流产布氏杆菌脂多糖突变株ΔrfbE和ΔrfbD的构建及其生物学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
布氏杆菌是兼性胞内生长的革兰氏阴性菌,可感染多种动物和人,引起布氏杆菌病。布氏杆菌的致病机制与其胞内存活、增殖有关。脂多糖(LPS)是布氏杆菌一种重要的毒力因子,完整的LPS对其胞内生存和毒力十分必要。rfbE (BAB1_0542)编码ABC型转运系统ATP酶,rfbD (BAB1_0543)编码ABC型转运系统运载体,这两个蛋白参与LPS的O-抗原从细胞膜内侧转运到周质侧。rfbE, rfbD基因突变,将导致O-抗原在胞内合成,但不能转运到周质侧,无法合成完整的LPS。
     本研究通过同源重组的方法构建ΔrfbE和ΔrfbD突变株,通过比较突变株和野毒株的细菌表型、生长曲线、在小鼠巨噬细胞RAW264.7胞内生存能力、在BALB/c小鼠动物模型上的毒力情况,来探讨不完整LPS结构对布氏杆菌S2308生物学功能和毒力特性的影响;并通过监测ΔrfbE免疫后小鼠血清针对S2308产生的抗体效价、细胞因子表达,小鼠脾脏内MHC分子和共刺激分子在转录水平的表达,以及ΔrfbE免疫后小鼠对S2308攻毒产生的保护力,来评价ΔrfbE免疫保护性,探究其做为新型减毒活疫苗候选株的可能性。
     结果显示,ΔrfbE和ΔrfbD突变株构建成功,rfbE基因(BAB1_0542)编码框内缺失446bp, rfbD基因(BAB1_0543)编码框内缺失668bp。同时用实时定量PCR方法在转录水平上验证ΔrfbE突变成功,对上下游基因功能没有影响。应用结晶紫染色和热凝集实验方法确定ΔrfbE和ΔrfbD均为粗糙型表型;生长曲线结果表明ArfbE突变株生长速度于36h后明显低于野毒株S2308(P<0.01),ΔrfbD突变株比野毒株S2308早8h到达平台期;ΔrfbE对大多数抗生素敏感,仅对红霉素不敏感,对表面活性剂Tween-20、Triton-X100不敏感,与野毒株S2308相比差异不显著;ΔrfbE和ΔrfbD突变株与野毒株S2308相比,在胞内的生存、增殖能力下降,在小鼠体内毒力减弱,而C2308ΔrfbE与野毒株S2308毒力一致。
     此外,ArfbE免疫2周后针对S2308产生抗体效价明显低于S2308接种小鼠产生的效价(P<0.05),可以区分人为免疫和自然感染;ΔrfbE免疫小鼠1周后脾脏内MHCI的表达量明显上调(P<0.05),而野毒株S2308免疫小鼠1周后脾脏内MHCI的表达量上调不明显,突变株ΔrfbE相对于野毒株S2308在免疫早期引起更高水平的细胞免疫水平;ΔrfbE. S2308免疫后脾脏中共刺激分子CD40ΟCD80ΟCD86调节趋势一致,血清中细胞因子IL-2、 IL-4、IL-6、IL-10变化不明显,即ArfbE、S2308产生免疫分子的趋势一致;ΔrfbE免疫小鼠后对强毒的攻毒保护率为100%,与疫苗株RB51相似。因此,ΔrfbE可作为新型减毒活疫苗的候选株。
Brucella spp. is a Gram-negative, facultative intracellular bacterial pathogen of humans and other animals, causing Brucellosis. Its virulence depends on the survival and replication properties in host cells. Lipopolysaccharide (LPS) is an important virulence factor. The integrity of LPS molecule on the bacterial surface is one of the factors required for the intracellular survival of Brucella, and subsequently for virulence. rfbE (BAB1_0542) codes ABC transporter ATPase, and rfbD (BAB1_0543) codes acriflavin ABC transporter. Both the ABC proteins translocate the amino sugar-O-PS to the periplasmic side of the membrane. Inactivation of rfbE or rfbD gene made the integrity of LPS molecule destroyed.
