海底管线悬跨段涡激振动响应的实验研究与数值预报
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
平铺在海床上的海底管线由于海底地形凹凸不平、海床冲刷等因素容易出现悬跨段,悬跨段往往在海流、波浪等海洋环境载荷的作用下容易发生涡激振动,引起管线的疲劳破坏。本文通过物理模型实验和数值模拟相结合的方法对海底管线悬跨段涡激振动问题进行深入研究,诣在加深对涡激振动机理的理解,预报管跨在复杂海洋环境条件下的动力响应,为海底管线的失稳、强度破坏、疲劳损伤安全评估提供理论基础和科学依据。
     在波流水槽内开展了固定海床上海底管跨涡激振动模型实验,实验的目的在于考察海床近壁对涡激振动的影响、涡激共振由一阶共振向二阶共振过渡的模态过渡以及过渡范围内管线的振动特征。实验制作了两个模型,模型具有不同的质量比(单位长度管线质量与其排开流体质量之比),分别为2.62和4.30,模型均设计成受抗弯刚度支配的柔性梁模型。模型两端采用万向节模拟简支边界,由于重力等静载荷的影响模型跨中在水下分别存在约14mm和50mm的初始下垂。考虑到跨中初始下垂的限制,实验时质量比为2.62的模型端部间隙比选为2.0、4.0、6.0和8.0,质量比为4.30的模型端部间隙比选为4.0、6.0和8.0。基于一阶自振频率的约化速度在0~16.7范围内变化。采用光纤光栅应变传感器测量模型的动力响应,利用模态分析方法对应变数据进行处理得到模型的振动位移响应,进而分析得到振动频率、响应幅值、模态特征等数据。对海床间隙对涡激振动的影响、顺向和横向两个方向振动的耦合等进行了探讨。实验结果表明,随着间隙比的减小,主模态的转移发生在较大的约化速度下,当主模态从一阶模态转移到二阶模态时,响应频率出现了大幅度的增加;对于e/D>2.0,管线横截面运动曲线表现为常见的8字形,但是对于e/D=2.0,管线横截面做泪滴形轨迹运动。重点分析了随着流速的增加涡激振动由一阶模态共振向二阶模态共振的过渡,揭示出各海床间隙比条件下涡激振动由一阶模态向二阶模态的过渡特征。
     针对管跨两端管土作用复杂边界对涡激振动的影响在波流水槽内开展了第二组涡激振动模型实验。模型采用第一组实验中质量比为4.30的模型,模型两端平放在土壤上,中部具有2.138m的悬空长度,模型端部间隙比为6.0。针对沙土和粘土两种不同特性的海床土壤进行了实验。实验首先在空气中和静水中分别针对不同土壤进行自由衰减试验,测量模型的自振频率,之后在水流作用下进行涡激振动测试。水流流速在0-0.6m/s的范围内变化。实验对横向振动频率和应变时程进行了分析,结果表明,模型的自振频率具有模糊特性,但是水流作用下模型的振动频率是确定的,并且随着流速的增加而线性增加;土壤支撑的引入没有改变涡激振动的简谐特性。
     针对海底管跨涡激振动问题编制了有限元分析程序,程序采用柔性梁模拟管跨结构,水动力系数由VIVANA模型得到,模型控制方程采用Newton-Raphson迭代算法求解。采用Larsen et al. (2002,2004)给出的两组不同的用于确定升力曲线的参数曲线进行计算,将计算结果与前人及本文模型实验结果进行了比较。结果表明,Curve1 (Larsen et al.2002)参数曲线较Curve2 (Larsen et al.2004)参数曲线更适合于海底管跨的涡激振动分析;本文的涡激振动数值模型能够较好地计算无海床间隙影响时海底管跨一阶共振区内的涡激振动响应,以及较好地识别出主模态转移。
     最后,为了考察海床近壁对水动力系数的影响及预报近壁影响下管跨的涡激振动响应,利用简单支撑柔性梁实验获取的响应数据进行有限元反力分析,求解作用在柔性梁上的涡激振动载荷,计算相关的水动力系数。利用反力计算得到的水动力系数进行响应计算,将计算结果与实验值进行比较。
Submarine pipeline spans can arise due to uneven seabed or scouring for the pipelines being laid on the cohesionless soil. Vortex-induced vibrations (VIVs) may occur when the spans are subjective to the effects of currents and cause unacceptable fatigue damage in the pipeline. Model tests and numerical simulations were performed to improve the understanding of the VIV phenomenon and predict response under various conditions in order to provide theoretical foundation and scientific basis for disaster process, damage mechanism and safe assessment of submarine pipelines in an offshore environmental condition.
