金属离子在好氧微生物颗粒上的界面作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济生活的不断发展,水环境污染问题日益严重,废水生物处理技术是解决水污染问题的重要手段之一。与传统的絮体活性污泥相比,好氧微生物颗粒由于其优异的沉降性能和良好的生物活性而受到普遍关注。重金属污染指由重金属或其化合物造成的环境污染,已经十分普遍。在微生物生长代谢过程中,微量的重金属是微生物生活所需物质,但是过量反而抑制微生物的生长代谢甚至引起死亡。因此研究微生物颗粒与金属之间的相互作用对于维持生物系统的稳定运行具有重要意义。本论文从好氧微生物颗粒的界面吸附特性研究出发,探讨了好氧微生物颗粒与金属离子相互作用的界面过程,解析了重金属对好氧微生物颗粒生理生化特性的影响,并在量化计算的指导下对微生物颗粒表面进行修饰强化了微生物颗粒与重金属的相互作用界面行为。主要研究内容和研究结果如下:
     1.研究了好氧微生物颗粒与分子染料之间相互作用,评价了好氧微生物颗粒的表面特性。研究结果表明好氧微生物具有很强的结合分子染料的能力,其最大结合常数为56.818 mg/g SS;利用染料分子探针结合单分子层模型判定含水好氧微生物颗粒比表面积为72.32 m2/g SS;热力学分析表明好氧微生物颗粒对染料的吸附是自发、吸热过程。
     2.考察了二元金属体系中好氧微生物颗粒与金属离子之间的界面作用过程和作用机理。研究发现金属离子与好氧微生物颗粒最大结合系数分别为55.25 mg/g Co (pH7)和62.50 mg/g Zn (pH5);二元金属的添加导致了金属之间的竞争,减少了金属与颗粒的结合量;二级动力学速率方程能够很好的拟合试验数据,推断颗粒与金属的相互作用的速率限制步骤为电子交换或共用电子引起的化学反应过程;好氧微生物颗粒与Co(Ⅱ)相互作用的初始反应速率大于与Zn(Ⅱ)作用速率;光谱和能谱分析显示好氧微生物颗粒界面上的官能团(如羟基和羧基)是颗粒界面上发生反应的主要活性位点。
     3.采用傅里叶红外光谱(FTIR)和X射线光电子能谱(XPS)技术,深入探讨了不同来源的微生物颗粒胞外聚合物(EPS)与金属离子的界面作用机理。研究发现好氧微生物颗粒分泌的紧密束缚型EPS (Tightly bound EPS, TB-EPS)含量高于松散束缚型EPS (Loosely bound EPS, LB-EPS),其主要成分都为多糖和蛋白质;对Zn2+和Co2+, LB-EPS与金属离子之间比TB-EPS具有更大的结合能力,且两种类型的EPS与金属离子相互作用都符合单分子层作用模型;与一元金属体系相比,二元金属的加入引发了金属之间对活性位点的竞争减少了金属与EPS之间的结合量:光谱及能谱分析显示,EPS表面羟基,氨基和羧基基团参与了与金属离子的相互作用。LB-EPS与金属相互作用时,LB-EPS不仅起到了络合剂的作用,同时絮凝作用强化了LB-EPS与金属的相互作用能力。
     4.解析了金属离子的长期加入对好氧微生物颗粒微生物活性和群落多样性的影响。结果表明,Cu(Ⅱ)的加入大大降低了好氧微生物颗粒生物质的浓度,生物活性以及生物多样性;而Ni(Ⅱ)对好氧微生物颗粒生物多样性的毒性作用比较小,且好氧微生物颗粒体系提高了微生物对镍离子的耐受水平。即使在镍浓度为15 mg/L时,Ni(Ⅱ)仍然一定程度上刺激了好氧微生物颗粒的生物产量和生物活性。微生物颗粒对金属耐受性的提高主要是因为微生物颗粒为微生物提供了一个缓冲区使得微生物可以逐渐适应高的金属浓度,使得微生物得以继续生长或者微生物的重新分布以满足其微环境的需求;同时高的生物量和高的EPS含量都有利于降低金属离子对好氧微生物颗粒的毒性。
     5.在密度泛函理论的指导下,强化了金属离子在好氧微生物颗粒表面的界面行为,探讨了聚乙烯亚胺修饰和好氧微生物颗粒与金属离子之间的作用机理。密度泛函理论计算结果显示游离的Cu2+或是水合铜离子,都更倾向作用于氨基的N位;聚乙烯亚胺表面修饰强化了好氧微生物颗粒与金属离子的相互作用,其最大结合参数分别为71.239 mg/g Cu(Ⅱ)和348.125 mg/g Cr(Ⅵ); FTIR分析显示氨基参与了表面修饰的好氧微生物颗粒与金属离子的相互作用;XPS结果显示好氧微生物颗粒表面存在Cr(Ⅲ)离子,说明微生物颗粒与Cr的相互作用不但包括表面修饰的好氧微生物颗粒与Cr(Ⅵ)的结合,还包括相互作用过程中Cr(Ⅵ)被还原为Cr(Ⅲ), Cr(Ⅲ)以固体相的形式沉积在好氧微生物颗粒表面。
Biological treatment is one of the most widely used wastewater treatment processes. Aerobic microbial granules play an important role in the field of biological wastewater treatment due to their advantages over the conventional sludge floes, such as a denser and stronger aggregate structure, better settleability and ensured solid-effluent separation, higher biomass concentration, and greaterability towithstand shock loadings. Heavy metals can be stimulatory, inhibitory, or even toxic in biochemical reactions depending on the metal concentration and speciation, the state of microbial growth, and the biomass concentration. Therefore, study was conducted to investigate the interaction machnisms of aerobic microbial granules and metal ions. The work could provide useful information for the the design and operation of biological systems. In this paper, the binding capacities and mechanisms of aerobic granule with metal ions was investigated. The effects of long-term addition of metal ions on the biochemical properties of aerobic granules were examined. The mechanism and binding sites involved in the interaction of metal ions with modified aerobic granules were also evaluated. Main contents and results are as follows:
     1. Batch experiments were conducted to study the binding characteristics of a eationic dye, Malachite Green (MG), onto aerobic granules. The Langmuir isotherm was found to provide the best theoretical correlation of the experimental data for the biosorption of MG. The monolayer biosorption (saturation) capacities were determined to be 56.8 mg/g. The aerobic granule had a specific surface of 72.32 m2/g SS. Thermodynamic analysis show that biosorption follows an endothermic path of the positive value ofΔH0 and spontaneous with negative value ofΔG0.
