乙醇及其代谢产物对心肌祖细胞的毒性及H3K9表突变作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     孕期酒精暴露可导致先天性心脏病(Congenital heart disease,CHD,简称先心病),但其具体机制目前仍不清楚。我们前期研究提示组蛋白乙酰化修饰失衡可引起心脏发育相关基因表达异常(即表突变,Epimutation),可能与先心病发生有关。目前研究表明,乙醇可选择性引起体外培养肝细胞组蛋白H3第9位赖氨酸(Histone H3 lysine 9,H3K9)乙酰化修饰失衡,但是否引起心脏中的H3K9乙酰化修饰失衡以及进一步影响心脏发育相关基因的表达(即H3K9表突变)仍不清楚。本研究以心肌祖细胞15-13(Cardiac progenitor cells15-13,CP15-13)为研究对象,探讨乙醇及其代谢产物对心肌祖细胞的毒性及H3K9表突变作用。
     材料与方法:
     以CP15-13为研究对象,复苏细胞后,用含10%胎牛血清的DMEM高糖培养基培养,待细胞贴满瓶底80%左右时以1:3比例传代,取第四代细胞做干预实验。应用MTT比色法观察乙醇及其代谢产物对心肌祖细胞的毒性作用及筛选出低、高浓度干预组。剂量设计为乙醇50,100,200mM,乙醛及乙酸均设计为4,8,12,16mM。低、高浓度干预CP15-13后,应用Western blot方法检测CP15-13干预前后组蛋白H3K9乙酰化水平改变。应用基于SYBR GREENⅠ的荧光定量聚合酶链反应(quantitative polymerase chain reaction, Q-PCR)方法检测CP15-13心脏发育相关基因GATA4、Mef2c、Tbx5 mRNA表达量在干预前后的变化。
     结果:
     1.MTT结果显示50 mM乙醇(0.368±0.028)、4 mM乙醛(0.336±0.040)、4 mM乙酸(0.359±0.014)与对照组(0.358±0.066)比较不影响心肌祖细胞增殖(P>0.05),作为低浓度干预组, 200 mM乙醇(0.245±0.042)、12 mM乙醛(0.220±0.017)、16 mM乙酸(0.243±0.024)与对照组(0.358±0.066)比较,对心肌祖细胞抑制率为30%左右(P<0.05),作为高浓度干预组。
     2.MTT筛选出低、高浓度干预CP15-13后,应用Western blot法及Q-PCR法分别对组蛋白H3K9乙酰化水平及心脏发育相关基因mRNA表达水平进行对比,结果显示低浓度组乙醇、乙酸分别使组蛋白H3K9乙酰化水平升高2.4、2.2倍(P<0.05),心脏发育相关基因表达无明显变化(P>0.05),高浓度组乙醇、乙酸分别使组蛋白H3K9乙酰化水平升高5.3、5.6倍,同时心脏发育相关基因GATA4表达分别增加(1.767±0.173)、(1.518±0.133),Mef2c表达分别增加(3.301±0.465)、(1.875±0.587),与对照组及相应低浓度组比较均有统计学差异(P<0.05),乙醛则无论低浓度还是高浓度对组蛋白H3K9乙酰化水平及基因表达均无明显影响(P>0.05)。
     结论:
     1.高浓度的乙醇及其代谢产物对心肌祖细胞均有毒性作用
     2.乙醇及其代谢产物之一乙酸对心肌祖细胞具有组蛋白H3K9表突变作用,而其另一代谢产物乙醛无此作用。
Background
     Alcohol exposure during pregnancy would cause congenital heart disease. However, the mechanisms responsible for it remain elusive. Recent evidence suggests that ethanol and its metabolites can selectively increase the acetylation of histone H3 at lysine 9(H3K9) in rat hepatocytes, which can be considered as a mechanism that alters gene expression. Heart development requires the sequential accurate expression of heart development-related genes such as GATA4,Mef2c,Tbx5 at different time and space. Inappropriate expression or repression of these genes can change trajectories and result in developmental malformation.
     Objective
     This study investigated the effect of ethanol and its metabolites on acetylation of H3K9 and the mRNA expression of these genes in cardiac progenitor cells 15-13(CP15-13). To confirm whether they can cause H3K9 epimutation.
     Materials and Methods
     We applied CP15-13 as our study object.After recovery from liquid nitrogen,the cells were cultured with high glucose DMEM medium containing 10% fetal bovine serum. At 80% confluence,the cells were subcultured for 3 passages.The fourth generation of cells are used in our experiments.We used MTT assay to investigate the cytotoxicity of ethanol and its metabolites to cardiac progenitor cell and select the low and high concentration intervention groups.After intervention with low and high concentration groups .We used Western-blot to detect acetylation of histone H3K9 and Q-PCR to detect the mRNA expression of heart development-related genes Gata4, Mef2c ,Tbx5 in cardiac progenitor cells.
