Gabazine对小鼠苍白球神经元放电的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苍白球存在于基底神经节间接环路,对机体正常运动行为以及运动障碍疾病均发挥显著作用。帕金森病(Parkinson's disease, PD)是由基底神经节功能障碍所导致的运动性疾病。苍白球主要接受从纹状体以及苍白球神经元自身侧支发出的Y-氨基丁酸(GABA)能纤维支配。GABA是基底神经节核团中主要的具有抑制性效应的神经递质。苍白球内GABA发挥其抑制性效应主要通过作用于突触后膜的GABAA受体。以往大量实验证实GABA或者GABAA受体与帕金森病有着密切的联系。早期行为学实验结果显示经苍白球内注射GABAA受体阻断剂bicuculline可以起到抗帕金森病效应。因此,探讨苍白球内源性GABAA递质系统对于认识苍白球在正常及病理状态下的功能活动显得十分重要。目的:探讨正常及帕金森病状态下苍白球内源性GABAA受体的效应。方法:本实验用甲基苯基四氢毗啶(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, MPTP)制备帕金森病模型小鼠,采用细胞外电生理学记录的方法观察GABAA受体阻断剂gabazine对正常及帕金森病模型小鼠苍白球神经元放电的影响。结果:
     1.在正常小鼠苍白球内注射0.1 mM gabazine使苍白球神经元放电频率由7.2±1.4 Hz升高到10.4±1.8 Hz(P<0.001),平均增加53.7±8.0%(n=15),与生理盐水组相比明显增强,差别有统计学意义(P<0.001)。
     2.在MPTP制备的帕金森病模型小鼠,苍白球压力注射0.1 mM gabazine可以兴奋苍白球神经元,使其放电频率由5.3±2.2 Hz升高至6.8±2.7 Hz(P<0.01),平均增加42.9±7.5%,与生理盐水对照组相比,明显增加苍白球神经元放电频率,差别有显著统计学意义(P<0.001),与正常小鼠相比(53.7±8.0%,n=15)没有统计学差别。
     结论:Gabazine可兴奋正常及MPTP制备的帕金森病模型小鼠苍白球神经元,这将为进一步认识苍白球内源性GABAA受体治疗帕金森病提供了一定的实验依据。
The globus pallidus occupies an important position in the indirect pathway of the basal ganglia, and it plays an important role in normal movement regulation and in basal ganglia movement disorders. The globus pallidus mainly receives gamma-aminobutyric acid (GABA)ergic inputs from the striatum and local axon collaterals. GABA is the major inhibitory neurotransmitter used in the basal ganglia. A line of evidence indicated that there is a close relationship between GABA or GABAA receptors and Parkinson's disease. Early study revealed that microinjection of GABAA receptor antagonist, bicuculline, into the globus pallidus had marked antiparkinsonian effects. Therefore, it is very important to investigate the endogenous GABA transmitter system for understanding the function of globus pallidus under normal and pathologic state. Object:To investigate the electrophysiological effects of endogenous GABAA receptor in the globus pallidus of normal and MPTP parkinsonian mice. Methods:The parkisonian mice was established by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In vivo extracellular recording was used to detect the effects of GABAA receptor antagonist, gabazine, on spontaneous firing rate of pallidal neurons in normal and pakinsonian mice. Results:
     1. In normal mice, micro-pressure ejection of gabazine increased the spontaneous firing rate of pallidal neurons from 7.2±1.4 Hz to 10.4±1.8 Hz (P<0.001). The average increase was 53.7±8.0%, which was significantly different (P<0.001) from that of vehicle (normal saline) injection.
     2. In MPTP treated mice, micro-pressure ejection of gabazine increased the spontaneous firing rate of pallidal neurons from 5.3±2.2 Hz to 6.8±2.7 Hz (P<0.01). The average increase was 42.9±7.5%, which was significantly different (P<0.001) from that of normal saline injection (P<0.001). Gabazine-induced increase in firing rate of globus pallidus had no significant difference in normal and MPTP treated parkinsonian mice.
     Conclusion:Gabazine increased the firing rate of globus pallidus neurons in normal and MPTP treated parkinsonian mice. The present findings may provide theoretical foundation for further investigations into the potential of pallidal endogenous GABAA receptor in treating Parkinson's disease.