     2. The interaction process of cobalt(Ⅱ) and zinc(Ⅱ) and aerobic granules was characterized. Single component and binary equimolar systems were studied at different pH values. The equilibrium was well described by Redlich-Peterson adsorption isotherm. The maximal binding capacity of the granules, in single systems (55.25 mg/g Co; 62.50 mg/g Zn) compared with binary systems (54.05 mg/g Co; 56.50 mg/g Zn) showed reduction in the accumulation of these metals onto aerobic granules. The kinetic modelling of metal sorption by granules has been carried out using Lagergren equations. The regression analysis of pseudo second-order equation gave a higher R2 value, indicating that chemisorption involving valent forces through the sharing or exchange of electrons between sorbent and sorbate may be the rate limiting step. The initial biosorption rate indicated that aerobic granules can adsorb Co(Ⅱ) more rapidly than Zn(Ⅱ) from aqueous solutions. Meanwhile, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses revealed that chemical functional groups (e.g., alcoholic and carboxylate) on aerobic granules would be the active binding sites for biosorption of Co(Ⅱ) and Zn(II).
     3. The interacting mechanisms of metallic cations (Zn2- and Co2+) to active chemical groups on the extracellular polymeric substances (EPS) of the aerobic granules, including loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS), were examined by XPS and FTIR spectroscopy. For Zn2+ and Co2+, LB-EPS showed stronger binding properties than TB-EPS and the process of them was described well by the Langmuir isotherm. Compared to the single-metal system, binary-metal addition induced competitive binding between the Zn2+ and Co2+ with reduction of the maximal binding capacity for both EPS. The main chemical groups involved in the interactions between contaminants were apparently alcohol, carboxyl and amino. These groups were part of the EPS structural polymers, namely, polysaccharides, proteins, and hydrocarbon-like products. When biosorption and flocculation occurred at the same time, the LB-EPS were used not only as chelate sorbents but also as flocculants to further enhance their sorption capacity.
     4. This part investigated the individual toxic effects of long-term addition of Cu(Ⅱ) and Ni(Ⅱ) on the biochemical properties of aerobic granules in sequencing batch reactors (SBRs). The biochemical properties of aerobic granules were characterized by EPS content, dehydrogenase activity and microbial community biodiversity. One SBR was used as a control system, while another two received respective concentration of Cu (Ⅱ) and Ni(Ⅱ) equal to 5 mg/L initially and increased to 15 mg/L on day 27. Results showed that the addition of Cu (Ⅱ) drastically reduced the biomass concentration, bioactivity, and biodiversity of aerobic granules. The toxic effect of Ni(Ⅱ) on the biodiversity of aerobic granules was milder and the aerobic granular system elevated the level of Ni(Ⅱ) toxicity tolerance. Even at a concentration of 15 mg/L, Ni (Ⅱ) still stimulated the biomass yield and bioactivity of aerobic granules to some extent. The elevated tolerance seemed to be owed to the concentration gradient developed within granules, increased biomass concentration, and promoted EPS production in aerobic granular systems.
     5. According to quantum chemistry calculation, it is investigated that copper ions and hydrated copper ions are preferred to interact with amine groups. Porous aerobic granules were grafted with polyethylenimine (PEI), due to the presence of a large number of amine groups in the PEI molecule. The biosorption characteristics of cations and anions from aqueous solution using modified aerobic granules were investigated. FTIR and XPS analysis exhibited the presence of PEI on the granule surface. Compared with the raw granule, the modified aerobic granules with PEI showed a significant increase in sorption capacity for both metal ions. The monolayer biosorption capacity of granules for Cu(Ⅱ) and Cr(Ⅵ) ions was found to be 71.239 and 348.125 mg/g. The optimum solution pH for adsorption of Cu(Ⅱ) and Cr(Ⅵ) from aqueous solutions was found to be 6 and 5.2, respectively. The biosorption data fitted better with the Redlich-Peterson isotherm model. FTIR showed chemical interactions occurred between the metal ions and the amide groups of PEI on the biomass surface. XPS results verified the presence of Cr(Ⅲ) on the biomass surface, suggesting that some Cr(Ⅵ) anions were reduced to Cr(Ⅲ) during the sorption.
引文
[1]高廷耀,顾国维,水污染控制工程(第二版).高等教育出版社1999.
    [2]Grady C.P.L.Jr., D. G. T., Lim, H.C., Biological Wastewater Treatment. Second Edition. USA:Marcel Dekker Inc.1999.
    [3]Beun, J. J.; van Loosdrecht, M. C. M.; Heijnen, J. J., Aerobic granulation in a sequencing batch airlift reactor. Water Res 2002,36 (3),702-712.
    [4]Liu, X.-W.; Sheng, G.-P.; Yu, H.-Q., Physicochemical characteristics of microbial granules. Biotechnol Adv 27 (6),1061-1070.
