(Poncirus trifoliate Raf). Plant Cell Rep,1994,13:541-545
    66. Kaneda Y, Tabei Y, Nishimura S, Harada K, Akihama T, Kitamura K. Combination of thidiazuron and basal media with low salt concentrations increases the frequency of shoot organogenesis in soybeans (Glycine max (L) Merr.). Plant Cell Rep,1997,17:8-12
    67. Kao KN. Exp.Cell Res,1970,62:338-340
    68. Kim B, Remko O, Vijay KS, Henk K, Therese O, Lemin Z, Jiro H, Liu CM, Andre AMVL, Brian LAM, Jan BMC, Michiel MVLC. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell,2002,14(8):1737-1749
    69. Kim EN, Rina RI, Ray J. Auxin up-regulates MtSERKI expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol,2003,133(1):218-230
    70. Kim J, LaMotte CE, Hack E. Plant regeneration in vitro from primary leaf nodes of soybean Glycine max seedlings. Plant Physiol,1990,136:664-669
    71. Kinney AJ. Development of genetically engineered soybean oils for food applications. J Food Lipids,1996,3:273-292
    72. Kinoshita T, Cano-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S, Chory J. Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature,2005, 433(7022):167-171
    73. Knapp SJ, Bridges WC, Birkes D. Mapping quantitative trait loci using molecular marker linkage groups. Theor Appl Genet,1990,79:583-592
    74. Komatsuda T, Kaneko K, Oka S. Genotype × sucrose interactions for somatic embryogenesis in soybean. Crop Sci,1991,31:333-337
    75. Komatsuda T, Taguchi-Shiobara F, Oka S, Takaiwa F, Annaka T, Jacobson HJ. Transfer and mapping of the shoot differentiation locus Shdl in barley chromosome 2. Genome,1995, 38:1009-1014
    76. Koornneef M, Bade J, Hanhart C, Horsman K, Schel J, Soppe W, Verkerk R, Zabel P. Characterization and mapping of a gene controlling shoot regeneration in tomato. The Plant Journal, 1993,3(1):131-141
    77. Kwon YS, Kim KM, Eun MY, Sohn JK. QTL mapping and associated marker selection for the efficacy of green plant regeneration in anther culture of rice. Plant Breeding,2002,12:10-16
    78. Landschulz WH, Johnson PF, Maknight SL. The leucine zipper:a hypothetical structure common to anew class of DNA binding proteins. Science,1988,240(4860):1759-1764
    79. Lazzeri PA, Hildebrand DF, Collins GB. A procedure for plant regeneration from immature cotyledon tissue of soybean. Plant Mol Biol Rep,1985,3:160-167
    80. Lee HS, Ahn BJ. Rapid multiplication of carnation through somatic embryogenesis from flower bud-induced callus. Journal of the Korean Scienty for Horticultural Science,1997,38:771-775
    81. Li J, Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell,1997,90(5):929-938
    82. Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell,2002, 110:213-222
    83. Li J, Jiang G, Huang P, Ma J, Zhang F. Overexpression of the Na+/H+ antiporter gene from Suaeda salsa confers cold and salt tolerance to transgenic Arabidopsis thaliana. Plant Cell Tiss Organ Cult, 2007,90:41-48
    84. Liu KS. Soybeans:Chemistry, Technology and Utilization. Aspen publishers, Gaithersbyrg, Maryland.1999
    85. Liu Q, Singh SP, Green AG. High-stearic and high-oleic cottonseed oils produced by hpRNA-mediated post-transcriptional gene silencing. Plant Physiol,2002,129:1732-1743
    86. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR andthe 2'AACT method. Methods,2001,25:402-408
    87. Lou H, Kako S. Role of high sugar concentrations in inducing somatic embryogenesis from cucumber cotyledons. Scientia Horticulturae,1995,64:11-20
    88. Lu SY, Jing YX, Shen SH, Zhao HY, Ma LQ, Zhou XJ, Ren Q, Li YF. Antiporter gene from Hordeum brevisubulatum (Trin.) link and its overexpression in transgenic tobaccos. J Integr Plant Biol,2005,47:343-349
    89. Manninen OM. Associations between anther-culture response and molecular markers-on chromosomes 2H,3H and 4H of barley(Hordeum vulgare L). Theor Appl Genet,2000,100:57-62
    90. Mano Y, Komatsuda T. Identification of QTLs controlling tissue-culture traits in barley (Hordeum vulgare L.). Theor Appl Genet,2002,105:708-715
    91. Marton L, Browse J. Fascile transformation of Arabidopsis. Plant Cell Reports,1991,10:235-239
    92. Masam Ohtaa, Yasuyuki Hayashia, Asae Nakashimsa. Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Letters,2002,532(3):279-282
