小鼠围着床期子宫中精氨酸琥珀酸合成酶1的表达调节和功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精氨酸琥珀酸合成酶(Argininosuccinate synthetase1, Ass1)能够催化瓜氨酸(L-Citrulline)和天冬氨酸(L-Aspartate)形成精氨琥珀酸,然后在精氨琥珀酸裂解酶(Argininosuccinate lyase, Asl)的作用下,生成精氨酸(L-Arginine)和延胡索酸。由于Asl的表达量恒定,因此Assl是生成精氨酸的限速酶。本实验利用原位杂交和Real-time PCR检测了Assl和Asl在围着床期小鼠子宫中的表达,并利用假孕和人工诱导蜕膜化等模型研究了Ass1的表达及其调节,同时检测了在妊娠D4和D8小鼠子宫内膜和血液中的精氨酸含量。在体外细胞培养中,探讨了cAMP对Ass1的调节机制,以及Assl和精氨酸水平对小鼠子宫内膜基质细胞增殖和蜕膜化的影响。利用Ass1特异性抑制剂MDLA,我们研究了Ass1在胚胎着床及蜕膜化中的作用。
     在小鼠早期妊娠(D1-D4)的子宫中,Ass1和Asl没有表达;在妊娠第5天,Ass1和Asl均在着床位点处的基质细胞中表达。随着蜕膜化的进行(D5-D8),Ass1和Asl的表达从初级蜕膜区逐渐扩展到次级蜕膜区。在人工诱导蜕膜化组织中,均可检测到Ass1和Asl表达。但在假孕和延迟着床的小鼠子宫中检测不到信号,延迟着床被激活后;Assl和Asl主要定位于着床位点环绕胚胎的基质细胞中,说明Ass1和Asl的表达受胚胎调节。对妊娠D4小鼠的子宫内膜和D8的着床点子宫内膜组织以及血清分析发现,在妊娠D8天的着床点子宫和血清中精氨酸的量均增加。
     体外培养的子宫内膜基质细胞中,cAMP通过激活PKA信号通路,Creb蛋白磷酸化后可结合到Ass1启动子的Cre结合元件区,调控Ass1的转录水平,进而调节精氨酸的水平。干涉Creb后,能明显下调Ass1和蜕膜化标志分子Dtprp的表达。干涉Ass1或者使用Ass1的抑制剂MDLA也能明显下调Dtprp的表达。过表达Ass1和Asl可以上调Dtprp的表达。使用Ass1的产物精氨酸处理基质细胞时,低浓度的精氨酸对Ass1、As1、Dtprp和细胞增殖没有影响,高浓度的精氨酸可抑制Ass1和Asl表达水平,但显著促进Dtprp的表达,并且明显促进细胞增殖。从妊娠D4到D6注射Ass1的特异性抑制剂MDLA,能显著抑制蜕膜化。
     这些结果表明,Ass1在体内和体外小鼠基质细胞蜕膜化过程中均有表达,在基质细胞的增殖和蜕膜化过程中发挥重要作用。cAMP通过PKA激酶调节Ass1的表达水平。精氨酸水平在蜕膜组织中升高,高浓度的精氨酸促进基质细胞的增殖和蜕膜化,但通过负反馈机制抑制Ass1和Asl的表达,从而维持体内精氨酸的平衡状态。
Assl (argininosuccinate synthetase1) is the key enzyme which converts L-Citrulline and L-Aspartate to argininosuccinic acid, which is catalyzed the breakdown to arginine and fumarate by argininosuccinate lyase (Asl). Owing to consistent expression of Asl, Assl is a recognized rate-limiting step in arginine synthesis. This study was to examine the expression, regulation and function of Assl and Asl in mouse endometrium during peri-implantation period.
     Assl and Asl are not detected in mouse preimplantation uteri from days1to4. Both Ass1and Asl are expressed in stromal cells at the implantation sites on day5of pregnancy, and their expression is then spread to the secondly decidua from primary decidua with the progress of decidualization from days5to8. Both Ass1and Asl are co-localized in the deciduoma under artificial decidualization, but are not detected in pseudopregnant uterui. Assl and As1are induced in implantation site uterus when delayed implantation is activated. Hence, embryos may regulate the expression of Assl and Asl. Compared with endomitrium and serum on day4, L-Arg level is higher in endomitrium and serum on day8.
     cAMP activates PKA and induces Creb phosphorylation, which translocates into nucleus and transcriptionally regulates Assl expression and L-Arg production. Creb knockdown can significantly decrease the expression of Assl and Dtprp (a decidualization marker) mRNA level. Assl knockdown or MDLA (Assl inhibitor) also decreases Dtprp mRNA level. Overexpression of Ass1and Asl can upregulate Dtprp mRNA level. When stromal cells are treated with L-Arg, L-Arg in low concentration has no effect on the expression of Ass1, Asl and Dtprp mRNA level and proliferation of stromal cells, and L-Arg in high concentration inhibits the expression of Ass1, Asl and Dtprp, as well as the proliferation of stromal cells. When pregnant mice are treated with MDLA from days4to6, decidualization is significantly inhibited.
     In conclusion, Assl is strongly expressed in mouse stromal cells during decidualization in vivo and in vitro and may play a key role in proliferation and decidualization. cAMP regulates Assl expression via PKA. L-Arg in high concentration is beneficial for stromal cells proliferation and decidualization. On the other hand, L-Arg in high concentration inhibits Assl and Asl expression by negative feedback to maintain L-Arg homeostasis.
引文
[1]Dey SK, Lim H, Das SK, Reese J, Paria BC, Daikoku T, and Wang H. Molecular cues to implantation. Endocr Rev.2004.25 (3),341-373.
    [2]Wang H and Dey SK. Roadmap to embryo implantation:clues from mouse models. Nat Rev Genet.2006.7(3),185-199.
    [3]Ansell JD, Barlow PW, and McLaren A. Binucleate and polyploid cells in the decidua of the mouse. J Embryol Exp Morphol.1974.31 (1),223-227.
    [4]Paria BC, Zhao X, Das SK, Dey SK, and Yoshinaga K. Zonula occludens-1 and E-cadherin are coordinately expressed in the mouse uterus with the initiation of implantation and decidualization. Dev Biol.1999.208 (2),488-501.
    [5]Das SK. Cell cycle regulatory control for uterine stromal cell decidualization in implantation. Reproduction.2009.137 (6),889-899.
    [6]Ma WG, Song H, Das SK, Paria BC, and Dey SK. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc Natl Acad Sci U S A.2003.100 (5),2963-2968.
    [7]DeMayo FJ, Zhao B, Takamoto N, and Tsai SY. Mechanisms of action of estrogen and progesterone. Ann N Y Acad Sci.2002.955,48-59; discussion 86-48,396-406.
    [8]Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, and Smithies O. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci U SA.1993.90(23),11162-11166.