     Flexible pipe tests were performed to investigate the effect of the proximity to seabed on VIV and the mode transition in VIV as the flow velocity varies. Two pipe models,16mm in diameter,2.6m in length and with mass ratios (mass/displaced mass) of 2.62 and 4.30 respectively were tested in a wave current tank. The pipe models were designed as bending stiffness dominated beams which are generally chosed to represent scaled models of pipeline spans, and were installed with universal joints at each end. The middle of the models had initial sags of about 14mm and 50mm respectively in water. The reduced velocity based on the first natural frequency is in the range of 0-16.7. Due to the restriction of the initial sags, the gap ratios at the pipe ends for the pipe model with the mass ratio of 2.62 were 2.0,4.0,6.0 and 8.0, and those for the pipe model with the mass ratio of 4.30 were 4.0,6.0 and 8.0. The response of the models was measured using fiber optic strain gauges. Modal analysis was applied to analyze the strain data from the tests, and the final results were the response amplitudes, response frequencies and the dominant modes. The effect of the proximity to seabed on VIV and the coupling of in-line and cross flow VIV were discussed. The results show that, as the gap ratio decreased, the shift in the dominant mode took place at a higher reduced velocity, and the dramatic increase in response frequency appears with the shift in dominant mode from the first mode to the second one; the pipe undergoes a common 8-shape motion for e/D>2.0, but a teardrop shape motion for e/D=2.0. Furthermore, the mode transition as the flow velocity increases is analyzed. The characteristics of VIV mode transition from the first mode to the second one for different gap ratios are revealed.
     A second set of experiments were conducted to investigate the effect of the pipe-seabed-interaction at the span shoulders on the VIVs of submarine pipeline spans. The pipe model with the mass ratio of 4.30 was tested in the wave current tank. The pipe was laid horizontally on the soil, and had a free span in length of 2.138m. The gap ratio at the pipe ends was maintained at 6.0. The tests in both still water and a current were conducted. The flow velocity was in the range of 0-0.60m/s. The frequency responses and the time-domain tracing of cross-flow strain responses are presented and analyzed. The experimental results exhibit several valuable features:the natural frequency of the model has a fuzzy property, but the response frequency in a current has not and increases linearly with the increase of flow velocity; the existence of soil support does not affect the harmonic characteristic of VIV.
     Combining the VIVANA model with a flexible beam model, a computer analysis program is developed for cross-flow VIV. The Newton-Raphson method is used to solve the dynamic equilibrium equation. Calculations are carried out using two different groups of parameter curves from Larsen et al. (2002,2004). The calculated results are compared with experimental results from both previous and present laboratory model tests. It is shown that Curve 1 (Larsen et al.,2002) where the maximum response amplitude for zero lift (i.e. CL=0) is from free vibration tests is more suitable for the VIV analysis of submarine free span pipelines. The agreement is in general good for the vortex-induced resonance at the first mode, and the VIV response model is able to identify the shift in the dominant mode.
     Finally, inverse force analysis is performed using the response data from the flexible pipe tests to investigate the effect of the proximity to seabed on the hydrodynamic force coefficients and predict the response with wall interface. The force contour plots and coefficients are generated. Response calculations are carried out using force coefficients from the inverse force analysis and the calculated results are compared with experimental data.
引文
[1]周延东,刘日柱.我国海底管道的发展状况与前景[J].中国海上油气(工程),1998,10(4):1-5.
    [2]李宁我国海洋石油油气储运回顾与展望[J].油气储运,2003,22(9):30-32.
    [3]吕明春.胜利埕岛油田海底管线防悬空技术探讨与应用[J].安全、健康和环境,2008.8(3):20-22.
    [4]刘贞飞.乐东气田海底管道悬跨段治理.中国造船,2009,50(增刊):639-644.
    [5]Xu J S, Li G X, Horrillo J J, Yang R M, Cao L H. Calculation of maximum allowable free span length and safety assessment of the DF1-1 submarine pipeline. Journal of Ocean University of China (English Edition),2009,9(1):1-10.