    93. Maughan PJ, Phili R, Cho MJ, Widholm JM, Vodkin LO. Biolistic transformation, expression, and inheritance of bovine β-casein in soybean (Glycine max). In Vitro Cell Dev Biol-Plant,1999, 35:334-349
    94. Mazur B, Krebbers E, Tingey S. Gene discovery and product development for grain quality traits. Science,1999,285:372-375
    95. McCabe DE, Swain WF. Stable transformation of soybean [Glycine max (L.) Merr.] by particle acceleration. Bio/technology,1988,6:923-926
    96. Men SZ, Ming XT, Liu RW, Wei CH, Li Y. Agrobacterium-mediated genetic transformation of a Dendrobium orchid. Plant Cell, Tissue Org. Cult,2003,75:63-71
    97. Meng Q, Zhang C, Gai J, Yu D. Molecular cloning, sequence characterization and tissue-special expression of six NAC-like genes in soybean(Glycine max (L.) Merr.). Journal of plant physiology, 2007,164:1002-1012
    98. Meurer CA, Dinkins RF, Redmond CT, McAllister KP, Tucker DT, Walker DR, Parrott WA, Trick HN, Essig J, Frantz HM, Finer JJ, Collins GB. Embryogenic response to multiple soybean [Glycine max (L.)Merr.] cultivars across three locations. In Vitro Cell Dev Biol,2001,37:62-67
    99. Meurer PA, Dinkins RD. Factors affecting soybean cotyledonary node transformation. Plant Cell Rep,1998,18:180-186
    100. Miller RA. Nature New Biology,1971,232:124
    101. Mordhorst AP, Voerman KJ, Hartoy MV, Meijer EA, van Went J, Koornneef M, de Vries SC. Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions. Genetics,1998,149(2):549-563
    102. Mukhopadhyay A, Topfer R, Pradhan AK, Sodhi YS, Steinbiss HH, Schell J, Pental D. Efficient regeneration ofBrassica oleracea hypocotyl protoplasts and high frequency genetic transformation by direct DNA uptake. Plant Cell Reports,1991,10:375-379
    103. Murashige T, Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant,1962,15:473-497
    104. Murigneux A, Bentollila S, Hardy T, Baud S, Guitton C, Jullien H, Ben Tahar S, Freyssinet G, Beckert M. Genotypic variation of quantitative trait loci controlling in vitro androgenesis in maize. Genome,1994,37:970-976
    105. Nakagaw H, Saijyo T, Yamauchi N. Effects of sugars and abscisic acid on somatic embryogenesis from melon (Cucumis melo L.) expanded cotyledon. Scientia Horticulturae,2001,90:85-92
    106. Nam KH, Li J. BRI1.BAK1, a receptor kinase pair mediating brassinosteriod signaling. Cell,2002, 110:203-212
    107. Newell CA, Luu HT. Protoplast culture and plant regeneration in Glycine canescens. Plant Cell Tissue Organ Culture,1985,4:145-149
    108. Nolan K, Irwanto RR, Rose RJ. Auxin up-regulates MtSERKl expression in both Medicago truncatula Root-forming and embryogenic cultures. Plant Physiol,2003,133(1):218-230
    109. Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T. Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett,2002, 532:279-282
    110. Olhoft PM, Somers DA. L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep,2001,20:706-711
    111. Olhoft PM, Flagel LE, Donovan CM, Somers DA. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta,2003,216:723-735
    112. Orlowski J, Grinstein S. Na+/H+ exchanger of mammalian cells. J Biol Chem,1997, 272:22373-22376
    113. Panthee DR, Pantalone VR, Sams CE, Saxton AM, West DR, Rayford WE. Genomic Regions Governing Soybean Seed Nitrogen Accumulation. JAOCS,2004,81:77-82
    114. Parrott WA, Dryden G, Vogt S. Optimization of somatic embryogenesis and embryo germination in soybean. In Vitro Cell Dev Biol,1988,24:817-820
    115. Parrott WA, Hoffman LM, Hildebrand DF, Williams EG, Collins GB. Recovery of primary transformants of soybean. Plant Cell Rep,1989,7:615-617
    116. Parrott WA, Willams EG. Effect of genotype on somatic embryogenesis form immature cotyledons of soybean. Plant Cell Tissue Organ Culture,1989,16:15-21
    117. Paz MM, Shou H, Guo Z, Zhang Z, Banerjee AK, Wang K. Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica, 2004,136:167-179
    118. Paz MM, Martinez JC, Kalvig AB, Fonger TM, Wang K. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep,2005, DOI 10.1007/s00299-005-0048-7
    119. Phillips GC, Collins GB. Induction and development of somatic embryos from cell suspension cultures of soybean. Plant Cell, Tissue and Organ Culture,1981,1:123-129.