     In the study, homologous recombination was used to construct B. abortus LPS mutants of ArfbE and ArfbD respectively. The phenotype, growth rate, survival ability in macrophages RAW264.7and mice were compared with wild strain S2308to demonstrate the importance of integrity LPS on the biological and virulence of B. abortus.In addition, ArfbE was used to immunize the BALB/c mice, the antibody titers against S2308and the cytokine production in the sera as well as the expression of MHC and co-stimulatory molecules in the spleens were investigated. Furthermore, the protection against the challenge of virulent wild type strain S2308was investigated to evaluate the potential usage of vaccine candidate.
     The results showed that the construction of ArfbE and ArfbD are successful. The rfbE (BAB1_0542) of B. abortus strain2308was inactivated by deleting a446bp fragment from the gene, and the rfbD (BAB1_0543) of B. abortus strain2308was inactivated by deleting a668bp fragment from the gene. Real time PCR analysis further confirmed the inactivation of rfbE with no polar effect on the transcription of its upstream and downstream genes. Both ArfbE and ArfbD were identified as a rough phenotype strain using heat agglutination test and crystal violet staining, but the growth rate of ArfbE is much lower than S2308after36h cultured (P<0.01) and the ArfbD arrived stationary phase8h earlier than S2308. ArfbE as well as S2308is sensitive to most of the antibiotics except Erythromycin, Tween-20and Triton-X100. Moreover, both mutants of ArfbE and ArfbD showed attenuated virulence in RAW264.7macrophages in vitro and in BALB/c mice in vivo. Complementation of ArfbE recovered the smooth phenotype of the bacteria and the complemented strain C2308ArfbE survived in BALB/c mice as shown of wild type strain S2308.
     Animal experiments showed that immunization of ArfbE generated similar levels of cytokines IL-2, IL-4, IL-6and IL-10, compared with infection of S2308, however, the antibody titers against S2308were significantly lower than that of S2308immunized mice (P<0.05). The expression of MHC I in transcriptional level in ArfbE immunized mice spleens is significantly higher than control group at the early stage of infection (P<0.05), and the mutant strain ArfbE protected immunized mice from challenge with the virulent wild type strain S2308, which suggests that the mutant strain ArfbE could be used as a vaccine candidate in future studies.
引文
[1]王金良,沈志强.布氏杆菌病研究进展[J].中国动物保健,2008,(6):58-60.
    [2]胡森,步志高.布氏杆菌病概况及其研究进展[J].畜牧兽医科技信息,2003,12(9):63-65.
    [3]Haag AF, Myka KK, Arnold MF, et al. Importance of lipopolysaccharide and cyclic β-1, 2-glucans in Brucella-mammalian infections[J]. International Journal of Microbiology,2010, 1-12.
    [4]Corbel MJ. Brucellosis:an overview[J]. Emerging Infectious Diseases,1997,3(2):213.
    [5]Franco MP, Mulder M, Gilman RH, et al. Human brucellosis[J]. The Lancet Infectious Diseases,2007,7(12):775-786.
    [6]王玉飞.Ⅳ型分泌系统调控布鲁氏菌胞内生存的分子机制研究[D]:北京:军事医学科学院,2008.
    [7]Baily G, Krahn J, Drasar B, et al. Detection of Brucella melitensis and Brucella abortus by DNA amplification[J]. The Journal of Tropical Medicine and Hygiene,1992,95(4):271.
    [8]尚德秋.布氏菌病研究进展[J].中国地方病防治杂志,2004,19(004):204-212.
    [9]尚德秋.布鲁氏菌病流行病学及分子生物学研究进展[J].中国地方病防治杂志,1996,11(6):339-339.
    [10]陈燕芬.布鲁氏菌中国分离株遗传多态性研究[D]:吉林大学,2012.
    [11]Marston J. Report on fever (Malta)[J]. Army Medical Report,1861,3:486-521.
    [12]Bang B. The etiology of epizootic abortion[J]. Journal of Comparative Pathology and Therapeutics,1897,10:125-IN122.
    [13]Meyer K, Shaw E. A Comparison of the Morphologic, Cultural and Biochemical Characteristics of B. Abortus and B. Melitensis* Studies on the Genus Brucella Nov. Gen. I[J]. Journal of Infectious Diseases,1920,27(3):173-184.
    [14]Evans AC. Human infections with organism of contagious abortion of cattle and hogs[J]. Journal of the American Medical Association,1927,88(9):630-632.
    [15]Buddle M, Boyes BW. A Brucella mutant causing genital disease of sheep in New Zealand[J]. Australian Veterinary Journal,1953,29(6):145-153.