    [5]Batstone, D. J.; Hernandez, J. L. A.; Schmidt, J. E., Hydraulics of laboratory and full-scale upflow anaerobic sludge blanket (UASB) reactors. Biotechnol Bioeng 2005,91 (3),387-391.
    [6]Lettinga G. v. V. A., Hobma SW, de ZeeuwW, Klapwijk A., Use of the upflowsludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 1980,22, 699-734.
    [7]Morgenroth, E.; Sherden, T.; van Loosdrecht, M. C. M.; Heijnen, J. J.; Wilderer, P. A., Aerobic granular sludge in a sequencing batch reactor. Water Res 1997,31 (12),3191-3194.
    [8]Liu, Y. Q.; Tay, J. H.; Moy, B. Y. P., Characteristics of aerobic granular sludge in a sequencing batch reactor with variable aeration. Appl Microbiol Biot 2006, 71 (5),761-766.
    [9]Beun, J. J.; Hendriks, A.; Van Loosdrecht, M. C. M.; Morgenroth, E.; Wilderer, P. A.; Heijnen, J. J., Aerobic granulation in a sequencing batch reactor. Water Res 1999,33(10),2283-2290.
    [10]Kong, Y. H.; Liu, Y. Q.; Tay, J. H.; Wong, F. S.; Zhu, J. R., Aerobic granulation in sequencing batch reactors with different reactor height/diameter ratios. Enzyme Microb Tech 2009,45 (5),379-383.
    [11]Qin, L.; Liu, Y.; Tay, J. H., Effect of settling time on aerobic granulation in sequencing batch reactor. Biochem Eng J 2004,21 (1),47-52.
    [12]Wang. S. G.; Liu. X. W.; Gong. W. X.;Gao. B. Y.;Zhang. D. H.:Yu, H. Q.. Aerobic granulation with brewery wastewater in a sequencing batch reactor. Bioresource Technol 2007, 98(11).2142-2147.
    [13]Liu, Y.; Tay. J. H., State of the art of biogranulation technology for wastewater treatment. Biotechnol Adx 2004,22 (7),533-563.
    [14]竺建荣,刘.,好氧颗粒活性污泥的培养及理化特性研究.环境科学1999,3,38-41.
    [15]De Kreuk, M. K.,McSwain, B.S., Bathe, S., Tay, S.T.L., Schwarzenbeck, N. and Wilderer. P.A., Discussion outcomes. In Aerobic Granular Sludge, Bathe, S., De Kreuk. M.K., Me Swain, B.S. and Schwarzenbeck, N. (eds), IWA, London, UK,.2005,153-169.
    [16]Liu. Y.; Tay, J. H., The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res 2002,36 (7),1653-1665.
    [17]Li. A. J.; Yang, S. F.; Li, X. Y.; Gu, J. D., Microbial population dynamics during aerobic sludge granulation at different organic loading rates. Water Res 2008,42 (13),3552-3560.
    [18]Tay, J. H.; Liu, Q. S.; Liu, Y, Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. J Appl Microbiol 2001,91 (1), 168-175.
    [19]Su, K. Z.; Yu, H. Q., Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater. Environ Sci Technol 2005,39 (8),2818-2827.
    [20]Li, X. Y.; Yuan, Y. A., Settling velocities and permeabilities of microbial aggregates. Water Res 2002, 36(12),3110-3120.
    [21]Qin, L.; Tay, J. H.; Liu, Y, Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochem 2004,39 (5), 579-584.
    [22]Zheng, Y. M.; Yu, H. Q.; Sheng, G. P., Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor. Process Biochem 2005,40 (2),645-650.
    [23]Liu Y, W. Z., Liu YQ, Qin L, Tay JH., A generalized model for settling velocity of aerobic granular sludge. Biotechnol Prog 2005,21,621-626.
    [24]Johnson, C. P.; Li, X. Y.; Logan, B. E., Settling velocities of fractal aggregates. Environ Sci Technol 1996,30 (6),1911-1918.
    [25]Li, X. Y.; Logan, B. E., Permeability of fractal aggregates. Water Res 2001,35 (14),3373-3380.
    [26]Tay,J. H.; Tay, S. T. L.; Ivanov, V.; Pan, S.; Jiang, H. L.; Liu, Q. S., Biomass and porosity profiles in microbial granules used for aerobic wastewater treatment. Lett Appl Microbiol 2003,36 (5),297-301.
    [27]Chen, M. Y.; Lee, D. J.; Tay, J. H.; Show, K. Y, Staining of extracellular polymeric substances and cells in bioaggregates. Appl Microbiol Biot 2007,75 (2),467-474.
    [28]Zheng, Y M.; Yu, H. Q., Determination of the pore size distribution and porosity of aerobic granules using size-exclusion chromatography. Water Res 2007,41(1),39-46.
    [29]Xiao, F.; Yang, S. F.;Li, X. Y, Physical and hydrodynamic properties of aerobic granules produced in sequencing batch reactors. Sep Purif Technol 2008,63 (3),634-641.
    [30]Mu, Y.; Ren, T. T.; Yu, H. Q., Drag coefficient of porous and permeable microbial granules. Environ Sci Technol 2008,42 (5),1718-1723.
    [31]Pereboom, J. H. F., Strength characterisation of microbial granules. Water Sci Technol 1997,36 (6-7),141-148.
    [32]Wilen, B. M.; Keiding, K.; Nielsen, P. H., Flocculation of activated sludge floes by stimulation of the aerobic biological activity. Water Res 2004,38 (18), 3909-3919.
    [33]Morgan-Sagastume, F.; Allen, D. G., Physicochemical properties and stability of activated sludge floes under temperature upshifts from 30 to 45 degrees C. J. Colloid Interface Sci.2005,281 (1),136-145.