     Results
     1.MTT assay showed that 50mM ethanol(0.368±0.028), 4mM acetaldehyd(e0.336±0.040), 4mM acetat(e0.359±0.014),as compared with contro(l0.358±0.066), didn’t affect the proliferation of cells (P>0.05).We used these concentrations as our low concentration groups. 200mM ethanol(0.245±0.042), 12mM acetaldehyde(0.220±0.017), 16mM acetate(0.243±0.024), as compared with control(0.358±0.066), inhibited the proliferation about 30%(P<0.05). We used these concentrations as our high concentration groups.
     2. After intervention with low and high concentration groups .We used Western-blot and Q-PCR respectively to detect the acetylation of histone H3K9 and the mRNA expression of heart development-related genes. We revealed that low concentration groups of 50mM ethanol, 4mM acetate respectively increased 2.4, 2.2-fold acetylation of H3K9(P<0.05),but the heart development-related genes had no significant change(P>0.05). High concentration groups of 200mM ethanol, 16mM acetate respectively increased 5.3,5.6-fold acetylation of H3K9(P<0.05)and the expression of heart development-related genes GATA4 increased respectively (1.767±0.173)、(1.518±0.133) , Mef2c increased respectively (3.301±0.465)、(1.875±0.587) , as compared with control or the corresponding low concentration group(sP<0.05). Whether 4mM or 12mM acetaldehyde all had a negligible effect on the acetylation of H3 lys9 and the expression of heart development-related genes(P>0.05).
     Conclusions
     High concentrations of ethanol and its metabolites all have a cytotoxicity effect to cardiac progenitor cells. Ethanol and one of its metabolites acetate have the H3K9 epimutation effect,but its another metabolite acetaldehyde has no this effect.
引文
[1] Jirtle RL,Skinner MK. Environmental epigenomics and disease Susceptibility [J].Nature Rev.Genet.2007, 8:257—262
    [2] Burd L,Deal E,Rios R,et al. Congenital Heart Defects and Fetal Alcohol Spectrum Disorders[J]. Congenit Heart Dis.2007,2(4): 250–255
    [3] Webster WS, Germain MA,Lipson A,et al. Alcohol and congenital heart defects: an experimental study in mice[J]. Cardiovasc Res.1984, 18(6): 335-338
    [4] Cavieres MF , Smith SM. Genetic and Developmental Modulation of Cardiac Deficits in Prenatal Alcohol Exposure[J]. Alcohol Clin Exp Res.2000,24(1): 102-109
    [5] Karamboulas C, Swedani A, Ward C,et al. HDAC activity regulates entry of mesoderm cells into the cardiac muscle lineage[J]. J Cell Sci.2006,119(Pt 20):4305-14.
    [6] Feinberg AP. Phenotypic plasticity and the epigenetics of human disease[J]. Nature.2007, 447(7143):433-440.
    [7] Yang XJ, Seto E. Lysine acetylation: codified crosstalk with other posttranslational modifications[J]. Mol Cell.2008, 31(4):449-61.
    [8] Ott HC, Matthiesen TS, Goh SK, et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart[J]. Nat med.2008, 14(2):213-21.
    [9] Backs J, Olson EN. Control of cardiac growth by histone acetylation /deacetylation[J]. Circ Res.2006,98(1):15-24.
    [10] Guozhen Chen, Jing Zhu,Tiewei Lv, Gang Wu, Huichao Sun, Xupei Huang, Jie Tian. Spatiotemporal expression of two histone acetyltransferases, p300 and CBP, during developing embryonic heart[J]. J Biomed Sci.2009,16(1):24
    [11]李莉,朱静,田杰,冯川等.组蛋白乙酰化修饰对心肌微环境中MSCs向心肌细胞分化的影响[J].中华医学遗传学杂志.2008,25(2):159-163。
    [12] Shukla SD,Velazquez J,French SW,et al.Emerging role of epigenetic in theactions of alcohol.Alcohol Clin Exp Res.2008,32(9):1-10
    [13] Shepard BD,Tuma PL.Alcohol-induced protein hyperacetylation:machanisms and consequences.World J Gastroenterol.2009,15(10):1219-1230
    [14] Haycock PC.Fetal Alcohol spectrum disorders:The Epigenetic Perspective.Biol Reprod.2009,81(4):607-617
    [15] Bardag-Gorce F,French BA,Joyce M,et al. Histone acetyltransferase p300 modulates gene expression in an epigenetic manner at high blood alcohol levels[J].Exp Mol Pathol.2007, 82(2):197-202.