引文
1. Doan JB, Melvin KG, Whishaw IQ, et al. Bilateral impairments of skilled reach-to-eat in early Parkinson's disease patients presenting with unilateral or asymmetrical symptoms. Behav Brain Res.2008,194:207-213.
    2. Bergman H, Feingold A, Nini A, et al. Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci, 1998,21:32-38.
    3. Wichmann T, Delong MR. Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol,1996,6:751-758.
    4. EI-Deredy W, Branston NM, Samuel M, et al. Firing patterns of pallidal cells in parkinsonian patients correlate with their pre-pallidotomy clinical scores. Neuroreport,2000,11(15):3413-3418.
    5. Brownell AL, Canales K, Chen YI, et al. Mapping of brain function after MPTP-induced neurotoxicity in a primate Parkinson's disease model. Neuroimage. 2003; 20,1064-1075.
    6. Chadha, A, Dawson, LG., Jenner, PG, and Duty S. Effect of unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway on GABA (A) receptor subunit gene expression in the rodent basal ganglia and thalamus. Neuroscience, 2000,95,119-126.
    7. Maneuf YP, Mitchell IJ, Crossman AR, et al. On the role of enkephalin cotransmission in the GABAergic striatal efferents to the globus pallidus. Exp Neurol, 1994,125:65-71.
    8.张晓红,陈曦,蒋正尧a-MSH对大鼠背侧迷走神经复合体胃扩张敏感神经元的作用.青岛大学医学院学报,2009,45:219-221.
    9. Galvan A, Villalba RM, West SM, et al. GABAergic modulation of the activity of globus pallidus neurons in primates:in vivo analysis of the functions of GABA receptors and GABA transporters. J Neurophysiol,2005,94:990-1000.
    10. Kita H, Nambu A, Kaneda K, et al. Role of ionotropic glutamatergic and GABAergic inputs on the firing activity of neurons in the external pallidum in awake monkeys. J Neurophysiol,2004,92:3069-3084.
    11. Windels F, Kiyatkin EA. GABAergic mechanisms in regulating the activity state of substantia nigra pars reticulata neurons. Neuroscience,2006,140:1289-1299.
    12. Chan CS, Surmeier DJ, Yung WH. Striatal information signaling and integration in globus pallidus:timing matters. Neurosignals,2005,14:281-289.
    1. Doan JB, Melvin KG, Whishaw IQ, et al. Bilateral impairments of skilled reach-to-eat in early Parkinson's disease patients presenting with unilateral or asymmetrical symptoms. Behav Brain Res,2008,194:207-213.
    2. Brown P. Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Curt Opin Neurobiol,2007,17:656-664.
    3. Kopell BH, Rezai AR, Chang JW, et al.Anatomy and physiology of the basal ganglia:implications for deep brain stimulation for parkinson's disease. Mov Disord,2006,21:238-246.
    4. Kopin I J. The pharmacology of PD therapy:an update. Ann Rew Pharmacology Toxicol,1993,33:467-491.
    5. Greenamyre JT, O'Brien CF. N-methyl-A spartate antonists in the treatment of Parkinson's disease. A rch N eurol,1991,48:977-813.
    6. Samadi P, Rouillard C, et al. Functional neurochemistry of the basal ganglia. Handb Clin Neurol,2007,83:19-66.
    7. Feger J, Worbe Y, Galineau L, Tremblay L. Basal ganglia and psychiatric disorders: an experimental validation. Ann Pharm Fr,2009,67:320-334.
    8. Kopell BH, Rezai AR, Chang JW, et al.Anatomy and physiology of the basal ganglia: implications for deep brain stimulation for parkinson's disease.Mov Disord,2006,21:S238-S246.
    9. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci,1989,12:366-375.
    10. DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci,1990,13:281-285.
    11.蒋文华.神经解剖学.上海:复旦大学出版社,2002:336-344.
    12.陈立南,徐群渊.人及大鼠基底神经节的三维重构及形态比较.神经解剖学杂志,2000,16(3):217-221.
    13. Nalto A, Kita H. The cortico-pallidal projection in the rat:an anterograde tracing study with biotinylated dextran amine.Brain Res,1994,653:251-257.