    [34]Hermansson, M., The DLVO theory in microbial adhesion. Colloids Surf. B 1999,14(1-4),105-119.
    [35]Eriksson. L.;Steen. I.; Tendaj, M., Evaluation of Sludge Properties at an Activated-Sludge Plant. Water Sci Technol 1992,25 (6),251-265.
    [36]Nielsen, J. L.;Nielsen, P. H., Microbial nitrate-dependent oxidation of ferrous iron in activated sludge. Environ Sci Technol 1998,32 (22),3556-3561.
    [37]Urbain, V.; Block, J. C.; Manem, J., Bioflocculation in Activated-Sludge-an Analytic Approach.Water Res 1993,27(5).829-838.
    [38]Zheng, Y. M.;Yu, H. Q.; Liu,S. H.; Liu, X. Z.,Formation and instability of aerobic granules under high organic loading conditions. Chemosphere 2006, 63 (10),1791-1800.
    [39]Ren,T. T.;Liu, L.; Sheng, G. P.; Liu, X. W.; Yu, H. Q.; Zhang, M. C.; Zhu, J. R., Calcium spatial distribution in aerobic granules and its effects on granule structure, strength and bioactivity. Water Res 2008,42 (13),3343-3352.
    [40]Sheng, G. P.; Yu, H. Q.; Li, X. Y., Stability of sludge flocs under shear conditions:Roles of extracellular polymeric substances (EPS). Biotechnol Bioeng 2006,93 (6),1095-1102.
    [41]Mikkelsen L.H., K. K., The shear sensitivity of activated sludge:an evaluation of the possibility for a standardized floc strength test.. Water Res 2002,36, 2931-2940.
    [42]Ghangrekar, M. M.; Asolekar, S. R.; Ranganathan, K. R.; Joshi, S. G., Experience with UASB reactor start-up under different operating conditions. Water Sci Technol 1996,34 (5-6),421-428.
    [43]Tay, J. H.; Pan, S.; He, Y. X.; Tay, S. T. L., Effect of organic loading rate on aerobic granulation. Ⅱ:Characteristics of aerobic granules. J Environ Eng-Asce 2004,130(10),1102-1109.
    [44]Seyssiecq I, F. J., Roche N., State-of-the-art:rheological characterization of wastewater treatment sludge. Biochem Eng J 2003,16,41-56.
    [45]Pevere, A.; Guibaud, G.; van Hullebusch, E.; Lens, P., Identification of rheological parameters describing the physico-chemical properties of anaerobic sulphidogenic sludge suspensions. Enzyme Microb Tech 2007,40 (4).547-554.
    [46]Mu, Y.; Yu, H. Q., Rheological and fractal characteristics of granular sludge in an upflow anaerobic reactor. Water Res 2006,40 (19),3596-3602.
    [47]Liu, X. W.; Sheng,G. P.; Yu, H. Q., Physicochemical characteristics of microbial granules. Biotechnol Adv 2009,27 (6),1061-1070.
    [48]Liu, S.-Y.; Liu, G.; Tian, Y.-C.; Chen, Y.-P.; Yu, H.-Q.; Fang, An Innovative Microelectrode Fabricated Using Photolithography for Measuring Dissolved Oxygen Distributions in Aerobic Granules. Environ Sci Technol 2007,41 (15), 5447-5452.
    [49]Chiu, Z. C.; Chen, M. Y.; Lee, D. J.; Wang, C. H.; Lai, J. Y, Oxygen diffusion in active layer of aerobic granule with step change in surrounding oxygen levels. Water Res 2007,41 (4),884-892.
    [50]Liu, S.-Y.; Chen, Y.-P.; Fang, F.; Li, S.-H.; Ni, B.-.J.; Liu, G.; Tian, Y.-C. Xiong, Y.; Yu, H.-Q., Innovative Solid-State Microelectrode for Nitrite Determination in a Nitrifying Granule. Environ Sci Technol 2008,42 (12), 4467-4471.
    [51]Liu, Y Q.; Liu, Y.; Tay, J. H., Relationship between size and mass transfer resistance in aerobic granules. Lett Appl Microbiol 2005,40 (5),312-315.
    [52]Chiu, Z. C.; Chen, M. Y.; Lee, D. J.; Tay, S. T. L.; Tay, J. H.; Show, K. Y, Diffusivity of oxygen in aerobic granules. Biotechnol Bioeng 2006,94 (3), 505-513.
    [53]Wingender J., N. T. R., Flemming H.C., Microbial extracellular polymeric substances:characterization, structure, and function. Berlin, Germany: Springer 1999.
    [54]Wang, Z.-W.; Liu, Y.; Tay, J.-H., Distribution of EPS and cell surface hydrophobicity in aerobic granules. Appl Microbiol Biot 2005,69 (4), 469-473.
    [55]McSwain, B. S.; Irvine. R. L.; Hausner, M.; Wilderer, P. A., Composition and Distribution of Extracellular Polymeric Substances in Aerobic Flocs and Granular Sludge. Appl. Environ. Microbiol.2005,71 (2),1051-1057.
    [56]Zhang, L.; Feng. X.; Zhu, N.; Chen, J., Role of extracellular protein in the formation and stability of aerobic granules. Enzyme Microb Tech 2007,41 (5). 551-557.
    [57]Azeredo, J.; Visser, J.; Oliveira, R., Exopolymers in bacterial adhesion: interpretation in terms of DLVO and XDLVO theories. Colloids Surf. B 1999, 14(1-4),141-148.
    [58]Liu, X.-M.; Sheng, G.-P.; Yu, H.-Q., DLVO Approach to the Flocculability of a Photosynthetic H2-Producing Bacterium, Rhodopseudomonas acidophila. Environ Sci Technol 2007,41 (13),4620-4625.