    [6]Nielsen F G, Soreide T H, Kvarme S 0. VIV response of long free spanning pipelines [C]. OMAE,2002.
    [7]高峰,房晓明,刘春厚,潘东民.水下干式管道维修系统及其工程化应用[R].天津:海洋石油工程股份有限公司,2009.
    [8]Aronsen K H. An experimental investigation of in-line and combined in-line and cross-flow vortex induced vibrations [D]. Trondheim:Norwegian University of Science and Technology,2007.
    [9]Sarpkaya T. Vortex-induced oscillations:a selective review [J]. Journal of Applied Mechanics,1979,46:241-258.
    [10]Sarpkaya T. A critical review of the intrinsic nature of vortex-induced vibrations [J]. Journal of Fluids and Structures,2004,19(4):389-447.
    [11]Williamson C H K, Govardhan R. Vortex-induced vibrations [J]. Annual Review of Fluid Mechanics,2004,36:413-455.
    [12]Williamson C H K, Govardhan R. A brief review of recent results in vortex-induced vibrations [J]. Journal of Wind Engineering and Industrial Aerodynamics,2008, 96(6-7):713-735.
    [13]Gabbai R D, Benaroya H. An overview of modeling and experiments of vortex-induced vibration of circular cylinders [J]. Journal of Sound and Vibration,2005, 282(3-5):575-616.
    [14]Blevins R D. Flow-induced vibration [M]. New York:Van Nostrand Reinhold,1977.
    [15]Blevins R D. Flow-Induced Vibration [M]. New York:Van Nostrand Reinhold,1990.
    [16]Sumer B M, Freds(?)e J. Hydrodynamics around cylindrical structures [M]. London: World Scientific,1997.
    [17]Van Dyke M. An album of fluid motion [J]. The Parabolic Press,1982,43.
    [18]Lienhard J H. Synopsis of lift, drag and vortex frequency data for rigid circular cylinders [R]. Washington:Washington State University,1966.
    [19]Williamson C H K, Jauvtis N. A high-amplitude 2T mode of vortex-induced vibration for a body in XY motion [J]. European Journal of Mechanics B/Fluids,2004(23): 107-114.
    [20]Tsahalis D T. Vortex-induced vibrations due to steady and wave-induced currents of a flexible cylinder near a plane boundary [J]. Journal of Offshore Mechanics and Arctic Engineering,1987,109(2):112-118.
    [21]Khalak A, Williamson C H K. Investigation of relative effects of mass and damping in vortex-induced vibration of a circular cylinder [J]. Journal of Wind Engineering and Industrial Aerodynamics,1997,71:341-350.
    [22]Tsahalis D T. Vortex-induced vibrations of a flexible cylinder near a plane boundary exposed to steady and wave-induced currents [J]. Journal of Energy Resources Technology, Transactions of the ASME,1984.106(2):206-213.
    [23]Zdravkovich M M, Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding [J]. Journal of Wind Engineering and Industrial Aerodynamics,1981,7(2):145-189.
    [24]Armstrong S P. VIV Suppression installation on existing horizontal pipeline spans [C]. OTC,2004.
    [25]Chaplin J R, Bearman P W, Cheng Y, Fontaine E, Graham J M R, Herfjord K, Huera Huarte F J, Isherwood M, Lambrakos K, Larsen C M, Meneghini J R, Moe G., Pattenden R J, Triantafyllou M S, Willden R H J. Blind predictions of laboratory measurements of vortex-induced vibrations of a tension riser [J]. Journal of Fluids and Structures,2005,21(1 SPEC ISS):25-40.
    [26]Larsen C M. Empirical VIV models [C]. WVIVOS, workshop on vortex-induced vibrations of offshore structures,2000.
    [27]Newman D J, Karniadakis G E. A direct numerical simulation study of flow past a freely vibrating cable [J]. Journal of Fluid Mechanics,1997,344(01):95-136.
    [28]Schulz K, Kallinderis Y. Numerical flow structure interaction for cylinders undergoing vortex-induced vibrations [J]. OTC,1998.
    [29]Evangelinos C, Karniadakis G. Dynamics and flow structures in the turbulent wake of rigid and flexible cylinders subject to vortex-induced vibrations [J]. Journal of Fluid Mechanics,1999,400:91-124.
    [30]Holmes S, Constantinides Y, Oakley Jr 0 H. Simulation of riser VIV using fully three dimensional CFD simulations [C]. OMAE,2006.