    [9]Curtis Hewitt S, Goulding EH, Eddy EM, and Korach KS. Studies using the estrogen receptor alpha knockout uterus demonstrate that implantation but not decidualization-associated signaling is estrogen dependent. Biol Reprod.2002.67 (4),1268-1277.
    [10]Curtis SW, Clark J, Myers P, and Korach KS. Disruption of estrogen signaling does not prevent progesterone action in the estrogen receptor alpha knockout mouse uterus. Proc Natl Acad Sci U S A.1999.96 (7),3646-3651.
    [11]O'Brien JE, Peterson TJ, Tong MH, Lee EJ, Pfaff LE, Hewitt SC, Korach KS, Weiss J, and Jameson JL. Estrogen-induced proliferation of uterine epithelial cells is independent of estrogen receptor alpha binding to classical estrogen response elements. J Biol Chem.2006.281 (36),26683-26692.
    [12]Kazi AA and Koos RD. Estrogen-induced activation of hypoxia-inducible factor-lalpha, vascular endothelial growth factor expression, and edema in the uterus are mediated by the phosphatidylinositol 3-kinase/Akt pathway. Endocrinology.2007.148 (5),2363-2374.
    [13]Bagchi IC, Li Q, Cheon YP, Mantena SR, Kannan A, and Bagchi MK. Use of the progesterone receptor antagonist RU 486 to identify novel progesterone receptor-regulated pathways in implantation. Semin Reprod Med.2005.23 (1), 38-45.
    [14]Tan J, Paria BC, Dey SK, and Das SK. Differential uterine expression of estrogen and progesterone receptors correlates with uterine preparation for implantation and decidualization in the mouse. Endocrinology.1999.140 (11),5310-5321.
    [15]Xu J and Li Q. Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol Endocrinol.2003.17 (9),1681-1692.
    [16]Boonyaratanakornkit V, Bi Y, Rudd M, and Edwards DP. The role and mechanism of progesterone receptor activation of extra-nuclear signaling pathways in regulating gene transcription and cell cycle progression. Steroids.2008.73 (9-10), 922-928.
    [17]Conneely OM, Maxwell BL, Toft DO, Schrader WT, and O'Malley BW. The A and B forms of the chicken progesterone receptor arise by alternate initiation of translation of a unique mRNA. Biochem Biophys Res Commun.1987.149 (2), 493-501.
    [18]Conneely OM, Kettelberger DM, Tsai MJ, Schrader WT, and O'Malley BW. The chicken progesterone receptor A and B isoforms are products of an alternate translation initiation event. J Biol Chem.1989.264 (24),14062-14064.
    [19]Brayman MJ, Julian J, Mulac-Jericevic B, Conneely OM, Edwards DP, and Carson DD. Progesterone receptor isoforms A and B differentially regulate MUC1 expression in uterine epithelial cells. Mol Endocrinol.2006.20 (10), 2278-2291.
    [20]Surveyor GA, Gendler SJ, Pemberton L, Das SK, Chakraborty I, Julian J, Pimental RA, Wegner CC, Dey SK, and Carson DD. Expression and steroid hormonal control of Muc-1 in the mouse uterus. Endocrinology.1995.136 (8), 3639-3647.
    [21]Mulac-Jericevic B, Mullinax RA, DeMayo FJ, Lydon JP, and Conneely OM. Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science.2000.289 (5485),1751-1754.
    [22]Mulac-Jericevic B, Lydon JP, DeMayo FJ, and Conneely OM. Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc Natl Acad Sci U S A.2003.100 (17),9744-9749.
    [23]Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA, Jr., Shyamala G, Conneely OM, and O'Malley BW..Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev.1995.9 (18), 2266-2278.
    [24]Takamoto N, Zhao B, Tsai SY, and DeMayo FJ. Identification of Indian hedgehog as a progesterone-responsive gene in the murine uterus. Mol Endocrinol.2002.16 (10),2338-2348.
    [25]Li Q, Kannan A, DeMayo FJ, Lydon JP, Cooke PS, Yamagishi H, Srivastava D, Bagchi MK, and Bagchi IC. The antiproliferative action of progesterone in uterine epithelium is mediated by Hand2. Science.2011.331 (6019),912-916.
    [26]Tranguch S, Cheung-Flynn J, Daikoku T, Prapapanich V, Cox MB, Xie H, Wang H, Das SK, Smith DF, and Dey SK. Cochaperone immunophilin FKBP52 is critical to uterine receptivity for embryo implantation. Proc Natl Acad Sci U S A. 2005.102(40),14326-14331.
    [27]Lee KY, Jeong JW, Wang J, Ma L, Martin JF, Tsai SY, Lydon JP, and DeMayo FJ. Bmp2 is critical for the murine uterine decidual response. Mol Cell Biol.2007.27 (15),5468-5478.
    [28]Vainio S, Heikkila M, Kispert A, Chin N, and McMahon AP. Female development in mammals is regulated by Wnt-4 signalling. Nature.1999.397 (6718),405-409.
    [29]Frolova AI and Moley KH. Quantitative analysis of glucose transporter mRNAs in endometrial stromal cells reveals critical role of GLUT 1 in uterine receptivity. Endocrinology.2011.152 (5),2123-2128.
    [30]Adastra KL, Frolova AI, Chi MM, Cusumano D, Bade M, Carayannopoulos MO, and Moley KH. Slc2a8 Deficiency in Mice Results in Reproductive and Growth Impairments. Biol Reprod.2012.
    [31]Frolova AI, O'Neill K, and Moley KH. Dehydroepiandrosterone inhibits glucose flux through the pentose phosphate pathway in human and mouse endometrial stromal cells, preventing decidualization and implantation. Mol Endocrinol.2011. 25 (8),1444-1455.
    [32]Tian Z, Zhao ZA, Liang XH, Zhang XH, Sha AG, Zhang ZR, Yu YS, and Yang ZM. Expression and function of fatty acid-binding protein 4 during mouse decidualization. Fertil Steril.2011.95 (8),2749-2752 e2741-2745.
    [33]Brown N, Morrow JD, Slaughter JC, Paria BC, and Reese J. Restoration of on-time embryo implantation corrects the timing of parturition in cytosolic phospholipase A2 group IVA deficient mice. Biol Reprod.2009.81 (6), 1131-1138.
    [34]Bock HG ST, O'Brien WE, B. A.,. Sequence for human argininosuccinate synthese cDNA. Nucleic Acids Res.1983.11 (18),6505-6512.
    [35]Dennis JA HP, Beaudet AL, O. W. Molecular definition of bovine argininosuccinate synthetase deficiency. Proc Natl Acad Sci U S A..1989.86 (20),7947-7951.
    [36]Surh LC, Beaudet AL, and O'Brien WE. Molecular characterization of the murine argininosuccinate synthetase locus. Gene.1991.99 (2),181-189.