    [16]Cameron H, Meyer ME. Metabolic studies on Brucella neotomae (Stoenner and Lackman)[J]. Journal of Bacteriology,1958,76(5):546-548.
    [17]Ross H, Foster G, Reid R, et al. Brucella species infection in sea-mammals [J]. Veterinary Record,1994,134(14):359-359.
    [18]Foster G, Osterman BS, Godfroid J, et al. Brucella ceti sp. nov. and Brucella pinnipedialis sp. nov. for Brucella strains with cetaceans and seals as their preferred hosts[J]. International Journal of Systematic and Evolutionary Microbiology,2007,57(11): 2688-2693.
    [19]Scholz HC, Nockler K, Gollner C, et al. Brucella inopinata sp. nov., isolated from a breast implant infection[J]. International Journal of Systematic and Evolutionary Microbiology, 2010,60(4):801-808.
    [20]Scholz HC, Hubalek Z, Sedlacek I, et al. Brucella microti sp. nov., isolated from the common vole Microtus arvalisfJ]. International Journal of Systematic and Evolutionary Microbiology,2008,58(2):375-382.
    [21]De BK, Stauffer L, Koylass MS, et al. Novel Brucella strain (BO1) associated with a prosthetic breast implant infection[J]. Journal of Clinical Microbiology,2008,46(1):43-49.
    [22]Tiller RV, Gee JE, Lonsway DR, et al. Identification of an unusual Brucella strain (BO2) from a lung biopsy in a 52 year-old patient with chronic destructive pneumonia[J]. BMC Microbiology,2010,10(1):23.
    [23]Eisenberg T, Hamann H-P, Kaim U, et al. Isolation of potentially novel Brucella spp. from frogs[J]. Applied and Environmental Microbiology,2012,78(10):3753-3755.
    [24]Neta AVC, Mol JP, Xavier MN, et al. Pathogenesis of bovine brucellosis [J]. The Veterinary Journal,2010,184(2):146-155.
    [25]乔凤.外膜蛋白Omp25在布鲁氏菌毒力及免疫保护中的作用研究[D]:吉林大学,2009.
    [26]齐景文.布鲁氏菌病概述[J].中国兽医杂志,2004,40(9):50-53.
    [27]Brinley Morgan W, Corbel M. Brucella infections in man and animals:contagious equine metritis[J]. Topley and Wilson's Principles of Bacteriology, Virology and Immunology,8th Edward Arnold, London, England,1990:547-570.
    [28]Ko J, Splitter GA. Molecular host-pathogen interaction in brucellosis:current understanding and future approaches to vaccine development for mice and humans [J]. Clinical Microbiology Reviews,2003,16(1):65-78.
    [29]Pearce J, Williams A, Harris-Smith PW, et al. The Chemical Basis of the Virulence of Brucella abortus:II. Erythritol, A Constituent of Bovine Foetal Fluids which Stimulates the Growth of Br. abortus in Bovine Phagocytes[J]. British Journal of Experimental Pathology, 1962,43(1):31.
    [30]Keppie J, Williams A, Witt K, et al. The role of erythritol in the tissue localization of the brucellae[J]. British Journal of Experimental Pathology,1965,46(1):104.
    [31]曲勃.QS系统VjbR在布鲁氏菌胞内生存中作用的研究[D]:吉林大学,2009.
    [32]Arenas GN, Staskevich AS, Aballay A, et al. Intracellular trafficking of Brucella abortus in J774 macrophages[J]. Infection and Immunity,2000,68(7):4255-4263.
    [33]Pizarro-Cerda J, Meresse S, Parton RG, et al. Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes[J]. Infection and Immunity,1998,66(12):5711-5724.
    [34]Gross A, Terraza A, Ouahrani-Bettache S, et al. In vitro Brucella suis infection prevents the programmed cell death of human monocytic cells[J]. Infection and Immunity,2000,68(1): 342-351.
    [35]Sola-Landa A, Pizarro-Cerda J, Grillo MJ, et al. A two-component regulatory system playing a critical role in plant pathogens and endosymbionts is present in Brucella abortus and controls cell invasion and virulence[J]. Molecular Microbiology,1998,29(1):125-138.
    [36]Maria-Pilar JdB, Dudal S, Dornand J, et al. Cellular bioterrorism:how Brucella corrupts macrophage physiology to promote invasion and proliferation[J]. Clinical Immunology, 2005,114(3):227-238.