    14. Eusebio A, Brown P. Oscillatory activity in the basal ganglia.Parkinsonism Relat Disord,2007,13:S434-S436.
    15. Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits:neural substrates of parallel processing. Trends Neurosci,1990,13:266-271.
    16.傅文玉,张进禄,黄岩,等.帕金森病大鼠纹状体神经元及黑质网状部神经递质变化的研究.神经解剖学杂志,1998,14:119-126.
    17. Kish SJ, Chang LJ, et al. GABA is elevated in striatal but not extrastriatal brain regions in Parkinson'disease correlation with striatal dopamine loss.Ann Neurol,1986,20:25-36.
    18. Boraud T, Bezard E, Bioulac B, et al.From single extracellular unit recording in experimental and human Parkinsonism to the development of a functional concept of the role played by the basal ganglia in motor control. Prog Neurobiol, 2002,66:265-283.
    19. Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav,2002,71:533-549.
    20. Smith Y, Kieval JZ. Anatomy of the dopamine system in the basal ganglia.Trends Neurosci,2000,23:S28-S33.
    21.Blandini F, Porter RHP, Greenamyre JT. Glutamate and Parkinson's disease. Mol Neurobiol,1996,12:73.
    22. Arias Montano JA, Martinez-Fong D, Aceves J. GABAB receptor activation partially inhibits N-methyl-D-aspartate-mediated tyrosine hydroxylase stimulation in rat striatal slices. Eur J Pharmacol,1992,218:335-338.
    23. Galvan A, Wichmann T. Pathophysiology of parkinsonism. Clin Neurophy--siol,2008,119:1459-1474.
    24. Bonanno G, Fassio A, Sala R, Schmid G, Raiteri M. GABA(B) receptors as potential targets for drugs able to prevent excessive excitatory amino acid transmission in the spinal cord. Eur J Pharmacol,1998,362:143-148.
    25. Bevan MD, Smith AD, Bolam JP. The substantia nigra as a site of synaptic integration of functionally diverse information arising from the ventral pallidum and the globus pallidus in the rat. Neuroscience,1996,75:5-12.
    26. Chen L, Chan SCY, Yung WH. Rotational behavior and electrophysiological effects induced by GABAB receptor activation in rat glohus pallidu. Neuroscience,2002,114:417-425.
    27. Bevan MD, Magill PJ, Terman D, et al. Move to the rhythm:oscillations in the subthalamic nucleus-external globus pallidus network.Trends Neurosci,2002,25:525-531.
    28. Kita H. GABAergic circuits of the striatum. Prog Brain Res,1993,99:51-72.
    29. Schmued L, Phermsangngam P, Lee H, et al. Collateralization and GAD immunoreactivity of descending pallidal efferents. Brain Res,1989,487:131-142.
    30. Langenecker SA, Briceno EM, Hamid NM. An evaluation of distinct volumetric and functional MRI contributions toward understanding age and task performance:A study in the basal ganglia. Brain Res,2007,1135:58-68.
    31. Bormann J. Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neurosci,1988,11:112-116.
    32. Bonci A, Grillner P, Siniscalchi A, Mercuri NB, Bernardi G. Glutamate metabotropic receptor agonists depress excitatory and inhibitory transmission on rat mesencephalic principal neurons. Eur J Neurosci,1997,9:2359-2369.
    33. Kita H. Responses of globus pallidus neurons to cortical stimulation:intracellular study in the rat. Brain Res,1992,589:84-90.
    34. Gerfen CR, Young WS. Distribution of striatonigral and striatopallidal neurons in both patch and matrix compartments:an in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Res,1988,460:161-167.
    35. Wilson CJ, Kawaguchi Y. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci,1996,16:2397-2410.
    36. Li YL, Ma J, Xu WK, et al.Critical features of coupling parameter in synchronization of small world neural networks.Chaos Solitons Fractals,2008,37:1083-1089.
    37. DeLong MR. Activity of pallidal neurons during movement. J Neurophysiol,1971, 34:414-427.
    38. Eusebio A, Brown P. Oscillatory activity in the basal ganglia.Parkinsonism Relat Disord,2007,13:S434-S436.
    39. Kathleen A, Maguire Z. Ot-synuclein:A therapeutic target for Parkinson's disease.Pharmacol Res,2008,58:271-280.
    40. Gardiner TW, Kitai ST. Single-unit activity in the globus pallidus and neostriatum of the rat during performance of a trained head movement. Exp Brain Res,1992, 88:517-530.