    120. Ponappa T, Finer J J. Transient expression and stable transformation of soybean using the jellyfish green fluorescent protein. Plant Cell Rep,1999,19:6-12
    121. Purnhauser L, Medgyesy P, Czako M, Dix PJ, Marton L. Plant Cell Reports,1987,6:1-4.
    122. Qiao W, Zhao X, Li W, Luo Y, Zhang X. Overexpression of AeNHX1, a root-specific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants. Plant Cell Rep,2007,26:1663-1672
    123. Ranch JP, Oglesby L, Zielinski AC. Plant regeneration from embryo-derived tissue cultures of soybean. In Vitro Cell Dev Biol,1985,21:653-658
    124. Rech EL, Golds TJ, Husnain T, Vainstein MH, Jones B, Hammatt N, Mulligan BJ, Davey MR. Expression of a chimaeric kanamycin resistance gene introduced into the wild soybean Glycine canescens using a cointerate Ri plasmid vector. Plant Cell Reports,1989,8:33-36
    125. Reichert NA, Young MM, Woods AL. Adventitious organogenic regeneration from soybean genotypes representing nine maturity groups. Plant Cell, Tissue and Organ Culture,2003,75: 273-277.
    126. Reinert J. Untersuchungen uber die Morphogenese an Gewebenkulturen. Ber. Dtsch. Bot. Ges, 1958,71
    127. Rumyana K, Sjef B, Eugenia R, Aker J, Vervoort J, de Vries SC. The Arabidopsis somatic embryogenesis receptor-like kinase 1 protein complex includes Brassinosteroid-insensitive 1. Plant Cell,2006,18(3):626-638
    128. Russinova E, Borst JW, Kwaaitaal M, Delgado AC, Yin Y, Chory J, de Vries SC. Heterodimerzation and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and At-SERK3 (BAK1). Plant Cell,2004,16(12):3216-3229
    129. Sairam RV, Franklin G, Hassel R, Smith B, Meeker K, Kashikar N, Parani M, Abed DA, Ismail S, Berry K, Goldman SL. A study on the effect of genotypes, plant growth regulators and sugars in promoting plant regeneration via organogenesis from soybean cotyledonary nodal callus. Plant Cell, Tissue and Organ Culture,2003,75:79-85
    130. Samoylov VM, Tucker DM, Parrott WA. Soybean embryogenic cultures:the role of sucrose and nitrogen content on proliferation. In Vitro Cell Dev Biol,1998a,34:8-13
    131. Samoylov VM, Tucker DM, Thibaud-Nissen F, Parrott WA. A liquid medium-based protocol for rapid regeneration from embryogenic soybean cultures. Plant Cell Rep,1998b,18:49-54
    132. Sandra LS, Linda WK, Kelly MY, Julie P, Loic L, Robert LF, Robert BG, John JH. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Plant Biol,2001,20(98):11806-11811
    133.Santarem ER, Pelissier B, Finer JJ. Effect of explant orientation, pH, solidifying agent and wounding on initiation of soybean somatic embryos. In Vitro Cell Dev Biol,1997,33:13-19
    134. Santarem ER, Finer JJ. Transformation of soybean [Glycine max (L.) Merrill] using proliferative embryogenic tissue maintained on semi-solid medium. In Vitro Cell Dev Biol-Plant,1999, 35:451-455
    135. Santos MDO, Romano E, Yotoko KSC, Tinoco MLP, Dias BBA, Aragao FJL. Characterisation of the cacao somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis. Plant Sci,2005,168(3):723-729
    136. Sato S, Newell C, Kolacz K. Stable transfomation via particle bombardment in two different soybean regeneration systems. Plant Cell Rep,1993,12:408-413
    137. Schiantarelli E, De la Pena A, Candela M. Use of recombinant inbred lines (RILs) to identify, locate and map major genes and quantitative trait loci involved with in vitro regeneration ability in Arabidopsis thaliana. Theor Appl Genet,2001,102:335-341
    138. Schmidt ED, Guzzo F, Toonen MA. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development,1997,124 (10):2049-2062
    139. Schmidt MA, Tucker DM, Cahoon EB, Parrott WA. Towards normalization of soybean somatic embryo maturation. Plant Cell Rep,2005,24:383-391
    140. Shah K, Gadella TWJ, Van Erp H, Hecht V, de Vries SC. Subcellular localization and oligomerization of the Arabidopsis thaliana somatic embryogenesis receptor kinase 1 protein. J Mol Bio,2001,309(3):641-655
    141. Shi HZ, Ishitani M, Kim C, Zhu JK. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+antiporter. Proc Natl Acad Sci USA,2000,97:6896-6901