    [37]Kohler S, Foulongne V, Ouahrani-Bettache S, et al. The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell[J]. Proceedings of the National Academy of Sciences,2002,99(24): 15711-15716.
    [38]Chaves-Olarte E, Guzman-Verri C, Meresse S, et al. Activation of Rho and Rab GTPases dissociates Brucella abortus internalization from intracellular trafficking[J]. Cellular Microbiology,2002,4(10):663-676.
    [39]Porte F, Naroeni A, Ouahrani-Bettache S, et al. Role of the Brucella suis lipopolysaccharide O antigen in phagosomal genesis and in inhibition of phagosome-lysosome fusion in murine macrophages[J]. Infection and Immunity,2003,71(3):1481-1490.
    [40]Celli J, Gorvel J-P. Organelle robbery.Brucella interactions with the endoplasmic reticulum[J]. Current Oopinion in Microbiology,2004,7(1):93-97.
    [41]Celli J, de Chastellier C, Franchini D-M, et al. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum[J]. The Journal of Experimental Medicine,2003,198(4):545-556.
    [42]Roop Ⅱ RM, Gaines JM, Anderson ES, et al. Survival of the fittest:how Brucella strains adapt to their intracellular niche in the host[J]. Medical Microbiology and Immunology, 2009,198(4):221-238.
    [43]Liautard J-P, Gross A, Dornand J, et al. Interactions between professional phagocytes and Brucella spp[J]. Microbiologia,1996,12(2):197-206.
    [44]Pizarro-Cerda J, Moreno E, Gorvel J-P. Invasion and intracellular trafficking of Brucella abortus in nonphagocytic cells[J]. Microbes and Infection,2000,2(7):829-835.
    [45]Delrue RM, Martinez-Lorenzo M, Lestrate P, et al. Identification of Brucella spp. genes involved in intracellular trafficking [J]. Cellular Microbiology,2001,3(7):487-497.
    [46]Pei J, Turse JE, Wu Q, et al. Brucella abortus rough mutants induce macrophage oncosis that requires bacterial protein synthesis and direct interaction with the macrophage [J]. Infection and Immunity,2006,74(5):2667-2675.
    [47]He Y, Reichow S, Ramamoorthy S, et al. Brucella melitensis triggers time-dependent modulation of apoptosis and down-regulation of mitochondrion-associated gene expression in mouse macrophages[J]. Infection and Immunity,2006,74(9):5035-5046.
    [48]Murphy EA, Parent M, Sathiyaseelan J, et al. Immune control of Brucella abortus 2308 infections in BALB/c mice[J]. FEMS Immunology & Medical Microbiology,2001,32(1): 85-88.
    [49]Copin R, De Baetselier P, Carlier Y, et al. MyD88-dependent activation of B220-CDllb+ LY-6C+dendritic cells during Brucella melitensis infection[J]. The Journal of Immunology, 2007,178(8):5182-5191.
    [50]Caron E, Gross A, Liautard J-P, et al. Brucella species release a specific, protease-sensitive, inhibitor of TNF-alpha expression, active on human macrophage-like cells[J]. The Journal of Immunology,1996,156(8):2885-2893.
    [51]Lory S, Tai P. Biochemical and genetic aspects of Pseudomonas aeruginosa virulence[M]. Genetic Approaches to Microbial Pathogenicity; Springer.1985:53-69.
    [52]Goldstein J, Hoffman T, Frasch C, et al. Lipopolysaccharide (LPS) from Brucella abortus is less toxic than that from Escherichia coli, suggesting the possible use of B. abortus or LPS from B. abortus as a carrier in vaccines[J]. Infection and Immunity,1992,60(4):1385-1389.
    [53]Moreno E, Berman D, Boettcher L. Biological activities of Brucella abortus lipopolysaccharides[J]. Infection and Immunity,1981,31(1):362-370.
    [54]Rasool O, Freer E, Moreno E, et al. Effect of Brucella abortus lipopolysaccharide on oxidative metabolism and lysozyme release by human neutrophils[J]. Infection and Immunity,1992,60(4):1699-1702.
    [55]Riley LK, Robertson DC. Brucellacidal activity of human and bovine polymorphonuclear leukocyte granule extracts against smooth and rough strains of Brucella abortus[J]. Infection and Immunity,1984,46(1):231-236.