    [37]Surh LC, Morris SM, O'Brien WE, and Beaudet AL. Nucleotide sequence of the cDNA encoding the rat argininosuccinate synthetase. Nucleic Acids Res.1988.16 (19),9352.
    [38]Wu G. and Morris SM, Jr. Arginine metabolism:nitric oxide and beyond. Biochem J.1998.336 (Pt 1),1-17.
    [39]Ulbright C and Snodgrass PJ. Coordinate induction of the urea cycle enzymes by glucagon and dexamethasone is accomplished by three different mechanisms. Arch Biochem Biophys.1993.301 (2),237-243.
    [40]Morris SM, Jr., Moncman CL, Rand KD, Dizikes GJ, Cederbaum SD, and O'Brien WE. Regulation of mRNA levels for five urea cycle enzymes in rat liver by diet, cyclic AMP, and glucocorticoids. Arch Biochem Biophys.1987.256 (1), 343-353.
    [41]Nebes VL and Morris SM, Jr. Regulation of messenger ribonucleic acid levels for five urea cycle enzymes in cultured rat hepatocytes. Requirements for cyclic adenosine monophosphate, glucocorticoids, and ongoing protein synthesis. Mol Endocrinol.1988.2 (5),444-451.
    [42]Husson A and Vaillant R. Effects of glucocorticosteroids and glucagon on argininosuccinate synthetase, argninosuccinase, and arginase in fetal rat liver. Endocrinology.1982.110 (1),227-232.
    [43]Husson A, Guechairi M, Fairand A, Bouazza M, Ktorza A, and Vaillant R. Effects of pancreatic hormones and glucocorticosteroids on argininosuccinate synthetase and argininosuccinase activities of rat liver during the perinatal period:in vivo and in vitro studies. Endocrinology.1986.119 (3),1171-1177.
    [44]Goutal I, Fairand A, and Husson A. Expression of the genes of arginine-synthesizing enzymes in the rat kidney during development. Biol Neonate.1999.76 (4),253-260.
    [45]Morris SM, Jr., Moncman CL, Holub JS, and Hod Y. Nutritional and hormonal regulation of mRNA abundance for arginine biosynthetic enzymes in kidney. Arch Biochem Biophys.1989.273 (1),230-237.
    [46]Kawahara K, Gotoh T, Oyadomari S, Kajizono M, Kuniyasu A, Ohsawa K, Imai Y, Kohsaka S, Nakayama H, and Mori M. Co-induction of argininosuccinate synthetase, cationic amino acid transporter-2, and nitric oxide synthase in activated murine microglial cells. Brain Res Mol Brain Res.2001.90 (2), 165-173.
    [47]Hattori Y, Shimoda S, and Gross SS. Effect of lipopolysaccharide treatment in vivo on tissue expression of argininosuccinate synthetase and argininosuccinate lyase mRNAs:relationship to nitric oxide synthase. Biochem Biophys Res Commun.1995.215 (1),148-153.
    [48]Brasse-Lagnel C, Fairand A, Lavoinne A, and Husson A. Glutamine stimulates argininosuccinate synthetase gene expression through cytosolic O-glycosylation of Spl in Caco-2 cells. J Biol Chem.2003.278 (52),52504-52510.
    [49]Brasse-Lagnel C, Lavoinne A, Loeber D, Fairand A, Bole-Feysot C, Deniel N, and Husson A. Glutamine and interleukin-lbeta interact at the level of Spl and nuclear factor-kappaB to regulate argininosuccinate synthetase gene expression. FEBS J.2007.274 (20),5250-5262.
    [50]Anderson GM and Freytag SO. Synergistic activation of a human promoter in vivo by transcription factor Spl. Mol Cell Biol.1991.11 (4),1935-1943.
    [51]Jinno Y, Matuo S, Nomiyama H, Shimada K, and Matsuda I. Novel structure of the 5' end region of the human argininosuccinate synthetase gene. J Biochem. 1985.98(5),1395-1403.
    [52]Boshart M, Weih F, Nichols M, and Schutz G. The tissue-specific extinguisher locus TSE1 encodes a regulatory subunit of cAMP-dependent protein kinase. Cell. 1991.66(5),849-859.
    [53]Chin AC and Fournier RE. A genetic analysis of extinction:trans-regulation of 16 liver-specific genes in hepatoma-fibroblast hybrid cells. Proc Natl Acad Sci U S A.1987.84(6),1614-1618.
    [54]Nitsch D, Boshart M, and Schutz G. Extinction of tyrosine aminotransferase gene activity in somatic cell hybrids involves modification and loss of several essential transcriptional activators. Genes Dev.1993.7 (2),308-319.
    [55]Guei TR, Liu MC, Yang CP, and Su TS. Identification of a liver-specific cAMP response element in the human argininosuccinate synthetase gene. Biochem Biophys Res Commun.2008.377 (1),257-261.
    [56]Ruppert S, Boshart M, Bosch FX, Schmid W, Fournier RE, and Schutz G. Two genetically defined trans-acting loci coordinately regulate overlapping sets of liver-specific genes. Cell.1990.61 (5),895-904.
    [57]Kimura T, Christoffels VM, Chowdhury S, Iwase K, Matsuzaki H, Mori M, Lamers WH, Darlington GJ, and Takiguchi M. Hypoglycemia-associated hyperammonemia caused by impaired expression of ornithine cycle enzyme genes in C/EBPalpha knockout mice. J Biol Chem.1998.273 (42),27505-27510.
    [58]Kimura T, Chowdhury S, Tanaka T, Shimizu A, Iwase K, Oyadomari S, Gotoh T, Matsuzaki H, Mori M, Akira S, and Takiguchi M. CCAAT/enhancer-binding protein beta is required for activation of genes for ornithine cycle enzymes by glucocorticoids and glucagon in primary-cultured hepatocytes. FEBS Lett.2001. 494(1-2),105-111.
    [59]Quandt K, Frech K, Karas H, Wingender E, and Werner T. MatInd and Matlnspector:new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res.1995.23 (23),4878-4884.
    [60]Marten NW, Hsiang CH, Yu L, Stollenwerk NS, and Straus DS. Functional activity of hepatocyte nuclear factor-1 is specifically decreased in amino acid-limited hepatoma cells. Biochim Biophys Acta.1999.1447 (2-3),160-174.
    [61]Bruhat A, Jousse C, Carraro V, Reimold AM, Ferrara M, and Fafournoux P. Amino acids control mammalian gene transcription:activating transcription factor 2 is essential for the amino acid responsiveness of the CHOP promoter. Mol Cell Biol.2000.20 (19),7192-7204.
    [62]Siu F, Bain PJ, LeBlanc-Chaffin R, Chen H, and Kilberg MS. ATF4 is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem.2002.277 (27),24120-24127.