    142. Shiu SH, Bleecker AB. Receptor-like kinase from Arabidopsis from a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA,2001,98(19):10763-10768
    143. Shrawat AK, Becker D, Lorz H. Agrobacterium tumefaciens-mediated genetic transformation of barley (Hordeum vulgare L.). Plant Science,2007,172:281-290
    144. Simmonds DH, Donaldson PA. Genotype screening for proliferative embryogenesis and biolistic transformation of shortseason soybean genotypes. Plant Cell Rep,2000,19:485-490
    145. Singla B, Khurana JP, Khurana P. Characterization of three somatic embryogenesis receptor kinase genes from wheat, Triticum aestivum. Plant Cell Rep,2008, DOI 10.1007/s00299-008-0505-1
    146. Somleva MN, Schmidt EDL, de Vries SC. Embryogenic cells in Dactylis glomerata L. (Poaceae) explants identified by cell tracking and by SERK expression. Plant Cell Rep,2000,19(7):718-726
    147. Song D, Li G, Song F, Zheng Z. Molecular characterization and expression analysis of OsBISERKl, a gene encoding a leucine-rich repeat receptor-like kinase, during disease resistance responses in rice. Mol Biol Rep,2008, DOI 10.1007/s11033-007-9080-8
    148. Songstad DD, Duncan DR, Widholm JM. Plant Cell Reports,1988,7:262-265
    149. Steward FC, Mapes MO, Hears K. Growth and organized development of cultured cells. Ⅱ. Growth and division of freely suspended cells. Am. J. Bot,1958,45:705-708
    150. Stewart CN, Parrott WA. Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis crylAc gene. Plant Physiol,1996,112:121-129
    151. Stoutjesdijk P, Singh SP, Liu Q, Hurlstone C, Waterhouse P, Green A. HpRNA-mediated targeting of the Arabidopsis thaliana FAD2 gene gives highly efficient and stable silencing. Plant Physiol, 2002,129:1723-1731
    152. Tae-Seok K, Lee S, Krasnyanski S, Korban SS. Two critical factors are required for efficient transformation of multiple soybean cultivars:Agrobacterium strain and orientation of immature cotyledonary explant. Theor Appl Genet,2003,107:439-447
    153. TAE-SEOK KO, Korban SS. Enhancing the frequency of somatic embryogenesis following Agrobacterium-mediated transformation of immature cotyledons of soybean [Glycine max (L) Merrill]. In Vitro Cell Dev Biol,2004,40:552-558
    154. Taguchi-Shiobara F, Yamamoto T, Yano M, Oka S. Mapping QTLs that control the performance of rice tissue culture and evaluation of derived near-isogenic lines. Theor Appl Genet,2006, 112:968-976
    155.Takeuchi Y, Abe T, Sasahara T. RFLP mapping of QTLs influencing shoot regeneration from mature seed-derived calli in rice. Crop Sci,2000,40:245-247
    156. Tchorbadjieva M, Odjakova MK. An acidic esterase as a biochemical marker for somatic embryogenesis in orchardgrass (Dactylis glomerata L.) suspension cultures. Plant Cell Rep,2001, 20(1):28-33
    157. Thomas TL. Gene expression during plant embryogenesis and germination:An overview. Plant Cell,1993,5(10):1401-1410
    158. Thompson MR, Douglas TJ, Obata-Sasamoto H. Mannitol metabolism in cultured plant cells. Physiol. Plant,1986,67:365-369
    159. Tian LN, Brown DCW. Improvement of soybean somatic embryo development and maturation by abscisic acid treatment. Can J Plant Sci,2000,80:721-276
    160. Tichtinsky G, Vanoosthuyse V, Cock JM, Gaude T. Making inroads plant receptor kinase signalling pathways. Trends Plant Sci,2003,8(5):231-237
    161. Torii KU. Receptor kinase activation and signal transduction in plants:An emerging picture. Curr Opin in Plant Biol,2000,3(5):361-367
    162. Torp AM, Hansen AL, Andersen SB. Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture. Euphytica,2001,119:377-387
    163. Trick HN, Finer JJ. SAAT:Sonication-assisted Agrobacterium transformation. Transgenic Res, 1997,6:329-334
    164. Trick HN, Finer JJ. Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merril] embryogenic suspension culture tissue. Plant Cell Rep,1998,17:482-488
    165.Trigo EJ, Cap EJ. Ten Years of Genetically Modified Crops in Argentine Agriculture. ArgenBio, Buenos Aires, Argentina.2006