    [56]Naroeni A, Porte F. Role of cholesterol and the ganglioside GM1 in entry and short-term survival of Brucella suis in murine macrophages[J]. Infection and Immunity,2002,70(3): 1640-1644.
    [57]Espinosa BJ, Chacaltana J, Mulder M, et al. Short report:Comparison of culture techniques at different stages of brucellosis[J]. American Journal of Tropical Medicine and Hygiene, 2009,80(4):625.
    [58]Boschiroli ML, Ouahrani-Bettache S, Foulongne V, et al. The Brucella suis virB operon is induced intracellularly in macrophages[J]. Proceedings of the National Academy of Sciences,2002,99(3):1544-1549.
    [59]Delrue RM, Deschamps C, Leonard S, et al. A quorum-sensing regulator controls expression of both the type IV secretion system and the flagellar apparatus of Brucella melitensis[J]. Cellular Microbiology,2005,7(8):1151-1161.
    [60]Hoppner C, Carle A, Sivanesan D, et al. The putative lytic transglycosylase VirB1 from Brucella suis interacts with the type Ⅳ secretion system core components VirB8, VirB9 and VirB11[J]. Microbiology,2005,151(11):3469-3482.
    [61]Patey G, Qi Z, Bourg G, et al. Swapping of periplasmic domains between Brucella suis VirB8 and a pSB102 VirB8 homologue allows heterologous complementation[J]. Infection and Immunity,2006,74(8):4945-4949.
    [62]Rolan HG, Den Hartigh AB, Kahl-McDonagh M, et al. VirB12 is a serological marker of Brucella infection in experimental and natural hosts[J]. Clinical and Vaccine Immunology, 2008,15(2):208-214.
    [63]Rouot B, Alvarez-Martinez M-T, Marius C, et al. Production of the type IV secretion system differs among Brucella species as revealed with VirB5-and VirB8-specific antisera[J]. Infection and Immunity,2003,71(3):1075-1082.
    [64]Comerci DJ, Martinez-Lorenzo MJ, Sieira R, et al. Essential role of the VirB machinery in the maturation of the Brucella abortus-containing vacuole[J]. Cellular Microbiology,2001, 3(3):159-168.
    [65]赵忠鹏,王希良.布鲁菌毒力因子研究进展[J].微生物学免疫学进展,2007,35(1):50-53.
    [66]Taminiau B, Daykin M, Swift S, et al. Identification of a quorum-sensing signal molecule in the facultative intracellular pathogen Brucella melitensis [J]. Infection and Immunity,2002, 70(6):3004-3011.
    [67]Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria:the LuxR-LuxI family of cell density-responsive transcriptional regulators [J]. Journal of Bacteriology,1994, 176(2):269.
    [68]Rambow-Larsen AA, Petersen EM, Gourley CR, et al. Brucella regulators:self-control in a hostile environment[J]. Trends in Microbiology,2009,17(8):371-377.
    [69]Davies DG, Parsek MR, Pearson JP, et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm[J]. Science,1998,280(5361):295-298.
    [70]Leonard S, Ferooz J, Haine V, et al. FtcR is a new master regulator of the flagellar system of Brucella melitensis 16M with homologs in Rhizobiaceae[J]. Journal of Bacteriology,2007, 189(1):131-141.
    [71]Rambow-Larsen AA, Rajashekara G, Petersen E, et al. Putative quorum-sensing regulator BlxR of Brucella melitensis regulates virulence factors including the type IV secretion system and flagella[J]. Journal of Bacteriology,2008,190(9):3274-3282.
    [72]de Bagues MPJ, Terraza A, Gross A, et al. Different responses of macrophages to smooth and rough Brucella spp.:relationship to virulence [J]. Infection and Immunity,2004,72(4): 2429-2433.
    [73]Lai E-M, Kado CI. The T-pilus of Agrobacterium tumefaciens[J]. Trends in Microbiology, 2000,8(8):361-369.
    [74]Boigegrain R-A, Salhi I, Alvarez-Martinez M-T, et al. Release of periplasmic proteins of Brucella suis upon acidic shock involves the outer membrane protein Omp25[J]. Infection and Immunity,2004,72(10):5693-5703.
    [75]de Iannino NI, Briones G, Iannino F, et al. Osmotic regulation of cyclic 1,2-β-glucan synthesis[J]. Microbiology,2000,146(7):1735-1742.