    [63]Siu F, Chen C, Zhong C, and Kilberg MS. CCAAT/enhancer-binding protein-beta is a mediator of the nutrient-sensing response pathway that activates the human asparagine synthetase gene. J Biol Chem.2001.276 (51),48100-48107.
    [64]Tsai WB, Aiba I, Lee SY, Feun L, Savaraj N, and Kuo MT. Resistance to arginine deiminase treatment in melanoma cells is associated with induced argininosuccinate synthetase expression involving c-Myc/HIF-lalpha/Sp4. Mol Cancer Ther.2009.8 (12),3223-3233.
    [65]Goodwin BL, Corbin KD, Pendleton LC, Levy MM, Solomonson LP, and Eichler DC. Troglitazone up-regulates vascular endothelial argininosuccinate synthase. Biochem Biophys Res Commun.2008.370 (2),254-258.
    [66]Guerrini L, Gong SS, Mangasarian K, and Basilico C. Cis- and trans-acting elements involved in amino acid regulation of asparagine synthetase gene expression. Mol CellBiol.1993.13 (6),3202-3212.
    [67]Bruhat A, Jousse C, Wang XZ, Ron D, Ferrara M, and Fafournoux P. Amino acid limitation induces expression of CHOP, a CCAAT/enhancer binding protein-related gene, at both transcriptional and post-transcriptional levels. J Biol Chem.1997.272(28),17588-17593.
    [68]Pendleton LC, Goodwin BL, Flam BR, Solomonson LP, and Eichler DC. Endothelial argininosuccinate synthase mRNA 5'-untranslated region diversity. Infrastructure for tissue-specific expression. J Biol Chem.2002.277 (28), 25363-25369.
    [69]Pendleton LC, Goodwin BL, Solomonson LP, and Eichler DC. Regulation of endothelial argininosuccinate synthase expression and NO production by an upstream open reading frame. J Biol Chem.2005.280 (25),24252-24260.
    [70]Hao G, Xie L, and Gross SS. Argininosuccinate synthetase is reversibly inactivated by S-nitrosylation in vitro and in vivo. J Biol Chem.2004.279 (35), 36192-36200.
    [71]Szlosarek PW, Klabatsa A, Pallaska A, Sheaff M, Smith P, Crook T, Grimshaw MJ, Steele JP, Rudd RM, Balkwill FR, and Fennell DA. In vivo loss of expression of argininosuccinate synthetase in malignant pleural mesothelioma is a biomarker for susceptibility to arginine depletion. Clin Cancer Res.2006.12 (23), 7126-7131.
    [72]Ensor CM, Holtsberg FW, Bomalaski JS, and Clark MA. Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res.2002.62 (19), 5443-5450.
    [73]Dillon BJ, Prieto VG, Curley SA, Ensor CM, Holtsberg FW, Bomalaski JS, and Clark MA. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers:a method for identifying cancers sensitive to arginine deprivation. Cancer.2004.100 (4),826-833.
    [74]Szlosarek PW, Grimshaw MJ, Wilbanks GD, Hagemann T, Wilson JL, Burke F, Stamp G, and Balkwill FR. Aberrant regulation of argininosuccinate synthetase by TNF-alpha in human epithelial ovarian cancer. Int J Cancer.2007.121 (1), 6-11.
    [75]Yoon CY, Shim YJ, Kim EH, Lee JH, Won NH, Kim JH, Park IS, Yoon DK, and Min BH. Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation via arginine deiminase. Int J Cancer. 2007.120 (4),897-905.
    [76]Kim RH, Coates JM, Bowles TL, McNerney GP, Sutcliffe J, Jung JU, Gandour-Edwards R, Chuang FY, Bold RJ, and Kung HJ. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res.2009.69 (2),700-708.
    [77]Nicholson LJ, Smith PR, Hiller L, Szlosarek PW, Kimberley C, Sehouli J, Koensgen D, Mustea A, Schmid P, and Crook T. Epigenetic silencing of argininosuccinate synthetase confers resistance to platinum-induced cell death but collateral sensitivity to arginine auxotrophy in ovarian cancer. Int J Cancer.2009. 125 (6),1454-1463.
    [78]Feun L, You M, Wu CJ, Kuo MT, Wangpaichitr M, Spector S, and Savaraj N. Arginine deprivation as a targeted therapy for cancer. Curr Pharm Des.2008.14 (11),1049-1057.
    [79]Hurwitz R and Kretchmer N. Development of arginine-synthesizing enzymes in mouse intestine. Am J Physiol.1986.251 (1 Pt 1), G103-110.
    [80]Windmueller HG and Spaeth AE. Source and fate of circulating citrulline. Am J Physiol.1981.241 (6), E473-480.
    [81]Zamora SA, Amin HJ, McMillan DD, Kubes P, Fick GH, Butzner JD, Parsons HG, and Scott RB. Plasma L-arginine concentrations in premature infants with necrotizing enterocolitis. J Pediatr.1997.131 (2),226-232.
    [82]Levillain O, Hus-Citharel A, Morel F, and Bankir L. Localization of arginine synthesis along rat nephron. Am J Physiol.1990.259 (6 Pt 2), F916-923.
    [83]Dhanakoti SN, Brosnan JT, Herzberg GR, and Brosnan ME. Renal arginine synthesis:studies in vitro and in vivo. Am J Physiol.1990.259 (3 Pt 1), E437-442.
    [84]Tizianello A, De Ferrari G, Garibotto G, Gurreri G, and Robaudo C. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest.1980.65 (5), 1162-1173.
    [85]Mori M and Gotoh T. Regulation of nitric oxide production by arginine metabolic enzymes. Biochem Biophys Res Commun.2000.275 (3),715-719.
    [86]Zhang B, Cao GL, Domachowske J, Jackson MJ, Porasuphatana S, and Rosen GM. Stable expression of varied levels of inducible nitric oxide synthase in primary cultures of endothelial cells. Anal Biochem.2000.286 (2),198-205.
    [87]Xie L and Gross SS. Argininosuccinate synthetase overexpression in vascular smooth muscle cells potentiates immunostimulant-induced NO production. J Biol Chem.1997.272 (26),16624-16630.
    [88]Corbin KD, Pendleton LC, Solomonson LP, and Eichler DC. Phosphorylation of argininosuccinate synthase by protein kinase A. Biochem Biophys Res Commun. 2008.377(4),1042-1046.
    [89]Delage B, Fennell DA, Nicholson L, McNeish I, Lemoine NR, Crook T, and Szlosarek PW. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int J Cancer.2010.126 (12),2762-2772.
    [90]Yerushalmi HF, Besselsen DG, Ignatenko NA, Blohm-Mangone KA, Padilla-Torres JL, Stringer DE, Guillen JM, Holubec H, Payne CM, and Gerner EW. Role of polyamines in arginine-dependent colon carcinogenesis in Apc(Min) (/+) mice. Mol Carcinog.2006.45 (10),764-773.