    [31]Oakley Jr 0 H, Constantinides Y. CFD truss spar hull benchmarking study [C]. OMAE, 2007.
    [32]Herf jord K, Drange S 0. Assessment of vortex-induced vibrations on deepwater risers by considering fluid-structure interaction [J]. Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme,1999,121(4):207-212.
    [33]Yamamoto C T, Meneghini J R, Saltarab F, Fregonesib R A, Ferrari Jr J A. Numerical simulations of vortex-induced vibration on flexible cylinders [J]. Journal of Fluids and Structures,2004,19(4):467-489.
    [34]黄智勇.柔性立管涡激振动时域响应分析[D].上海:上海交通大学,2008.
    [35]Larsen C M, Halse K H. Comparison of models for vortex induced vibrations of slender marine structures [J]. Marine Structures,1997,10(6):413-441.
    [36]Halse K H, Larsen C M. Prediction of vortex-induced vibrations of a free-spanning pipeline by direct numerical simulation of the flow field [C]. OMAE,1998.
    [37]Bakhtiary A Y, Ghahery A, Valipour R. Simulation of vortex induced vibration around offshore pipeline [C]. OMAE,2006.
    [38]王国兴.海底管线管跨结构涡致耦合振动的数值模拟与实验研究[D].青岛:中国海洋大学,2006.
    [39]Abeele F V d, Voorde J V, Goes P. Numerical modelling of vortex induced vibrations in submarine pipelines [C]. Proceedings of the COMSOL Conference,2008.
    [40]Pontaza J P, Menon R G. On the numerical simulation of fluid-structure interaction to estimate the fatigue life of subsea pipeline spans:effects of wall proximity [C]. OMAE,2010.
    [41]潘志远.海洋立管涡激振动机理与预报方法研究[D].上海:上海交通大学船舶海洋与建筑工程学院,2006.
    [42]Hartlen R T, Currie I G. Lift-oscillator model of vortex induced vibration [J]. Journal of Engineering Mechanics,1970,96(5):577-591.
    [43]Skop R A, Griffin 0 M. A model for the vortex-induced resonant response of bluff cylinders [J]. Journal of Sound and Vibration,1973,27(2):225-233.
    [44]Iwan W D. Vortex-induced oscillation of non-uniform structural systems [J]. Journal of Sound and Vibration,1981,79(2):291-301.
    [45]Facchinetti M L, de Langre E, Biolley F. Coupling of structure and wake oscillators in vortex-induced vibrations [J]. Journal of Fluids and Structures,2004,19:123-140.
    [46]Lou M, Ding J, Guo H Y, Dong X L. Effect of internal flow on vortex-induced vibration of submarine free spanning pipelines [J]. China Ocean Engineering,2005,19(1):147-154.
    [47]Ai S, Sun L, Ma G. The effect of soil non-linearity on VIV response of a free spanning pipeline [C].OMAE,2009.
    [48]葛斐,龙旭,王雷,洪友士.大长细比圆柱体顺流向与横向耦合涡激振动的研究[J].中国科学G辑,2009,39(5):752-759.
    [49]Vandiver J K, Li L. Shear7 v4.4 Program theoretical manual [R]. Cambrige: Massachusetts Institute of Technology,2005.
    [50]Triantafyllou M S. VIVA extended user's manual [R]. Cambrige:Massachusetts Institute of Technology,2003.
    [51]Larsen C M, Vikestad K, Yttervik R, Passano E. VIVANA theory manual, version 3.4 [R]. Trondheim:MARINTEK,2005.
    [52]Fu Q, Guo H Y, Yang X H. Analysis of dynamic characteristics of submarine free, spanning pipelines by complex damping method [J]. China Ocean Engineering, 2004,18 (3):485-491.
    [53]Larsen C M, Koushan K, Passano E. Frequency and time domain analysis of vortex induced vibrations for free span pipelines [C].OMAE,2002.
    [54]Larsen C M, Baarholm G S, Passano E, Koushan K. Non-linear time domain analysis of vortex induced vibrations for free spanning pipelines [C]. OMAE,2004.
    [55]Furnes G K, Berntsen J. On the response of a free span pipeline subjected to ocean currents [J]. Ocean Engineering,2003,30(12):1553-1577.
    [56]Govardhan R, Williamson C H K. Modes of vortex formation and frequency response of a freely vibrating cylinder [J]. Journal of Fluid Mechanics,2000,420:85-130.