    [59]Liu, Y.; Yang, S. F.; Liu, Q. S.; Tay, J. H., The role of cell hydrophobicity in the formation of aerobic granules. Curr Microbiol 2003,46 (4),270-274.
    [60]蔡春光,刘.,蔡伟民.,胞外多聚物在好氧颗粒化中的作用机理.中国环境科学2004,24(5),623-626.
    [61]Tay, J. H.; Liu, Q. S.; Liu, Y., Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors. Environ Technol 2002,23 (8),931-936.
    [62]Liu, H.; Fang, H. H. P., Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnol Bioeng 2002,80 (7),806-811.
    [63]Liu, Y.; Lam, M. C.; Fang, H. H. P., Adsorption of heavy metals by EPS of activated sludge. Water Sci Technol 2001,43 (6),59-66.
    [64]Meyer, R. L.; Saunders, A. M.; Zeng, R. J. X.; Keller, J.; Blackall, L. L., Microscale structure and function of anaerobic-aerobic granules containing glycogen accumulating organisms. Fems Microbiol Ecol 2003,45 (3), 253-261.
    [65]Lemaire, R.; Yuan, Z.; Blackall, L. L.; Crocetti, G. R., Microbial distribution of Accumulibacter spp. and Competibacter spp. in aerobic granules from a lab-scale biological nutrient removal system. Environ Microbiol 2008,10 (2). 354-363.
    [66]Jiang. H. L.; Maszenan, A. M.; Tay, J. H., Bioaugmentation and coexistence of two functionally similar bacterial strains in aerobic granules. Appl Microbiol Biot 2007,75(5),1191-1200.
    [67]Watnick. P.; Kolter, R., Biofilm, city of microbes. J Bacteriol 2000,182 (10), 2675-2679.
    [68]Jiang,H. L.; Tay, J. H.; Maszenan, A. M.; Tay, S. T. L., Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation. Appl Environ Microb 2004,70 (11),6767-6775.
    [69]Jiang, H. L.; Tay, J. H.; Maszenan, A. M.; Tay, S. T. L., Enhanced phenol biodegradation and aerobic granulation by two coaggregating bacterial strains. Environ Sci Technol 2006,40 (19),6137-6142.
    [70]Adav, S. S.; Chen, M. Y.; Lee, D. J.; Ren, N. Q., Degradation of phenol by aerobic granules and isolated yeast Candida tropicalis. Biotechnol Bioeng 2007,96 (5),844-852.
    [71]Weber, S. D.; Ludwig, W.; Schleifer, K.-H.; Fried, J., Microbial Composition and Structure of Aerobic Granular Sewage Biofilms. Appl. Environ. Microbiol. 2007,75(19),6233-6240.
    [72]Williams, J. C.; Reyes, F. L. D., Microbial community structure of activated sludge during aerobic granulation in an annular gap bioreactor. Water Sci Technol 2006,54 (1),139-146.
    [73]Tsuneda, S.; Ogiwara, M.; Ejiri, Y.; Hirata, A., High-rate nitrification using aerobic granular sludge. Water Sci Technol 2006,53(3),147-154.
    [74]Adav, S. S.; Lee, D. J.; Tay, J. H., Activity and structure of stored aerobic granules. Environ Technol 2007,28 (11),1227-1235.
    [75]Narihiro, T.; Sekiguchi, Y., Microbial communities in anaerobic digestion processes for waste and wastewater treatment:a microbiological update. Curr Opin Biotech 2007,18 (3),273-278.
    [76]Beun, J. J.; Heijnen. J. J.; van Loosdrecht. M. C. M., N-removal in a granular sludge sequencing batch airlift reactor. Biotechnol Bioeng 2001,75 (1).82-92.
    [77]de Kreuk, M. K.:Pronk,M.:van Loosdrecht. M. C. M.,Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures.Water Res 2005,39 (18),4476-4484.
    [78]Yang, S. F.; Tay, J. H.; Liu. Y.. A novel granular sludge sequencing batch reactor for removal of organic and nitrogen from wastewater. J Biotechnol 2003,106(1).77-86.
    [79]Jang,A.;Yoon. Y. H.; Kim, I. S.; Kim,K. S.:Bishop. P. L., Characterization and evaluation of aerobic granules in sequencing batch reactor. J Biotechnol 2003,105(1-2).71-82.
    [80]Tsuneda. S.; Nagano, T.; Hoshino. T.; Ejiri. Y.; Noda, N.; Hirata, A., Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor. Water Res 2003,37 (20),4965-4973.
    [81]阮文权,卞.,陈坚.,COD与DO对好氧颗粒污泥同步硝化反硝化脱氮的影响.应用与环境生物学报2004,10,366-369.
    [82]卢然超,张.,张悦,SBR工艺污泥颗粒化对生物脱氮除磷特性的研究环境科学学报2001,21,577-581.
    [83]Lin, Y. M.; Liu, Y.; Tay, J. H., Development and characteristics of phosphorus-accumulating microbial granules in sequencing batch reactors. Appl Microbiol Biot 2003,62 (4),430-435.
    [84]Schwarzenbeck, N.; Borges, J. M.; Wilderer, P. A., Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Appl Microbiol Biot 2005,66 (6),711-718.
    [85]Sun. X. F.; Wang, S. G.; Liu, X. W.; Gong, W. X.; Bao, N.; Gao, B. Y., Competitive biosorption of zinc(Ⅱ) and cobalt(Ⅱ) in single- and binary-metal systems by aerobic granules. J. Colloid Interface Sci.2008,324(1-2),1-8.