    [91]Yerushalmi HF, Besselsen DG, Ignatenko NA, Blohm-Mangone KA, Padilla-Torres JL, Stringer DE, Cui H, Holubec H, Payne CM, and Gerner EW. The role of NO synthases in arginine-dependent small intestinal and colonic carcinogenesis. Mol Carcinog.2006.45 (2),93-105.
    [92]Yeatman TJ, Risley GL, and Brunson ME. Depletion of dietary arginine inhibits growth of metastatic tumor. Arch Surg.1991.126 (11),1376-1381; discussion 1381-1372.
    [93]Oyadomari S, Gotoh T, Aoyagi K, Araki E, Shichiri M, and Mori M. Coinduction of endothelial nitric oxide synthase and arginine recycling enzymes in aorta of diabetic rats. Nitric Oxide.2001.5 (3),252-260.
    [94]Flodstrom M, Niemann A, Bedoya FJ, Morris SM, Jr., and Eizirik DL. Expression of the citrulline-nitric oxide cycle in rodent and human pancreatic beta-cells:induction of argininosuccinate synthetase by cytokines. Endocrinology. 1995.136 (8),3200-3206.
    [95]Southern C, Schulster D, and Green IC. Inhibition of insulin secretion by interleukin-1 beta and tumour necrosis factor-alpha via an L-arginine-dependent nitric oxide generating mechanism. FEBS Lett.1990.276 (1-2),42-44.
    [96]Goodwin BL, Pendleton LC, Levy MM, Solomonson LP, and Eichler DC. Tumor necrosis factor-alpha reduces argininosuccinate synthase expression and nitric oxide production in aortic endothelial cells. Am J Physiol Heart Circ Physiol. 2007.293 (2), H1115-1121.
    [97]McKnight JR., Satterfield MC, Jobgen WS, Smith SB, Spencer TE, Meininger CJ, McNeal CJ, and Wu G. Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids. 2010.39(2),349-357.
    [98]Wu G, Collins JK, Perkins-Veazie P, Siddiq M, Dolan KD, Kelly KA, Heaps CL, and Meininger CJ. Dietary supplementation with watermelon pomace juice enhances arginine availability and ameliorates the metabolic syndrome in Zucker diabetic fatty rats. J Nutr.2007.137 (12),2680-2685.
    [99]Goodwin BL, Solomonson LP, and Eichler DC. Argininosuccinate synthase expression is required to maintain nitric oxide production and cell viability in aortic endothelial cells. J Biol Chem.2004.279 (18),18353-18360.
    [100]Shen LJ, Lin WC, Beloussow K, and Shen WC. Resistance to the anti-proliferative activity of recombinant arginine deiminase in cell culture correlates with the endogenous enzyme, argininosuccinate synthetase. Cancer Lett.2003.191(2),165-170.
    [101]Kim JY, Burghardt RC, Wu G, Johnson GA, Spencer TE, and Bazer FW. Select nutrients in the ovine uterine lumen. VIII. Arginine stimulates proliferation of ovine trophectoderm cells through MTOR-RPS6K-RPS6 signaling cascade and synthesis of nitric oxide and polyamines. Biol Reprod.2011.84 (1),70-78.
    [102]Rodriguez PC, Quiceno DG, and Ochoa AC. L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood.2007.109 (4),1568-1573.
    [103]Mun GI, Kim IS, Lee BH, and Boo YC. Endothelial argininosuccinate synthetase 1 regulates nitric oxide production and monocyte adhesion under static and laminar shear stress conditions. J Biol Chem.2011.286 (4),2536-2542.
    [104]Park IS, Kang SW, Shin YJ, Chae KY, Park MO, Kim MY, Wheatley DN, and Min BH. Arginine deiminase:a potential inhibitor of angiogenesis and tumour growth. Br J Cancer.2003.89 (5),907-914.
    [105]Karlberg T, Collins R, van den Berg S, Flores A, Hammarstrom M, Hogbom M, Holmberg Schiavone L, and Uppenberg J. Structure of human argininosuccinate synthetase. Acta Crystallogr D Biol Crystallogr.2008.64 (Pt 3),279-286.
    [106]Enns GM, O'Brien WE, Kobayashi K, Shinzawa H, and Pellegrino JE. Postpartum "psychosis" in mild argininosuccinate synthetase deficiency. Obstet Gynecol.2005.105 (5 Pt 2),1244-1246.
    [107]Hudson LD, Erbe RW, and Jacoby LB. Expression of the human argininosuccinate synthetase gene in hamster transferents. Proc Natl Acad Sci U S A.1980.77 (7),4234-4238.
    [108]Su TS, O'Brien WE, and Beaudet AL. Genomic DNA-mediated gene transfer for argininosuccinate synthetase. Somat Cell Mol Genet.1984.10 (6),601-606.
    [109]Demarquoy J, Herman GE, Lorenzo I, Trentin J, Beaudet AL, and O'Brien WE. Long-term expression of human argininosuccinate synthetase in mice following bone marrow transplantation with retrovirus-transduced hematopoietic stem cells. Hum Gene Ther.1992.3 (1),3-10.
    [110]Lee B, Dennis JA, Healy PJ, Mull B, Pastore L, Yu H, Aguilar-Cordova E, O'Brien W, Reeds P, and Beaudet AL. Hepatocyte gene therapy in a large animal: a neonatal bovine model of citrullinemia. Proc Natl Acad Sci U S A.1999.96 (7), 3981-3986.
    [111]Patejunas G, Bradley A, Beaudet AL, and O'Brien WE. Generation of a mouse model for citrullinemia by targeted disruption of the argininosuccinate synthetase gene. Somat Cell Mol Genet.1994.20 (1),55-60.
    [112]Ye X, Whiteman B, Jerebtsova M, and Batshaw ML. Correction of argininosuccinate synthetase (AS) deficiency in a murine model of citrullinemia with recombinant adenovirus carrying human AS cDNA. Gene Ther.2000.7 (20), 1777-1782.
    [113]Kayler LK, Merion RM, Lee S, Sung RS, Punch JD, Rudich SM, Turcotte JG, Campbell DA, Jr., Holmes R, and Magee JC. Long-term survival after liver transplantation in children with metabolic disorders. Pediatr Transplant.2002.6
    (4),295-300.
    [114]Wu G, Davis PK, Flynn NE, Knabe DA, and Davidson JT. Endogenous synthesis of arginine plays an important role in maintaining arginine homeostasis in postweaning growing pigs. J Nutr.1997.127 (12),2342-2349.