    166. Veen H. Planta,1979,145:467-470.
    167. Walker DR, Parrott WA. Effect of polyethylene glycol and sugar alcohols on soybean somatic embryo germination and conversion. Plant Cell Tissue Organ Culture,2001,64:55-62
    168. Walker JC, Zhang R. Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. Nature,1990,345:743-746
    169. Wan Y, Rocheford TR, Widholm JM. RFLP analysis to identify putative chromosomal regions involved in the anther culture response and callus formation of maize. Theor Appl Genet,1992, 85:360-365
    170. Wang J, Zuo K, Wu W, Song J, Sun X, Lin J, Li X, Tang K. Expression of a novel antiporter gene from Brassica napus resulted in enhanced salt tolerance in transgenic tobacco plants. Biologia Plantarum,2004,48(4):509-515
    171. Wang P, Wu Y, Yang W, Wang G. Somatic embryogenesis from immature cotyledons of soybean and analysis of correlative factors. Chinese journal of oil crop science,2002,24:29-32
    172. Wang ZN, Zhang JS, Guo BH, He SJ, Tian AG, Chen SY. Cloning and characterization of the Na+/H+antiport genes from Triticum aestivum. Acta Bot Sin,2002,44:1203-1208
    173. Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J. BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature,2001,410(6834):380-383
    174. Weber S, Friedt W, Landes N, Molinier J, Himber C, Rousselin P, Hahne G, Horn R. Improved Agrobacterium-mediated transformation of sunflower(Helianthus annuus L):assessment of macerating enzymes and sonication. Plant Cell Rep,2003,21:475-482
    175. Wei Zhiming, Xu Zhihong. Plant regeneration form protoplast of soybean (Glycine max [L.] Merrill). Plant Cell Rep,1987,6:83-89
    176. Wilson Thau Lym Yong, Janna Ong Abdullah, Maziah Mahmood Optimization of Agrobacterium-mediated transformation parameters for Melastomataceae spp. using green fluorescent protein (GFP) as a reporter. Scientia Horticulturae,2006,109:78-85
    177. Wright MS, Koehler SM, Hinchee MA, Carnes MG. Plant regeneration by organogenesis in Glycine max. Plant Cell Rep,1986,5:150-154
    178. Wright MS, Ward DV, Hinchee MA, Carnes MG, Kaufman RJ. Regeneration of soybean (Glycine max L. Merr.) from cultured primary leaf tissue. Plant Cell Rep,1987,6:83-89
    179. Wright MS, Ward DV, Hinchee MA. Regeneration of soybean (Glycine max [L.] Merr.) from cultured primary leaf tissue. Plant Cell Rep,1988,7:348-351
    180. Wu CA, Yang GD, Meng QW, Zheng CC. The cotton GhNHXl gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol,2004, 45:600-607
    181.Xue ZY, Zhi DY, Xue GP. Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci,2004,167:849-859
    182. Yamagishi MM, Otani M, Higashi Y, Fukuta K, Yano FM, Shimada T. Chromosomal regions controlling anther culturability in rice (Oryza sativa L.). Euphytica,1998,103:227-234