    [86]Liu, Y.; Yang, S. F.; Tan, S. F.; Lin, Y. M.; Tay, J. H., Aerobic granules:a novel zinc biosorbent. Lett Appl Microbiol 2002,35 (6),548-551.
    [87]Liu, Y; Yang, S. F.; Xu, H.; Woon, K. H.; Lin, Y. M.; Tay, J. H., Biosorption kinetics of cadmium(Ⅱ) on aerobic granular sludge. Process Biochem 2003,38 (7).997-1001.
    [88]Xu, H.; Liu, Y.; Tay, J. H.,Effect of pH on nickel biosorption by aerobic granular sludge. Bioresource Technol 2006,97 (3),359-363.
    [89]Liu, Y.; Xu, H., Equilibrium, thermodynamics and mechanisms of Ni2+ biosoiption by aerobic granules. Biochem Eng J 2007,35 (2),174-182.
    [90]Wang, S. G.; Liu, X. W.; Zhang, H. Y.; Gong, W. X., Aerobic granulation for 2,4-dichlorophenol biodegradation in a sequencing batch reactor. Chemosphere 2007,69 (5),769-775.
    [91]Tay, J. H.; Jiang, H. L.; Tay, S. T. L., High-rate biodegradation of phenol by aerobically grown microbial granules. J Environ Eng-Asce 2004,130 (12), 1415-1423.
    [92]Yi, S.; Zhuang, W. Q.; Wu, B.; Tay, S. T. L.; Tay, J. H., Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor. Environ Sci Technol 2006,40 (7),2396-2401.
    [93]Jarup, L., Hazards of heavy metal contamination. Brit Med Bull 2003,68, 167-182.
    [94]Cheng, S., Heavy metal pollution in China:Origin, pattern and control. Environ Sci Pollut R 2003,10 (3),192-198.
    [95]王艳,黄玉明,我国水环境中重金属污染行为和相关效应的研究进展.癌变畸变突变2007,19,198-201.
    [96]杨丽原,沈吉,张祖陆,南四湖表层底泥重金属和营养元素的多元分析.中国环境科学2003,23,206-209.
    [97]李鸣,吴结春,张小林,.鄱阳湖五河入湖口重金属污染和分析评价.南昌大学学报2005,32,483-485.
    [98]陈志强,张海生,刘小涯,三亚湾和榆林湾海水溶解态Cu、Pb、Zn、Cd、 Cr的分布.海洋环境科学1999,18,31-37.
    [99]胡必彬,我国十大流域片水污染现状及主要特征.重庆环境科学2003,25,15-17.
    [100]周德庆,微生物学教程(第二版).北京,高等教育出版社2002.
    [101]Malik, A.,Metal bioremediation through growing cells. Environ Int 2004,30 (2),261-278.
    [102]Wang, J. L.; Chen, C.,Biosorbents for heavy metals removal and their future. Biotechnol Adv 2009,27 (2),195-226.
    [103]Alam, M. Z.; Ahmad, S., Chromium Removal through Biosorption and Bioaccumulation by Bacteria from Tannery Effluents Contaminated Soil. Clean-Soil Air Water 2011,39 (3),226-237.
    [104]Tunali,S.;Cabuk, A.;Akar, T., Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem Eng J 2006,115 (3), 203-211.
    [105]Uslu, G.; Tanyol,M., Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead(Ⅱ) and copper(Ⅱ) ions onto Pseudomonas putida:Effect of temperature. J Hazard Mater 2006,135 (1-3), 87-93.
    [106]Selatnia, A.; Bakhti,M. Z.; Madani, A.;Kertous, L.; Mansouri, Y., Biosorption of Cd2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy 2004,75 (1-4),11-24.
    [107]Park, D.; Yun, Y. S.; Park, J. M., Use of dead fungal biomass for the detoxification of hexavalent chromium:screening and kinetics. Process Biochem 2005,40 (7),2559-2565.
    [108]Tan, T. W.; Cheng, P., Biosorption of metal ions with Penicillium chrysogenum. Appl Biochem Biotech 2003,104 (2),119-128.
    [109]Davis, T. A.; Volesky, B.; Mucci, A., A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 2003,37 (18),4311-4330.
    [110]Golab, Z.; Breitenbach, M.; Jezierski, A., Sites of Copper-Binding in Streptomyces-Pilosus. Water Air Soil Poll 1995,82 (3-4),713-721.
    [111]Kang, S. Y.; Lee, J. U.; Kim, K. W., Biosorption of Cr(Ⅲ) and Cr(Ⅵ) onto the cell surface of Pseudomonas aeruginosa. Biochem Eng J 2007,36(1),54-58.
    [112]Beolchini, F.; Pagnanelli, F.; Toro, L.; Veglio, F., Ionic strength effect on copper biosorption by Sphaerotilus natans:equilibrium study and dynamic modelling in membrane reactor. Water Res 2006,40 (1).144-152.
    [213]Chen, X. C.; Wang. Y. P.; Lin, Q.; Shi. J. Y.; Wu, W. X.; Chen, Y. X., Biosorption of copper(Ⅱ) and zinc(Ⅱ) from aqueous solution by Pseudomonas putida CZ1. Colloids Surf. B 2005,46 (2),101-107.
    [114]Ucun, H.; Aksakal, O.; Yildiz, E., Copper(Ⅱ) and zinc(Ⅱ) biosorption on Pinus sylvestris L. J Hazard Mater 2009,161 (2-3),1040-1045.
    [115]Areco, M. M.; dos Santos Afonso, M., Copper, zinc, cadmium and lead biosorption by Gymnogongrus torulosus. Thermodynamics and kinetics studies. Colloids Surf. B 2010,81 (2),620-628.