    41. Bernard V, Bolam JP. Subcellular and subsynaptic distribution of the NR1 subunit of the NMDA receptor in the neostriatum and globus pallidus of the rat:co-localization at synapses with the GluR2/3 subunit of the AMPA receptor. Eur J Neurosci,1998, 10:3721-3736.
    42. Lovinger DM, McCool BA. Metabotropic glutamate receptor-mediated presynaptic depression at corticostriatal synapses involves mGLuR2 or 3. Neurophysiol,1995, 73:1076-1083.
    43. M cdonald JW, JohnstonMV. Physiological and pathophysiological role of excitatory amino acid during central nervous system development. Brain Res Rev,1990; 15: 41-70.
    44. Lujan R, Nusser Z, Roberts JD, Shigemoto R, Somogyi P. Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci,1996,8:1488-1500.
    45. Testa CM, Standaert DG, Young AB, et al. Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J Neurosci,1994,14:3005-3018.
    46. Lei C, Wing Y. GABAergic neurotransmission in glohuspallidns and its involvement in neurologic disorders.Acta Physiologlca Sinica,2004,56:427-435.
    47. Stefani A, Spadoni F, Giacomini P, et al.The modulation of calcium current by GABA metabotropic receptors in a subpopulation of pallidal neurons.J Neurosci,1999,11(11):3995-4005.
    48. Bowery NG, Hill DR, Hudson AL, Doble A, Middlemiss DN, Shaw J, Turnbull M. (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature,1980,283:92-94.
    49. Bowery NG, Price GW, Hudson AL, Hill DR, Wilkin GP, Turnbull MJ. GABA receptor multiplicity. Visualization of different receptor types in the mammalian CNS. Neuropharmacology,1984,23(2B):219-231.
    50. Bowery NG, Hudson AL, Price GW. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience,1987,20:365-383.
    51. Conn PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol,1997,37:205-237.
    52. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ, Sibley DR. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science,1990,250):1429-1432.
    53. Le Moine C, Normand E, Bloch B. Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. Proc Natl Acad Sci U S A,1991, 88:4205-4209.
    54. Nisenbaum ES, Berger TW, Grace AA. Presynaptic modulation by GABAB receptors of glutamatergic excitation and GABAergic inhibition of neostriatal neurons. J Neurophysiol,1992,67:477-481.
    55. Mailleux P, Vanderhaeghen JJ. Distribution of neuronal cannabinoid receptor in the adult rat brain:a comparative receptor binding radioautography and in situ hybridization histochemistry. Neuroscience,1992,48:655-668.
    56. Dube L, Smith AD, Bolam JP. Identification of synaptic terminals of thalamicorcortical origin in contact with distinct medium-size spiny neurons in the rat neostriatum. J Comp Neurol,1988,267:455-471.
    57. Peckys D, Landwehrmeyer GB. Expression of μ,κ, and 8 opioid receptor messenger RNA in the human CNS:a 35P in situ hybridization study. Neuroscience,1999,88: 1093-1135.
    58. Riad M, Garcia S, Watkins KC, Jodoin N, Doucet E, Langlois X, Mestikawy S, Hamon M, Descarries L. Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol, 2000,417:181-194.
    59. Sari Y, Miquel MC, Brisorgueil MJ, Ruiz G, Doucet E, Hamon M, Verge D. Cellular and subcellular localization of 5-hydroxytryptamine1B receptors in the rat central nervous system:immunocytochemical, autoradiographic and lesion studies. Neuroscience,1999,88:899-915.
    60. Bonaventure P, Hall H, Gommeren W, Cras P, Langlois X, Jurzak M, Leysen JE. Mapping of serotonin 5-HT (4) receptor mRNA and ligand binding sites in the post-mortem human brain. Synapse,2000,36:35-46.
    61. Ikarashi Y, Yuzurihara M, Takahashi A, Hirohisa Ishimaru, Shiobara T, Maruyama Y. Modulation of acetylcholine release via GABAA and GABAB receptors in rat striatum. Brain Res,1999,816:238-240.