    [16] Choudhury M,Shukla SD. Surrogate alcohols and their metabolites modify histone H3 acetylation: involvement of histone acetyltransferase and histone deacetylase[J]. Alcohol Clin Exp Res.2008,32(5):829-39.
    [17] Jones K,Smith DW.Reconition of the fetal alcohol syndrome in early infancy[J].Lancet.1973,302(7832):999-1001
    [18] Mooney SM,Miller MW. Effects ofprenatal exposure to ethanol on the expression of bcl-2,bax and caspase 3 in the developing rat cerebral cortex and thalamn[J]. Brain Res.2001,911(1):71-81
    [19]于向民,姜敏.乙醇对心肌细胞凋亡及凋亡相关基因Bcl-2和Bax表达的影响[J].环境与健康杂志.2005,22(6):470-472
    [20] Kotch LE,Chen SY,SliK KK.Ethanol-induced teratogenesis:free radical damage as a possible mechanism[J].Teratology.1995,52(3):128-136
    [21] Gong Z,Wenzeman FH. Inhibitory effect of alcohol on osteogenic differentiation in human bone marrow-derived mesenchymal stem cells.Alcohol Clin Exp Res.2004,28(3):468-479
    [22] Olson EN. Gene regulatory networks in the evolution and development of the heart. Science. 2006, 313: 1922-1927.
    [23] Shukla SD, Aroor AR.Epigenetic effects of ethanol on liver and gastrointestinal Injury [J].World J Gastroenterol.2006, 12(33): 5265-5271
    [24] Park PH, Miller R, Shukla SD. Acetylation of histone H3 at lysine 9 by ethanol in rat hepatocytes [J]. Biochem Biophys Res Commun. 2003 Jun 27;306(2):501-4
    [25] Kim JS,Shukla SD. Histone H3 modifications in rat hepatic steliate cells by ethanol[J]. Alcohol and Alcoholism.2005, 40(5):367-72
    [26] Park PH, Lim RW, Shukla SD. Involvement of histone acetyltransferase (HAT) in ethanol-induced acetylation of histone H3 in hepatocytes: potential mechanism for gene expression[J]. Am J Physiol Gastrointest Liver Physiol. 2005,289(6):G1124-36.
    [27] Pandey SC, Ugale R, Zhang H,et al. Brain chromatin remodeling: a novel mechanism of alcoholism[J]. J Neurosci. 2008 ;28(14):3729-37.
    [28] Wang X, Gomutputra P, Wolgemuth DJ, Baxi LV. Acute alcohol exposure induces apoptosis and increases histone H3K9/18 acetylation in the mid-gestation mouse lung[J]. Reprod Sci. 2010 ,17(4):384-90.
    [29] Horsthemke B. Epimutations in human disease. Curr Top Microbiol Immunol.2006, 310: 45-59
    [30] Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007,8(4):253-62.
    [31] Dolinoy DC, Jirtle RL. Environmental epigenomics in human health and disease. Environ Mol Mutagen. 2008,49(1):4-8
    [32] Grunstein M. Histone acetylation in chromatin structure and transcription. Nature.1997, 389 (6649): 349-52.
    [33] Morinobu A, Kanno Y, O’nd Shea JJ. Discrete roles for histone acetylation in human T helper 1 cell-specific gene expression[J]. J Biol Chem.2004,279(39): 40640-6.
    [34] Timmermann S, Lehrmann H, et al. Histone acetylation and disease. Cell Mol Life Sci. 2001,58:728–736.
    [35] Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 1998, 12(5):599-606.
    [36] Lee JH,Hart SR,Skalnik DG.Histone deacetylase activity is required for embryonic stem cell differentiation[J]. Genesis.2004, 38(1): 32-38.
    [37] KrejcíJ, UhlírováR, GaliováG, et al. Genome-wide reduction in H3K9acetylation during human embryonic stem cell differentiation[J]. J Cell Physiol.2009 ,219(3):677-687.
    [38] Karamboulas C,Swedani A,Ward C,et al.HDAC activity regulates entry of mesoderm cells into the cardiac muscle lineage[J].J Cell Sci.2006,119(20):4305-4314.
    [39] Wu G, Nan C, Rollo JC, Huang X, Tian J. Sodium valproate-induced congenital cardiac abnormalities in mice are associated with the inhibition of histone deacetylase[J]. J Biomed Sci.2010,17(1):1-7.
    [40] Marks PA, Richon VM, Breslow R, Rifkind RA. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol.2001,13(6): 477-83.