    [116]Vasquez, T. G. P.; Botero. A. E. C.; De Mesquita, L. M. S.; Torem, M. L., Biosorptive removal of Cd and Zn from liquid streams with a Rhodococcus opacus strain. Miner Eng 2007,20 (9),939-944.
    [117]Valdman, E.; Leite, S. G. F., Biosorption of Cd, Zn and Cu by Sargassum sp waste biomass. Bioprocess Eng 2000,22 (2),171-173.
    [118]Celaya, R. J.; Noriega, J. A.; Yeomans, J. H.; Ortega, L. J.; Ruiz-Manriquez, A., Biosorption of Zn(Ⅱ) by Thiobacillus ferrooxidans. Bioprocess Eng 2000, 22 (6),539-542.
    [119]Green-Ruiz, C.; Rodriguez-Tirado, V.; Gomez-Gil, B., Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali:pH, salinity and temperature effects. Bioresource Technol 2008,99 (9),3864-3870.
    [120]King, P.; Anuradha, K.; Lahari, S. B.; Kumar, Y. P.; Prasad, V. S. R. K., Biosorption of zinc from aqueous solution using Azadirachta indica bark: Equilibrium and kinetic studies. J Hazard Mater 2008,152 (1),324-329.
    [121]Martins, R. J. E.; Pardo, R.; Boaventura, R. A. R., Cadmium(Ⅱ) and zinc(Ⅱ) adsorption by the aquatic moss Fontinalis antipyretica:effect of temperature, pH and water hardness. Water Res 2004,38 (3),693-699.
    [122]Lesage, E.; Mundia, C.; Rousseau, D. P. L.; Van de Moortel, A. M. K.; Du Laing, G.; Meers, E.; Tack, F. M. G.; De Pauw, N.; Verloo, M. G., Sorption of Co. Cu. Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L. Ecol Eng 2007,30 (4).320-325.
    [123]Mohapatra. H.:Gupta. R., Concurrent sorption of Zn(Ⅱ). Cu(Ⅱ) and Co(Ⅱ) by Oscillatoria angustissima as a function of pH in binary and ternary metal solutions. Bioresowce Technol 2005,96 (12),1387-1398.
    [124]Pal. A.; Ghosh. S.; Paul, A. K., Biosorption of cobalt by fungi from serpentine soil of Andaman. Bioresowce Technol 2006,97(10),1253-1258.
    [125]Ziagova, M.; Dimitriadis. G.; Aslanidou, D.; Papaioannou, X.; Tzannetaki. E. L.:Liakopoulou-Kyriakides. M., Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp in single and binary mixtures. Bioresowce Technol 2007,98 (15),2859-2865.
    [126]Yilmaz, E. I.; Ensari, N. Y., Cadmium biosorption by Bacillus circulans strain EB1. World J Microb Biot 2005,21 (5),777-779.
    [127]Tunali, S.; Akar, T.; Ozcan, A. S.; Kiran, I.; Ozcan, A., Equilibrium and kinetics of biosorption of lead(Ⅱ) from aqueous solutions by Cephalosporium aphidicola. Sep Purif Technol 2006,47 (3),105-112.
    [128]Choi, S. B.; Yun, Y. S., Lead biosorption by waste biomass of Corynebacterium glutamicum generated from lysine fermentation process. Biotechnol Lett 2004,26 (4),331-336.
    [129]Selatnia. A.;Boukazoula, A.; Kechid, N.; Bakhti, M. Z.; Chergui, A.; Kerchich, Y, Biosorption of lead (Ⅱ) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochem Eng J 2004,19 (2),127-135.
    [130]Ozturk, A., Removal of nickel from aqueous solution by the bacterium Bacillus thuringiensis. J Hazard Mater 2007,147 (1-2),518-523.
    [131]Selatnia, A.; Madani, A.; Bakhti, M. Z.; Kertous, L.; Mansouri, Y.; Yous, R., Biosorption of Ni2+ from aqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Miner Eng 2004,17 (7-8),903-911.
    [132]Bermudez, Y G.; Rico, I. L. R.; Bermudez, O. G.; Guibal, E., Nickel biosorption using Gracilaria caudata and Sargassum muticum. Chem Eng J 2011,166(1),122-131.
    [133]Zhou, M.; Liu, Y. G.; Zeng. G. M.;Li, X.; Xu, W. H.; Fan, T., Kinetic and equilibrium studies of Cr(VI) biosorption by dead Bacillus licheniformis biomass. World J Microb Biot 2007,23 (1),43-48.
    [134]Sahin, Y.; Ozturk, A., Biosorption of chromium(VI) ions from aqueous solution by the bacterium Bacillus thuringiensis. Process Biochem 2005,40 (5),1895-1901.
    [135]Lopez. A.; Lazaro. N.; Priego, J. M.; Marques, A. M., Effect of pH on the biosorption of nickel and other heavy metals by Pseudomonas fluorescens 4F39. J Ind Microbiol Biot 2000,24 (2),146-151.
    [136]Bruins, M. R.; Kapil, S.; Oehme, F. W., Microbial Resistance to Metals in the Environment. Ecolox Environ Safe 2000,45 (3),198-207.
    [137]Gadd, G. M., Microbial formation and transformation of organometallic and organometalloid compounds. Ferns Microbiol Rev 1993,11 (4),297-316.
    [138]Ehrlich, H. L., Microbes and metals. Appl Microbiol Biot 1997,48 (6), 687-692.
    [139]Haferburg, G.; Kothe, E., Microbes and metals:interactions in the environment. J Basic Microb 2007,47 (6),453-467.
    [140]Llobet-Brossa, E.; Rossello-Mora, R.; Amann, R., Microbial Community Composition of Wadden Sea Sediments as Revealed by Fluorescence In Situ Hybridization. Appl. Environ. Microbiol.1998,64 (7),2691-2696.