    [57]Williamson C H K. Vortex dynamics in the cylinder wake [J]. Annual Review of Fluid Mechanics,1996.28:477-539.
    [58]Khalak A, Williamson C H K. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping [J]. Journal of Fluids and Structures,1999,13(7-8):813-851.
    [59]Jauvtis N, Williamson C H K. Vortex-induced vibration of a cylinder with two degrees of freedom [J]. Journal of Fluids and Structures,2003,17(7):1035-1042.
    [60]Morse T L, Williamson C H K. The effect of reynolds number on the critical mass phenomenon in vortex-induced vibration [J]. Physics of Fluids,2009,21(4): 045105-045105-8 (2009).
    [61]Jacobsen V, Bryndum M B, Nielsen R, Fines S. Cross-flow vibrations of a pipe close to a rigid boundary [J]. Journal of Energy Resources Technology, Transactions of the ASME,1984,106(4):451-457.
    [62]Anand N M. Free span vibrations of submarine pipelines in steady and wave flows [D]. Trondheim:Norwegian Institute of Technology,1985.
    [63]Fredsoe J, Sumer B M, Andersen J, Hansen E A. Transverse vibrations of a cylinder very close to a plane wall [J]. Journal of Offshore Mechanics and Arctic Engineering,1987.109:52-60.
    [64]Bryndum M B, Bonde C. Long free spans exposed to current and waves:model tests [C]. OTC,1989.
    [65]Yang B, Gao F P, Wu Y X, Li D H. Experimental study on vortex-induced vibrations of submarine pipeline near seabed boundary in ocean currents [J]. China Ocean Engineering,2006,20(1):113-121.
    [66]Sumer B M, Mao Y, Fredsoe J. Interaction between vibrating pipe and erodible bed [J]. Journal of Waterway, Port, Coastal and Ocean Engineering,1988,114(1):81-94.
    [67]Kristiansen 0, Torum A. Interaction between current induced vibrations and scour of pipelines on a sandy bottom [C]. Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium,1989,5(8 th):167-174.
    [68]Shen Z, Liu Y, Li Q, Huang Q, Zhu F. Experiments on interaction between current-induced vibration and scour of submarine pipelines on sandy bottom [J]. China Ocean Engineering,2000,14(4):423-434.
    [69]Yang B, Gao F P, Jeng D S, Wu, Y X. Experimental study of vortex-induced vibrations of a pipeline near an erodible sandy seabed [J]. Ocean Engineering,2008, 35(3-4):301-309.
    [70]Raghavan K, Bernitsas M M, Maroulis D E. Effect of bottom boundary on VIV for energy harnessing at 8x103< Re<1.5x105 [J]. Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme,2009,131(3):031102-031102-13.
    [71]Tsahalis D T, Jones W T. Vortex-induced vibrations of a flexible cylinder near a plane boundary in steady flow [C]. OTC,1981,1:367-381.
    [72]Hansen E A, Bryndum M B, M(?)rk K, Verley R, Sortland L, Nes H. Vibrations of a free spanning pipeline located in the vicinity of a trench [C]. OMAE,2001.
    [73]沙勇,王永学,王国玉,李广伟.冲蚀地形上悬跨海底管线涡激振动试验研究[J].应用力学学报,2009,26(2):308-311.
    [74]Nielsen F G, Sreide T H, Kvarme S 0. VIV response of long free spanning pipelines [C]. OMAE,2002.
    [75]Soni P. Hydrodynamic Coecients for Vortex-induced vibrations of flexible beams [D]. Trondheim:Norwegian University of Science and Technology,2008.
    [76]Lee L, Allen D, Pontaza J P, Frans Kopp, Jhingran V. In-line motion of subsea pipeline span models experiencing vortex-shedding [C]. OMAE,2009.
    [77]Det Norske Veritas (DNV). Free spanning pipelines. Recommended practice, DNV-RP-F105 [S]. H(?)vik:Det Norske Veritas,2006.
    [78]Huarte F J H, Bearman P W, Chaplin J R. On the force distribution along the axis of a flexible circular cylinder undergoing multi-mode vortex-induced vibrations [J]. Journal of Fluids and Structures,2006,22(6-7):897-903.
    [79]Wu J, Larsen C M. Hydrodynamic force identification from vortex induced vibration experiments with slender beams [C]. OMAE,2007(3):753-760.