    [115]Opp MR, Rady PL, Hughes TK, Jr., Cadet P, Tyring SK, and Smith EM. Human immunodeficiency virus envelope glycoprotein 120 alters sleep and induces cytokine mRNA expression in rats [published errata appear in Am J Physiol 1996 Aug;271(2 Pt 2):section R following table of contents and 1996 Dec;271(6 Pt 3):section R following table of contents]. Am J Physiol.1996.270 (5 Pt 2), R963-970.
    [116]Wu G, Bazer FW, Cudd TA, Jobgen WS, Kim SW, Lassala A, Li P, Matis JH, Meininger CJ, and Spencer TE. Pharmacokinetics and safety of arginine supplementation in animals. J Nutr.2007.137 (6 Suppl 2),1673S-1680S.
    [117]Ferber S and Ciechanover A. Role of arginine-tRNA in protein degradation by the ubiquitin pathway. Nature.1987.326 (6115),808-811.
    [118]Tapiero H, Mathe G, Couvreur P, and Tew KD. I. Arginine. Biomed Pharmacother. 2002.56 (9),439-445.
    [119]Stechmiller JK, Childress B, and Cowan L. Arginine supplementation and wound healing. Nutr Clin Pract.2005.20 (1),52-61.
    [120]Witte MB and Barbul A. Arginine physiology and its implication for wound healing. Wound Repair Regen.2003.11 (6),419-423.
    [121]Patel AB, Srivastava S, Phadke RS, and Govil G. Arginine activates glycolysis of goat epididymal spermatozoa:an NMR study. Biophys J.1998.75 (3), 1522-1528.
    [122]Srivastava S, Desai P, Coutinho E, and Govil G. Protective effect of L-arginine against lipid peroxidation in goat epididymal spermatozoa. Physiol Chem Phys Med NMR.2000.32 (2),127-135.
    [123]Balercia G, Moretti S, Vignini A, Magagnini M, Mantero F, Boscaro M, Ricciardo-Lamonica G, and Mazzanti L. Role of nitric oxide concentrations on human sperm motility. J Androl.2004.25 (2),245-249.
    [124]Goud PT, Goud AP, Diamond MP, Gonik B, and Abu-Soud HM. Nitric oxide extends the oocyte temporal window for optimal fertilization. Free Radic Biol Med.2008.45 (4),453-459.
    [125]Al-Dabbas FM, Hamra AH, and Awawdeh FT. The effect of arginine supplementation on some blood parameters, ovulation rate and concentrations of estrogen and progesterone in female Awassi sheep. Pak J Biol Sci.2008.11 (20), 2389-2394.
    [126]Battaglia C, Regnani G, Marsella T, Facchinetti F, Volpe A, Venturoli S, and Flamigni C. Adjuvant L-arginine treatment in controlled ovarian hyperstimulation: a double-blind, randomized study. Hum Reprod.2002.17 (3),659-665.
    [127]Battaglia C, Mancini F, Battaglia B, Facchinetti F, Artini PG, and Venturoli S. L-arginine plus drospirenone-ethinyl estradiol in the treatment of patients with PCOS:a prospective, placebo controlled, randomised, pilot study. Gynecol Endocrinol.2010.26 (12),861-868.
    [128]Masha A, Manieri C, Dinatale S, Bruno GA, Ghigo E, and Martina V. Prolonged treatment with N-acetylcysteine and L-arginine restores gonadal function in patients with polycystic ovary syndrome. J Endocrinol Invest.2009.32 (11), 870-872.
    [129]Lefevre PL, Palin MF, and Murphy BD. Polyamines on the reproductive landscape. Endocr Rev.2011.32 (5),694-712.
    [130]Kim JY, Burghardt RC, Wu G, Johnson GA, Spencer TE, and Bazer FW. Select nutrients in the ovine uterine lumen. VII. Effects of arginine, leucine, glutamine, and glucose on trophectoderm cell signaling, proliferation, and migration. Biol Reprod.2011.84(1),62-69.
    [131]Gao H, Wu G, Spencer TE, Johnson GA, and Bazer FW. Select nutrients in the ovine uterine lumen. III. Cationic amino acid transporters in the ovine uterus and peri-implantation conceptuses. Biol Reprod.2009.80 (3),602-609.
    [132]Zhao YC, Chi YJ, Yu YS, Liu JL, Su RW, Ma XH, Shan CH, and Yang ZM. Polyamines are essential in embryo implantation:expression and function of polyamine-related genes in mouse uterus during peri-implantation period. Endocrinology.2008.149 (5),2325-2332.
    [133]Suzuki T, Nagamatsu C, Kushima T, Miyakoshi R, Tanaka K, Morita H, Sakaue M, and Takizawa T. Apoptosis caused by an inhibitor of NO production in the decidua of rat from mid-gestation. Exp Biol Med (Maywood).2010.235 (4), 455-462.
    [134]Groebner AE, Zakhartchenko V, Bauersachs S, Rubio-Aliaga I, Daniel H, Buttner M, Reichenbach HD, Meyer HH, Wolf E, and Ulbrich SE. Reduced amino acids in the bovine uterine lumen of cloned versus in vitro fertilized pregnancies prior to implantation. Cell Reprogram.2011.13 (5),403-410.
    [135]Naeslund G. The effect of glucose-, arginine-and leucine-deprivation on mouse blastocyst outgrowth in vitro. Ups J Med Sci.1979.84 (1),9-20.
    [136]Gwatkin RB. Defined media and development of mammalian eggs in vitro. Ann N Y Acad Sci.1966.139 (1),79-90.
    [137]Gonzalez IM, Martin PM, Burdsal C, Sloan JL, Mager S, Harris T, and Sutherland AE. Leucine and arginine regulate trophoblast motility through mTOR-dependent and independent pathways in the preimplantation mouse embryo. Dev Biol.2012.361 (2),286-300.
    [138]Zeng X, Wang F, Fan X, Yang W, Zhou B, Li P, Yin Y, Wu G, and Wang J. Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats. J Nutr.2008.138 (8),1421-1425.
    [139]Erez A, Nagamani SC, Shchelochkov OA, Premkumar MH, Campeau PM, Chen Y, Garg HK, Li L, Mian A, Bertin TK, Black JO, Zeng H, Tang Y, Reddy AK, Summar M, O'Brien WE, Harrison DG, Mitch WE, Marini JC, Aschner JL, Bryan NS, and Lee B. Requirement of argininosuccinate lyase for systemic nitric oxide production. Nat Med.2011.17 (12),1619-1626.
    [140]Beevers CS, Li F, Liu L, and Huang S. Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer.2006. 119 (4),757-764.
    [141]Hay N and Sonenberg N. Upstream and downstream of mTOR. Genes Dev.2004. 18(16),1926-1945.
    [142]Iyengar MR, Iyengar CW, Chen H.Y, Brinster RL, Bornslaeger E, and Schultz RM. Expression of creatine kinase isoenzyme during oogenesis and embryogenesis in the mouse. Dev Biol.1983.96 (1),263-268.