    [41] Mei S,Ho AD,Mahlknecht U. Role of histone deacetylase inhibitors in the treatment of cancer. Int J Oncol.2004,25(6): 1509–19.
    [42] Sambucetti LC, Fischer DD, Zabludoff S,et al. Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects[J]. J Biol Chem.1999,274(49): 34940-7.
    [1] Olson EN.Gene regulatory networks in the evolution and development of the heart.Science,2006,313(5795): 1922-1927.
    [2] Srivastava D.Making or breaking the heart: from lineage determination to morphogenesis.Cell,2006,126(6):1037-1048.
    [3] Bruneau BG.The developmental genetics of congenital heart disease.Nature,2008,451(7181):943-948.
    [4] Tanaka M,Chen Z,Bartunkova S,et al.The cardiac homeobox gene Csx/ NKx2. 5 lies genetically upstream of multiple genes essential of heart development.Devlopment,1999,126(6):1269-1280.
    [5] Fischer A,Steidl C, Wagner TU,et al.Combined loss of Hey1 and HeyL causes congenital heart defects because of impaired epithelial to mesenchymal transition.Circ Res, 2007,100(6):856-863.
    [6] Kokubo H,Miyagawa-Tomita S, Tomimatsu H,et al.Targeted disruption of hesr2 results in atrioventricular valve anomalies that lead to heart dysfunction.Circ Res,2004,95(5):540-547.
    [7] Sakata Y,Kamei CN, Nakagami H,et al.Ventricular septal defect and cardiomyopathy in mice acking the transcription factor CHF1/Hey2.Proc Natl Acad Sci U S A,2002, 99(25):16197-16202.
    [8] Gessler M,Knobeloch KP, Helisch A,et al.Mouse gridlock: No aortic coarctation or deficiency, but fatal cardiac defects in Hey2_/_ Mice.Current Biology,2002,12(18):1601-1604.
    [9]赵晓晴,黄国英,谢利剑,等.Cx43基因剔除小鼠心脏锥干部的异常发育.中华医学杂志,2005,85(38):2715-2718.
    [10]齐春华,黄国英,周国民等.连接蛋白43基因敲除小鼠胚胎心脏流出道组织中转录因子的表达及意义.中华医学杂志,2007,87(24):1709-1712.
    [11] Jiao K,Langworthy M, Batts L , et al.Tgfbeta signaling is required for atrioventricular cushion mesenchyme remodeling during in vivo cardiac development. Development,2006,133(22):4585-4593.
    [12] Montgomery RL,Davis CA, Potthoff MJ,et al.Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth,and contractility.Genes Dev,2007,21(14):1790-1802.
    [13] Unezaki S,Horai R, Sudo K,et al.Ovol2/Movo,a homologue of Drosophila ovo, is requiredfor angiogenesis, heart formation and placental development in mice.Genes Cells,2007,12(6):773–785.
    [14] Sierro F,Biben C, Martínez-Mu?oz L,et al.Disrupted cardiac development but normal Hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7.Proc Natl Acad Sci USA,2007,104(37):14759-14764.
    [15]袁婺洲,Bodmer R,等.利用RNAi技术研究果蝇心脏发育基因的功能.遗传学报,2002,29(1):34-38.
    [16] Kennerdell JR,Carthew RW.Heritable gene silencing in Drosophi2la using double2stranded RNA.Nat Biotechnol,2000,18(8):896-898.
    [17] Shuman JB, Gong SG , et al.RNA interference of Bmp-4 and midface development in postimplantation mouse embryos.Am J Orthod Dentofacial Orthop,2007,131(4):447e1-447e11.
    [18] Zhong TP,Childs S, Leu JP,et al.Gridlock signalling pathway fashions the first embryonic artery.Nature,2001,414(6860):216-220.
    [19] Dowling JJ,Gibbs E, Russell M,et al.Kindlin-2 Is an essential component of intercalated discs and is required for vertebrate cardiac structure and function.Circ Res,2008,102(4):423-431.
    [20] Chen Y,Yuen WH,Fu J,et al.The mitochondrial respiratory chain controls intracellular calcium signaling and NFAT activity essential for heart formation in Xenopus laevis.Mol Cell Biol,2007,27(18):6420-6432.
    [21] Nagao K,Taniyama Y, Kietzmann T,et al.HIF-1αsignaling upstream of Nkx2.5 is required for cardiac development in Xenopus.J Biol Chem , 2008 ,283(17):11841-11849.
    [22]崇梅,桂永浩,成璐,等.斑马鱼Tbx2基因阻抑先天性心脏病模型的建立与研究.中华医学杂志,2007,87(14):991-994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700