    [80]Wu J, Larsen C M, Kaasen K E. A new approach for identification of forces on slender beams subjected to vortex induced vibrations [C]. OMAE,2008,2008(5):779-788.
    [81]Maincon P, Barnardo C, Larsen C M. Viv force estimation using inverse fem [C]. OMAE,2008,2008(5):673-681.
    [82]Wu J, Maincon P, Larsen C M, Lie H. VIV force identification using classical optimal control algorithm [C]. OMAE,2009.
    [83]Sarpkaya T. Fluide forces on oscillating cylinders [J]. Journal of the Waterway Port Coastal and Ocean Division, ASCE,1978,104(4):275-290.
    [84]Staubli T. Calculation of the vibration of an elastically mounted cylinder using experimental data from forced oscillation. Journal of Fluids Engineering, Transactions of the ASME,1983,105(2):225-229.
    [85]Gopalkrishnan R. Vortex-induced forces on oscillating bluff cylinders [D]. Cambrige:Massachusetts Institute of Technology,1993.
    [86]Sumer B M, Fredsoe J, Jensen B L, Christiansen N. Forces on vibrating cylinder near wall current and waves [J]. Journal of Waterway, Port, Coastal and Ocean Engineering,1994,120(3):233-250.
    [87]Bishop R E D, Hassan A Y. The lift and drag forces on a circular cylinder in a flowing fluid [C]. Proceedings of the Royal Society of London,1964a, Series A 277:32-50.
    [88]Bishop RED, Hassan A Y. The lift and drag forces on a circular cylinder oscillating in a flowing fluid [C]. Proceedings of the Royal Society of London,1964b, Series A 277:51-75.
    [89]Protos A, Goldschmidt 0 G, Toebes G H. Hydroelastic forces on bluff cylinders [J]. Journal of Basic Engineering,1968,90(Sept.):378-386.
    [90]Mercier J A. Large amplitude oscillations of a circular cylinder in a low-speed stream [D]. Hoboken:Stevens Institute of Technology,1973.
    [91]Moe G, Wu Z J. Lift force on a vibrating cylinder in a current [C]. OMAE,1989, 2(8 th):259-268.
    [92]任亮.光纤光栅传感技术在结构健康监测中的应用[D].大连:大连理工大学,2008.
    [93]Lie H, Kaasen K E. Modal analysis of measurements from a large-scale VIV model test of a riser in linearly sheared flow [J]. Journal of Fluids and Structures, 2006,22(4):557-575.
    [94]Trim A D, Braaten H, Lie H, Tognarelli M A. Experimental investigation of vortex-induced vibration of long marine risers [J]. Journal of Fluids and Structures,2005,21 (3):335-361.
    [95]Tang G Q, Lu L, Teng B, Park H I, Song J N, Zhang J Q. Laboratory investigation on the in-line dynamic characteristic of long flexible riser under vortex-induced vibration [C]. PACOMS,2010.
    [96]Jong J Y, Vandiver J K. Identification of the quadratic system relating cross-flow and in-line vortex-induced vibration [C]. ASME,1985.
    [97]Vandiver J K, Jong J Y. The relationship between in-line and cross-flow vortex-induced vibration of cylinders [J]. Journal of Fluids and Structures,1987, 1:381-399.
    [98]Marcollo H, Hinwood J B. On shear flow single mode lock-in with both cross-flow and in-line lock-in mechanisms [J]. Journal of Fluids and Structures,2006, 22(2):197-211.
    [99]Sreide T, Paulsen G, Nielsen F G. Parameter study of long free spans [C]. ISOPE, 2001.
    [100]Aglen I M, Larsen C M, Nielsen F G. Characterization of measured VIV for free spanning pipelines [C]. OMAE,2009.
    [101]Vikestad K. Multi-frequency response of a cylinder subjected to vortex shedding and support motions [D]. Trondheim:Norwegian University of Science and Technology, 1998.
    [102]钱孟祥,王志国,韩清国,张克明.埕岛油田海底管线拖管技术[J].海岸工程,2000,19(2).
    [103]罗延生,余建星,方华灿.确定海底管线管跨段模糊固有频率的方法[J].天津大学学报,2001,34(6):775~777.
    [104]Guyan R J. Reduction of stiffness and mass matrices [J]. AIAA Journal,1965, 3 (2):380-380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700