    [143]Durante W, Liao L, Reyna SV, Peyton KJ, and Schafer AI. Physiological cyclic stretch directs L-arginine transport and metabolism to collagen synthesis in vascular smooth muscle. FASEB J.2000.14 (12),1775-1783.
    [144]Chwalisz K, Winterhager E, Thienel T, and Garfield RE. Synergistic role of nitric oxide and progesterone during the establishment of pregnancy in the rat. Hum Reprod.1999.14 (2),542-552.
    [145]Biswas S, Kabir SN, and Pal AK. The role of nitric oxide in the process of implantation in rats. J Reprod Fertil.1998.114 (1),157-161.
    [146]Sengoku K, Takuma N, Horikawa M, Tsuchiya K, Komori H, Sharifa D, Tamate K, and Ishikawa M. Requirement of nitric oxide for murine oocyte maturation, embryo development, and trophoblast outgrowth in vitro. Mol Reprod Dev.2001. 58 (3),262-268.
    [147]Van Winkle LJ and Campione AL. Effect of inhibitors of polyamine synthesis on activation of diapausing mouse blastocysts in vitro. J Reprod Fertil.1983.68 (2), 437-444.
    [148]Vosatka RJ, Hassoun PM, and Harvey-Wilkes KB. Dietary L-arginine prevents fetal growth restriction in rats. Am J Obstet Gynecol.1998.178 (2),242-246.
    [149]Lassala A, Bazer FW, Cudd TA, Datta S, Keisler DH, Satterfield MC, Spencer TE, and Wu G. Parenteral administration of L-arginine prevents fetal growth restriction in undernourished ewes. J Nutr.2010.140 (7),1242-1248.
    [150]Liu XD, Wu X, Yin YL, Liu YQ, Geng MM, Yang HS, Blachier F, and Wu GY. Effects of dietary L:-arginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein. Amino Acids.2011.
    [151]Mateo RD, Wu G, Bazer FW, Park JC, Shinzato I, and Kim SW. Dietary L-arginine supplementation enhances the reproductive performance of gilts. J Nutr.2007.137 (3),652-656.
    [152]Winer N, Branger B, Azria E, Tsatsaris V, Philippe HJ, Roz.e JC, Descamps P, Boog G, Cynober L, and Darmaun D. L-Arginine treatment for severe vascular fetal intrauterine growth restriction:a randomized double-bind controlled trial. Clin Nutr.2009.28 (3),243-248.
    [153]Shen SF and Hua CH. Effect of L-arginine on the expression of Bcl-2 and Bax in the placenta of fetal growth restriction. J Matern Fetal Neonatal Med.2011.24 (6),822-826.
    [154]Hefler LA, Reyes CA, O'Brien WE, and Gregg AR. Perinatal development of endothelial nitric oxide synthase-deficient mice. Biol Reprod.2001.64 (2), 666-673.
    [155]Diket AL, Pierce MR, Munshi UK, Voelker CA, Eloby-Childress S, Greenberg SS, Zhang XJ, Clark DA, and Miller MJ. Nitric oxide inhibition causes intrauterine growth retardation and hind-limb disruptions in rats. Am J Obstet Gynecol.1994.171 (5),1243-1250.
    [156]Greenberg SS, Lancaster JR, Xie J, Sarphie TG, Zhao X, Hua L, Freeman T, Kapusta DR, Giles TD, and Powers DR. Effects of NO synthase inhibitors, arginine-deficient diet, and amiloride in pregnant rats. Am J Physiol.1997.273 (3 Pt 2),R1031-1045.
    [157]Helmbrecht GD, Farhat MY, Lochbaum L, Brown HE, Yadgarova KT, Eglinton GS, and Ramwell PW. L-arginine reverses the adverse pregnancy changes induced by nitric oxide synthase inhibition in the rat. Am J Obstet Gynecol.1996. 175 (4 Pt1),800-805.
    [158]Greene JM, Dunaway CW, Bowers SD, Rude BJ, Feugang JM, and Ryan PL. Dietary L-arginine supplementation during gestation in mice enhances reproductive performance and Vegfr2 transcription activity in the fetoplacental unit. J Nutr.2012.142 (3),456-460.
    [159]Neri I, Mazza V, Galassi MC, Volpe A, and Facchinetti F. Effects of L-arginine on utero-placental circulation in growth-retarded fetuses. Acta Obstet Gynecol Scand. 1996.75 (3),208-212.
    [160]Kim YJ, Park HS, Lee HY, Ha EH, Suh SH, Oh SK, and Yoo HS. Reduced L-arginine level and decreased placental eNOS activity in preeclampsia. Placenta. 2006.27 (4-5),438-444.
    [161]Benedetti G, Morais KL, Guerreiro JR, de Oliveira EF, Hoshida MS, Oliveira L, Sass N, Lebrun I, Ulrich H, Lameu C, and de Camargo AC. Bothrops jararaca peptide with anti-hypertensive action normalizes endothelium dysfunction involved in physiopathology of preeclampsia. PLoS One.2011.6 (8), e23680.
    [162]Vadillo-Ortega F, Perichart-Perera O, Espino S, Avila-Vergara MA, Ibarra I, Ahued R, Godines M, Parry S, Macones G, and Strauss JF. Effect of supplementation during pregnancy with L-arginine and antioxidant vitamins in medical food on pre-eclampsia in high risk population:randomised controlled trial. BMJ.2011.342, d2901.
    [163]Laskowska M, Laskowska K, Leszczynska-Gorzelak B, and Oleszczuk J. Asymmetric dimethylarginine in normotensive pregnant women with isolated fetal intrauterine growth restriction:a comparison with preeclamptic women with and without intrauterine growth restriction. J Matern Fetal Neonatal Med.2011. 24 (7),936-942.
    [164]Boger RH, Diemert A, Schwedhelm E, Luneburg N, Maas R, and Hecher K. The role of nitric oxide synthase inhibition by asymmetric dimethylarginine in the pathophysiology of preeclampsia. Gynecol Obstet Invest.2010.69 (1),1-13.
    [165]Wu G, Jaeger LA, Bazer FW, and Rhoads JM. Arginine deficiency in preterm infants:biochemical mechanisms and nutritional implications. J Nutr Biochem. 2004.15 (8),442-451.
    [166]Facchinetti F, Neri I, and Genazzani AR. L-arginine infusion reduces preterm uterine contractions. J Perinat Med.1996.24 (3),283-285.
    [167]Buhimschi IA, Saade GR, Chwalisz K, and Garfield RE. The nitric oxide pathway in pre-eclampsia:pathophysiological implications. Hum Reprod Update. 1998.4(1),25-42.