    [76]Briones G, de Iannino NI, Roset M, et al. Brucella abortus cyclic β-1,2-glucan mutants have reduced virulence in mice and are defective in intracellular replication in HeLa cells[J]. Infection and Immunity,2001,69(7):4528-4535.
    [77]Arellano-Reynoso B, Lapaque N, Salcedo S, et al. Cyclic 0-1,2-glucan is a Brucella virulence factor required for intracellular survival[J]. Nature Immunology,2005,6(6): 618-625.
    [78]Rafie-Kolpin M, Essenberg RC, Wyckoff J. Identification and comparison of macrophage-induced proteins and proteins induced under various stress conditions in Brucella abortus[J]. Infection and Immunity,1996,64(12):5274-5283.
    [79]Teixeira-Gomes AP, Cloeckaert A, Zygmunt MS. Characterization of heat, oxidative, and acid stress responses in Brucella melitensis[J]. Infection and Immunity,2000,68(5): 2954-2961.
    [80]Caron E, Cellier M, Liautard J-P, et al. Complementation of a DnaK-deficient Escherichia coli strain with the dnaK/dnaJ operon of Brucella ovis reduces the rate of initial intracellular killing within the monocytic cell line U937[J]. FEMS Microbiology Letters, 1994,120(3):335-340.
    [81]Phillips RW, Roop RM. Brucella abortus HtrA functions as an authentic stress response protease but is not required for wild-type virulence in BALB/c mice[J]. Infection and Immunity,2001,69(9):5911-5913.
    [82]Phillips R, Elzer P, Robertson G, et al. A Brucella melitensis high-temperature-requirement A (htrA) deletion mutant is attenuated in goats and protects against abortion[J]. Research in Veterinary Science,1997,63(2):165-167.
    [83]Yu D-H, Hu X-D, Cai H, et al. A combined DNA vaccine encoding BCSP31, SOD, and L7/L12 confers high protection against Brucella abortus 2308 by inducing specific CTL responses[J]. DNA and Cell Biology,2007,26(6):435-443.
    [84]Munoz-Montesino C, Andrews E, Rivers R, et al. Intraspleen delivery of a DNA vaccine coding for superoxide dismutase (SOD) of Brucella abortus induces SOD-specific CD4+ and CD8+T cells[J]. Infection and Immunity,2004,72(4):2081-2087.
    [85]Chukwu C. The instability of Brucella abortus strain 45/20 and a note on significance of using an unstable rough strain in the diagnosis of bovine brucellosis[J]. International Journal of Zoonoses,1985,12(2):120.
    [86]甄清.人布鲁氏菌病标准化PCR诊断方法及BP26基因标记疫苗研究[D]:吉林大学,2009.
    [87]Schurig GG, Sriranganathan N, Corbel MJ. Brucellosis vaccines:past, present and future[J]. Veterinary Microbiology,2002,90(1):479-496.
    [88]Buck J. Studies of vaccination during calfhood to prevent bovine infectious abortion[J]. Journal of Agricultural Research,1930,41:667-689.
    [89]Mingle C, Manthei C, Jasmin A. The stability of reduced virulence exhibited by Brucella abortus strain 19[J]. Journal of the American Veterinary Medical Association,1941,99: 203-204.
    [90]邓文星,李芳,苏益琼,等.浅谈布鲁氏菌疫苗的研究进展[J].中国畜禽种业,2012,4:42-43.
    [91]Blasco J. A review of the use of B. melitensis Rev 1 vaccine in adult sheep and goats[J]. Preventive Veterinary Medicine,1997,31(3):275-283.
    [92]Schurig GG, Roop RM, Bagchi T, et al. Biological properties of RB51; a stable rough strain of Brucella abortus[J]. Veterinary Microbiology,1991,28(2):171-188.
    [93]Oliveira SC, Splitter GA. Immunization of mice with recombinant L7L12 ribosomal protein confers protection against Brucella abortus infection[J]. Vaccine,1996,14(10):959-962.
    [94]Al-Mariri A, Tibor A, Mertens P, et al. Induction of Immune Response in BALB/c Mice with a DNA Vaccine Encoding Bacterioferritin or P39 ofBrucella spp[J]. Infection and Immunity,2001,69(10):6264-6270.
    [95]Delpino MV, Estein SM, Fossati CA, et al. Vaccination with Brucella recombinant DnaK and SurA proteins induces protection against Brucella abortus infection in BALB/c mice[J]. Vaccine,2007,25(37):6721-6729.