    183. Yang SL, Xie LF, Mao HZ, Puah CS, Yang WC, Jiang LX, Sundaresan V, Ye D. TAPETUM DETERMINANT1 gene is required for cell specialization in the Arabidopsis anther. Plant Cell Pre, 2003,15(12):2792-2804
    184. Yang YM, Xu CN, Wang BM, Jia JZ. Effect of plant growth regulations on secondary well thickening of cotton fibers. Plant Growth Regulation,2001,35:233-237
    185. Yi X, Yu D. Transformation of multiple soybean cultivars by infecting cotyledonary-node with Agrobacterium tumefaciens. African Journal of Biotechnology,2006,5(20):1989-1993
    186. Zhang HX, Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat. Biotechnol,2001,19:765-768
    187. Zhang HX, Hodson JN, Williams JP. Engineering salt-tolerant Brassica plants:Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA,2001,98(22):12832-12836
    188. Zhang XR. Leucine-rich repeat receptor-like kinases in plants. Plant Mol Biol Rep,1998,16: 301-311
    189. Zhang Z, Xing A, Staswick P, Clemente T. The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tiss Org Cult,1999,56:37-46
    190. Zhao DZ, Wang GF, Speal B, Ma H. The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev,2002,16(15):2021-2031
    191.陈晓军,叶春江,吕慧颖等GmHSFA1基因克隆及其过量表达提高转基因大豆的耐热性.遗传,2006,(11):1411-1420
    192.龚学臣,季静,王萍等.苗龄与6-BA浓度对大豆子叶节丛生芽诱导的影响.吉林农业大学学报,2005,27(2):128-130
    193.雷勃钧,李希臣,卢翠华.外源野生大豆DNA导入栽培大豆及RAPD分子验证.中国科学(B辑),1994,24:597-602
    194.雷勃钧,卢翠华,钱华等.导入外源总DNA获得优质高蛋白和双高大豆新品系.大豆科学,1995,14:203-208
    195.刘博林,岳绍先,胡乃壁等.龙葵Atrazine抗性基因向大豆叶绿体的转移及在转基因植株中的表达.中国科学(B辑),1989,19(7):699-705
    196.刘德璞,赵桂兰.大豆花粉离体培养获得愈伤组织.大豆科学,1986,(1):17-20
    197.刘德璞,赵桂兰.大豆花粉粒的游离、培养及细胞学观察.植物生理学通讯,1987,(2):40-44
    198.刘德璞,廖林,袁鹰等.导入外源DNA获得抗SMV大豆品系.大豆科学,1997,(4):277-282
    199.刘广阳,杨兴勇,宋丽鹃等.外源DNA导入创造大豆高蛋白种质资源的研究.中国油料,1996,18:20-23
    200.刘海坤,卫志明.利用根癌农杆菌介导转化大豆成熟种子胚尖获得转基因植株.植物生理与分子生物学学报,2004,(6):631-636
    201.刘金华,王丕武,武丽敏等.大豆子叶节丛生芽的诱导.吉林农业大学学报,2001,23(4):15-17
    202.刘兰英.大豆品质改良的基因工程[D].中国农业大学硕十论文,1996
    203.罗希明,赵桂兰,简玉瑜.大豆原生质体的植株再生.植物学报,1990,32:616-621
    204.吕慧能,盖钧镒,马育华等.不同激素条件下大豆原生质体培养和植株再生.作物学报,1993, 19:328-333
    205.南相日,刘文萍,刘丽艳等.PEG介导BT基因转化大豆原生质体获转基因植株.大豆科学,1998,(4):326-330
    206.全先庆.盐芥TsMT基因的克隆及盐胁迫下的表达分析和根癌农杆菌介导SsNHX1对大豆遗传转化的初步研究[D].山东师范大学硕士论文,2002
    207.苏彦辉,王慧丽,俞梅敏等.苏云金芽孢杆菌杀虫晶体蛋白基因导入大豆的研究.植物学报,1999,(10):1046-1051
    208.孙英.转gagal基因大豆的培育及初步鉴定[D].南京农业大学硕士论文,2003
    209.王慧中,徐志彦.Ti质粒在大豆中的表达初报.浙江大学学报,1995,(2):217-218
    210.王萍.大豆组织培养体系优化与双价抗虫基因遗传转化的研究[D].东北农业大学博士论文,2002
    211.肖文言,王连铮.大豆幼荚子叶原生质体培养及植株再生.作物学报,1994,11:665-669
    212.徐香玲,高晶,刘伟华等.Ti质粒介导的B、t、k-δ内毒素蛋白基因转化大豆的初步研究.大豆科学,1997,(1):6-11
    213.徐香玲,邹联沛.向大豆导入儿丁质酶基因初步研究.大豆科学,1999,18(2):101-107
    214.叶兴国,付玉清,王连铮.大豆花药培养几个问题的研究.大豆科学,1994,(3):193-199
    215.岳绍先,翟文学.抗Atrazine基因导入黑龙江大豆品种及其表达和遗传.中国农业科学,1996,29(1):78-83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700