    62. Jones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, Dai M, Yao WJ, Johnson M, Gunwaldsen C, Huang LY, Tang C, Shen Q, Salon JA, Morse K, Laz T, Smith KE, Nagarathnam D, Noble SA, Branchek TA, Gerald C. GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature,1998,396:674-679.
    63. Moratalla R, Bowery NG. Chronic lesion of corticostriatal fibers reduces GABAB but not GABAA binding in rat caudate putamen:an autoradiographic study. Neurochem Res,1991,16:309-315.
    64. Charara A, Heilman TC, Levey AI, Smith Y. Pre-and postsynaptic localization of GABA(B) receptors in the basal ganglia in monkeys. Neuroscience,2000, 95:127-140.
    65. Hashimoto T, Kuriyama K. In vivo evidence that GABA(B) receptors are negatively coupled to adenylate cyclase in rat striatum. J Neurochem.1997 Jul; 69(1):365-370.
    66. Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Higemoto R, Karschin A, Bettler B. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature,1998, 396:683-687.
    67. Margeta-Mitrovic M, Mitrovic I, Riley RC, Jan LY, Basbaum AI. Immuno--histochemical localization of GABA(B) receptors in the rat central nervous system. J Comp Neurol,1999,405:299-321.
    68. Munoz A, Huntsman MM, Jones EG. GABA(B) receptor gene expression in monkey thalamus. J Comp Neurol,1998,394:118-126.
    69. Ng GY, Clark J, Coulombe N, Ethier N, Hebert TE, Sullivan R, Kargman S, Chateauneuf A, Tsukamoto N, McDonald T, Whiting P, Mezey E, Johnson MP, Liu Q, Kolakowski LF, Jr, Evans JF, Bonner TI, O'Neill GP. Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity. J Biol Chem,1999,274:7607-7610.
    70. Nisenbaum ES, Berger TW, Grace AA. Depression of glutamatergic and GABAergic synaptic responses in striatal spiny neurons by stimulation of presynaptic GABAB receptors. Synapse,1993,14:221-242.
    71.Nusser Z, Sieghart W, Somogyi P. Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci,1998, 18:1693-1703.
    72. Olianas MC, Onali P. GABA(B) receptor-mediated stimulation of adenylyl cyclase activity in membranes of rat olfactory bulb. Br J Pharmacol,1999,126:657-664.
    73. Chen L, Chan SCY, Yung WH. Rotational behavior and electrophysiological effects induced by GABAB receptor activation in rat glohuspallidus. Neuroscience, 2002,114:417-425.
    74. Reimann W. Inhibition by GABA, baclofen and gabapentin of dopamine release from rabbit caudate nucleus:are there common or different sites of action? Eur J Pharmacol. 1983 Oct 28; 94(3-4):341-344.
    75. Hanson JE, Smith Y. Group I metabotropic glutamate receptors at GABAergic synapses in monkeys. J Neurosci.1999 Aug 1; 19(15):6488-6496.
    76. Seabrook GR, Howson W, Lacey MG. Electrophysiological characterization of potent agonists and antagonists at pre-and postsynaptic GABAB receptors on neurones in rat brain slices. Br J Pharmacol.1990 Dec; 101(4):949-957.
    77. Smith Y, Bennett BD, Bolam JP, Parent A, Sadikot AF. Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey. J Comp Neurol,1994,344:1-19.
    78. Gerfen CR. Molecular effects of dopamine on striatalprojection pathways. Trends Neurosci,2000,23:S64-S70.
    79. Tallaksen-Greene SJ, Kaatz KW, Romano C, Albin RL. Localization of mGluRla-like immunoreactivity and mGluR5-like immunoreactivity in identified populations of striatal neurons. Brain Res,1998,780:210-217.
    80. Testa CM, Friberg IK, Weiss SW, Standaert DG. Immunohistochemical localization of metabotropic glutamate receptors mGluRla and mGluR2/3 in the rat basal ganglia. J Comp Neurol,1998,390:5-19.
    81.Baude A, Nusser Z, Roberts JD, Mulvihill E, McIlhinney RA, Somogyi P. The metabotropic glutamate receptor (mGluRl alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron, 1993,11:771-787.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700