    [168]Chakrabarty A, Tranguch S, Daikoku T, Jensen K, Furneaux H, and Dey SK. MicroRNA regulation of cyclooxygenase-2 during embryo implantation. Proc Natl Acad Sci U S A.2007.104 (38),15144-15149.
    [169]Altarejos JY and Montminy M. CREB and the CRTC co-activators:sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol.2011.12 (3),141-151.
    [170]Telgmann R, Maronde E, Tasken K, and Gellersen B. Activated protein kinase A is required for differentiation-dependent transcription of the decidual prolactin gene in human endometrial stromal cells. Endocrinology.1997.138 (3),929-937.
    [171]Cho JH, Yoon MS, Koo JB, Kim YS, Lee KS, Lee JH, and Han JS. The progesterone receptor as a transcription factor regulates phospholipase D1 expression through independent activation of protein kinase A and Ras during 8-Br-cAMP-induced decidualization in human endometrial stromal cells. Biochem J.2011.436(1),181-191.
    [172]Al-Sabbagh M, Fusi L, Higham J, Lee Y, Lei K, Hanyaloglu AC, Lam EW, Christian M, and Brosens JJ. NADPH oxidase-derived reactive oxygen species mediate decidualization of human endometrial stromal cells in response to cyclic AMP signaling. Endocrinology.2011.152 (2),730-740.
    [173]Kawarabayashi Y, Hai L, Honda A, Horiuchi S, Tsujioka H, Ichikawa J, and Inoue R. Critical role of TRPC1-mediated Ca(2+) entry in decidualization of human endometrial stromal cells. Mol Endocrinol.2012.26 (5),846-858.
    [174]Chen Q, Zhang Y, Peng H, Lei L, Kuang H, Zhang L, Ning L, Cao Y, and Duan E. Transient{beta}2-adrenoceptor activation confers pregnancy loss by disrupting embryo spacing at implantation. J Biol Chem.2011.286 (6),4349-4356.
    [175]Szego CM and Davis JS. Adenosine 3',5'-monophosphate in rat uterus:acute elevation by estrogen. Proc Natl Acad Sci U S A.1967.58 (4),1711-1718.
    [176]Rosenfeld MG and O'Malley BW. Steroid hormones:effects on adenyl cyclase activity and adenosine 3',5'-momophosphate in target tissues. Science.1970.168 (3928),253-255.
    [177]Holmes PV and Bergstrom S. Induction of blastocyst implantation in mice by cyclic AMP. J Reprod Fertil.1975.43 (2),329-332.
    [178]Yin MJ and Gaynor RB. Complex formation between CREB and Tax enhances the binding affinity of CREB for the human T-cell leukemia virus type 1 21-base-pair repeats. Mol Cell Biol.1996.16 (6),3156-3168.
    [179]Flammer JR, Popova KN, and Pflum MK. Cyclic AMP response element-binding protein (CREB) and CAAT/enhancer-binding protein beta (C/EBPbeta) bind chimeric DNA sites with high affinity. Biochemistry.2006.45 (31),9615-9623.
    [180]Zhang X, Lin HY, Liu GY, Wang HM, Li QL, and Zhu C. Expressions and regulation of endothelial and inducible nitric oxide synthases in mouse uterus during the estrous cycle and early pregnancy. Front Biosci.2005.10,3172-3182.
    [181]Sengupta J, Dhawan L, Lalitkumar PG, and Ghosh D. Nitric oxide in blastocyst implantation in the rhesus monkey. Reproduction.2005.130 (3),321-332.
    [182]Nath AK, Enciso J, Kuniyasu M, Hao XY, Madri JA, and Pinter E. Nitric oxide modulates murine yolk sac vasculogenesis and rescues glucose induced vasculopathy. Development.2004.131 (10),2485-2496.
    [183]Ogando DG, Paz D, Cella M, and Franchi AM. The fundamental role of increased production of nitric oxide in lipopolysaccharide-induced embryonic resorption in mice. Reproduction.2003.125 (1),95-110.
    [184]Guerreiro JR, Lameu C, Oliveira EF, Klitzke CF, Melo RL, Linares E, Augusto O, Fox JW, Lebrun I, Serrano SM, and Camargo AC. Argininosuccinate synthetase is a functional target for a snake venom anti-hypertensive peptide:role in arginine and nitric oxide production. J Biol Chem.2009.284 (30),20022-20033.
    [185]Purcell TL, Given R, Chwalisz K, and Garfield RE. Nitric oxide synthase distribution during implantation in the mouse. Mol Hum Reprod.1999.5 (5), 467-475.
    [186]Saxena D, Purohit SB, Kumer GP, and Laloraya M. Increased appearance of inducible nitric oxide synthase in the uterus and embryo at implantation. Nitric Oxide.2000.4 (4),384-391.
    [187]Barroso RP, Osuamkpe C, Nagamani M, and Yallampalli C. Nitric oxide inhibits development of embryos and implantation in mice. Mol Hum Reprod.1998.4 (5), 503-507.
    [188]Burnett TG, Tash JS, and Hunt JS. Investigation of the role of nitric oxide synthase 2 in pregnancy using mutant mice. Reproduction.2002.124 (1),49-57.
    [189]Guha SK and Janne J. The synthesis and accumulation of polyamines in reproductive organs of the rat during pregnancy. Biochim Biophys Acta.1976. 437(1),244-252.
    [190]Fozard JR, Part ML, Prakash NJ, and Grove J. Inhibition of murine embryonic development by alpha-difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase. Eur J Pharmacol.1980.65 (4),379-391.
    [191]Saunderson R and Heald PJ. Ornithine decarboxylase activity in the uterus of the rat during early pregnancy. J Reprod Fertil.1974.39 (1),141-143.
    [192]Fozard JR, Part ML, Prakash NJ, Grove J, Schechter PJ, Sjoerdsma A, and Koch-Weser J. L-Ornithine decarboxylase:an essential role in early mammalian embryogenesis. Science.1980.208 (4443),505-508.
    [193]Luzzani F, Colombo G, and Galliani G. Evidence for a role of progesterone in the control of uterine ornithine decarboxylase in the pregnant hamster. Life Sci.1982. 31 (15),1553-1558.
    [194]Lopez-Garcia C, Lopez-Contreras AJ, Cremades A, Castells MT, and Penafiel R. Transcriptomic analysis of polyamine-related genes and polyamine levels in placenta, yolk sac and fetus during the second half of mouse pregnancy. Placenta. 2009.30 (3),241-249.
    [195]Closs EI, Simon A, Vekony N, and Rotmann A. Plasma membrane transporters for arginine. J Nutr.2004.134 (10 Suppl),2752S-2759S; discussion 2765S-2767S.
    [196]Edmonds MS, Gonyou HW, and Baker DH. Effect of excess levels of methionine, tryptophan, arginine, lysine or threonine on growth and dietary choice in the pig. J Anim Sci.1987.65 (1),179-185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700