    [96]Vemulapalli R, McQuiston JR, Schurig GG, et al. Identification of an IS711 Element Interrupting the wboA Gene of Brucella abortusVaccine Strain RB51 and a PCR Assay To Distinguish Strain RB51 from Other Brucella Species and Strains[J]. Clinical and Diagnostic Laboratory Immunology,1999,6(5):760-764.
    [97]Winter A, Schurig G, Boyle S, et al. Protection of BALB/c mice against homologous and heterologous species of Brucella by rough strain vaccines derived from Brucella melitensis and Brucella suis biovar 4[J]. American Journal of Veterinary Research,1996,57(5):677.
    [98]Al-Mariri A, Tibor A, Mertens P, et al. Protection of BALB/c mice against Brucella abortus 544 challenge by vaccination with bacterioferritin or P39 recombinant proteins with CpG oligodeoxynucleotides as adjuvant[J]. Infection and Immunity,2001,69(8):4816-4822.
    [99]Kurar E, Splitter GA. Nucleic acid vaccination of Brucella abortus ribosomal L7L12 gene elicits immune response[J]. Vaccine,1997,15(17):1851-1857.
    [100]Estein SM, Cassataro J, Vizcaino N, et al. The recombinant Omp31 from Brucella melitensis alone or associated with rough lipopolysaccharide induces protection against Brucella ovis infection in BALB/c mice[J]. Microbes and Infection,2003,5(2):85-93.
    [101]Conde-Alvarez R, Arce-Gorvel V, Iriarte M, et al. The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition[J]. PLoS Pathogens,2012,8(5): e1002675.
    [102]Cardoso PG, Macedo GC, Azevedo V, et al. Brucella spp noncanonical LPS:structure, biosynthesis, and interaction with host immune system[J]. Microbial Cell Factories,2006, 5(1):13.
    [103]Godfroid F, Cloeckaert A, Taminiau B, et al. Genetic organisation of the lipopolysaccharide O-antigen biosynthesis region of Brucella melitensis 16M (wbk)[J]. Research in Microbiology,2000,151(8):655-668.
    [104]Keleti G, Feingold DS, Youngner JS. Interferon induction in mice by lipopolysaccharide from Brucella abortus[J]. Infection and Immunity,1974,10(1):282-283.
    [105]Moriyon I, Grillo MJ, Monreal D, et al. Rough vaccines in animal brucellosis:structural and genetic basis and present status[J]. Veterinary Research,2004,35(1):1-38.
    [106]Haag AF, Myka KK, Arnold MFF, et al. Importance of lipopolysaccharide and cyclic β-1, 2-glucans in Brucella-mammalian infections [J]. International Journal of Microbiology,2010, 1-12.
    [107]Lacerda TLS, Cardoso PG, Augusto de Almeida L, et al. Inactivation of formyltransferase (wbkC) gene generates a Brucella abortus rough strain that is attenuated in macrophages and in mice[J]. Vaccine,2010,28(34):5627-5634.
    [108]Gonzalez D, Grillo MJ, De Miguel MJ, et al. Brucellosis vaccines:assessment of Brucella melitensis lipopolysaccharide rough mutants defective in core and O-polysaccharide synthesis and export[J]. PLoS One,2008,3(7):e2760.
    [109]Zygmunt MS, Blasco JM, Letesson JJ, et al. DNA polymorphism analysis of Brucella lipopolysaccharide genes reveals marked differences in O-polysaccharide biosynthetic genes between smooth and rough Brucella species and novel species-specific markers[J]. BMC Microbiology,2009,9(1):92.
    [110]Reeves PR, Hobbs M, Valvano MA, et al. Bacterial polysaccharide synthesis and gene nomenclature[J]. Trends in Microbiology,1996,4(12):495-503.
    [111]Ugalde JE, Czibener C, Feldman MF, et al. Identification and characterization of the Brucella abortus phosphoglucomutase gene:role of lipopolysaccharide in virulence and intracellular multiplication[J]. Infection and Immunity,2000,68(10):5716-5723.
    [112]Allen CA, Adams LG, Ficht TA. Transposon-Derived Brucella abortusRough Mutants Are Attenuated and Exhibit Reduced Intracellular Survival[J]. Infection and Immunity,1998, 66(3):1008-1016.
    [113]Monreal D, Grillo M, Gonzalez D, et al. Characterization of Brucella abortus O-polysaccharide and core lipopolysaccharide mutants and demonstration that a complete core is required for rough vaccines to be efficient against Brucella abortus and Brucella ovis in the mouse model[J]. Infection and Immunity,2003,71(6):3261-3271.
    [114]Godfroid F, Taminiau B, Danese I, et al. Identification of the Perosamine Synthetase Gene ofBrucella melitensis 16M and Involvement of Lipopolysaccharide O Side Chain in BrucellaSurvival in Mice and in Macrophages[J]. Infection and Immunity,1998,66(11): 5485-5493.
    [115]Reeves P. Biosynthesis and assembly of lipopolysaccharide[J]. New Comprehensive Biochemistry,1994,27:281-317.
    [116]Whitfield C. Biosynthesis of lipopolysaccharide O antigens[J]. Trends in Microbiology, 1995,3(5):178-185.
    [117]Godfroid F, Cloeckaert A, Taminiau B, et al. Genetic organisation of the lipopolysaccharide O-antigen biosynthesis region of Brucella melitensis 16M (wbk)[J]. Research in Microbiology,2000,151(8):655-668.
    [118]王华丙,张振义,包锐,等.ABC转运蛋白的结构与转运机制[J].生命的化学,2007,27(3),208-209.
    [119]Conseil G, Deeley R, Cole S. Functional importance of three basic residues clustered at the cytosolic interface of transmembrane helix 15 in the multidrug and organic anion transporter MRP1 (ABCC1)[J]. Journal of Biological Chemistry,2006,281(1):43-50.
    [120]刘大伟.长双歧杆菌NCC2705果糖ABC转运系统的研究[D]:军事医学科学院疾病预防控制所,2011.
    [121]Zhang M, Han X, Liu H, et al. Inactivation of the ABC transporter ATPase gene in Brucella abortus strain 2308 attenuated the virulence of the bacteria[J]. Veterinary Microbiology,2013.
    [122]Arayal N, Elzerp H, Roweg E, et al. Temporald evelopment of protective cell mediated and humoral immunity in BALB/c mice infected with Brucella abortus[J]. Journal of Immunology,1989,143:3330-3337.
    [123]Forestier C. Lysosomal accumulation and recycling of lipopolysaccharide to the cell surface of murine macrophages, an in vitro and in vivo study. Journal of Immunology, 1999,162:6784-6791.
    [124]Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 AACT Method[J]. Methods,2001,25(4):402-408.
    [125]Gorvel JP, Moreno E. Brucella intracellular life:from invasion to intracellular replication[J]. Veterinary Microbiology,2002,90(1):281-297.
    [126]Detilleux P, Deyoe B, Cheville N. Entry and intracellular localization of Brucella spp. in vero cells:fluorescence and electron microscopy[J]. Veterinary Pathology Online,1990, 27(5):317-328.
    [127]Pei J, Ficht TA. Brucella abortus rough mutants are cytopathic for macrophages in culture[J]. Infection and Immunity,2004,72(1):440-450.
    [128]Wang Z, Zhang L, Qiao A, et al. Activation of CXCR4 triggers ubiquitination and down-regulation of major histocompatibility complex class I (MHC-I) on epithelioid carcinoma HeLa cells[J]. Journal of Biological Chemistry,2008,283(7):3951-3959.
    [129]Forestier C, Deleuil F, Lapaque N, et al. Brucella abortus lipopolysaccharide in murine peritoneal macrophages acts as a down-regulator of T cell activation[J]. The Journal of Immunology,2000,165(9):5202-5210.
    [130]Song X, Qian Y. The activation and regulation of IL-17 receptor mediated signaling[J]. Cytokine,2013.
    [131]Golding B, Scott DE, Scharf O, et al. Immunity and protection against Brucella abortus [J]. Microbes and Infection,2001,3(1):43-48.
    [132]曹小安,邱昌庆,秦天达.布鲁氏菌毒力基因的研究状况[J].中国人兽共患病学报ISTIC,2009,25(7),689-693.
    [133]李鹏,焦淑成,王希良.布氏茵减毒活菌苗的研究进展[J].2007,22(2),112-114.
    [134]王玉飞,陈泽良,乔凤,等.布鲁氏菌自杀载体的改建及其在突变株构建中的应用[J].世界华人消化杂志,2007,15(27):2934-2937.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700