    [141]Kozlowski, H.; Janicka-Klos, A.; Brasun, J.; Gaggelli, E.; Valensin, D.; Valensin, G., Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coordin Chem Rev 2009,253 (21-22),2665-2685.
    [142]Wang, F.; Yao, J.; Si, Y.; Chen, H.; Russel, M.; Chen, K.; Qian, Y.; Zaray, G.; Bramanti, E., Short-time effect of heavy metals upon microbial community activity. J Hazard Mater 2010,173 (1-3),510-516.
    [143]卫扬保,微生物生理学.北京:高等教育出版社1989,392.
    [144]Pujol, R.; Canler, J. P., Biosorption and Dynamics of Bacterial-Populations in Activated-Sludge. Water Res 1992,26 (2),209-212.
    [145]Sorensen. B. L.; Wakeman. R. J., Filtration characterisation and specific surface area measurement of activated sludge by Rhodamine B adsorption. Water Res 1996,30(1),115-121.
    [146]Li. J.; Chen, Y.; Zhang, D. H.;Wang. S. G.; Wang, L. J.:Jiang, D.; Sun, F. Y.; Zhang, Q., Morphological and structural characteristics of aerobic granulation. J Chem Technol Biot 2006,81 (5),823-830.
    [147]Hameed. B. H.; El-Khaiary, M. I.,Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre:Equilibrium isotherms and kinetic studies. J Hazard Mater 2008,154 (1-3),237-244.
    [148]Li, Y. H.; Wang, S. G.; Zhang, X. F.; Wei, J. Q.; Xu, C. L.; Luan. Z. K.; Wu, D. H., Adsorption of fluoride from water by aligned carbon nanotubes. Mater. Res. Bull.2003,38 (3),469-476.
    [149]Inbaraj, B. S.; Chien, J. T.; Ho, G. H.; Yang, J.; Chen, B. H., Equilibrium and kinetic studies on sorption of basic dyes by a natural biopolymer poly(gamma-glutamic acid). Biochem Eng J 2006,31 (3),204-215.
    [150]Wang, J.; Huang, C. P.; Allen, H. E.; Cha, D. K.; Kim, D.-W, Adsorption Characteristics of Dye onto Sludge Particulates. J. Colloid Interface Sci.1998, 205(2),518-528.
    [151]Patel, R.; Suresh, S., Kinetic and equilibrium studies on the biosorption of reactive black 5 dye by Aspergillus foetidus. Bioresource Technol 2008,99 (1), 51-58.
    [152]Sulak, M. T.; Demirbas, E.; Kobya, M., Removal of Astrazon Yellow 7GL from aqueous solutions by adsorption onto wheat bran. Bioresource Technol 2007,95(13).2590-2598.
    [153]Tutem, E.; Apak, R.; Unal, C. F., Adsorptive removal of chlorophenols from water by bituminous shale. Water Res 1998,32 (8),2315-2324.
    [154]Gai, L. H.; Wang, S. G.; Gong, W. X.; Liu, X. W.; Gao, B. Y.; Zhang, H. Y, Influence of pH and ionic strength on Cu(II) biosorption by aerobic granular sludge and biosorption mechanism. J Chem Technol Biot 2008,83 (6), 806-813.
    [155]Aksu, Z., Biosoiption of reactive dyes by dried activated sludge:equilibrium and kinetic modelling. Biochem Eng J 2001,7 (1),79-84.
    [156]Liu, Y.; Xu, H.; Yang, S. F.; Tay, J. H., A general model for biosorption of Cd2+, Cu2+ and Zn2+ by aerobic granules. J Biolechnol 2003,102 (3), 233-239.
    [157]Khoo, K. M.; Ting, Y. P., Biosorption of gold by immobilized fungal biomass. Biochem EngJ 2001,8 (1),51-59.
    [158]Chen, J. P.; Lin, M. S., Equilibrium and kinetics of metal ion adsorption onto a commercial H-type granular activated carbon:Experimental and modeling studies. Water Res 2001,35 (10),2385-2394.
    [159]Puranik, P. R.; Paknikar, K. M., Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181:Characterization studies. Biolechnol Progr 1999,75 (2),228-237.
    [160]Cheung, C. W.; Porter, J. F.; McKay, G., Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Res 2001,35 (3),605-612.
    [161]Vilar, V. J. P.; Botelho, C. M. S.; Boaventura, R. A. R., Equilibrium and kinetic modelling of Cd(Ⅱ) biosorption by algae Gelidium and agar extraction algal waste. Water Res 2006,40 (2),291-302.
    [162]Gulnaz, O.; Kaya, A.; Dincer, S., The reuse of dried activated sludge for adsoiption of reactive dye. J Hazard Mater 2006,134 (1-3),190-196.
    [163]Ho, Y. S.; McKay, G., Pseudo-second order model for sorption processes. Process Biochem 1999,34 (5),451-465.
    [164]Ho, Y. S.; McKay, G., The kinetics of sorption of divalent metal ions onto sphagnum moss flat. Water Res 2000,34 (3),735-742.
    [165]Singh, S.; Rai, B. N.; Rai, L. C., Ni (Ⅱ) and Cr (Ⅵ) sorption kinetics by Microcystis in single and multimetallic system. Process Biochem 2001,36 (12),1205-1213.
    [166]Travieso, L.; Pellon, A.; Benitez, F.; Sanchez. E.; Borja, R.; O'Farrill, N.; Weiland, P.. BIOALGA reactor:preliminary studies for heavy metals removal. Biochem Eng J 2002,12 (2),87-91.
    [167]Aksu, Z.; Gonen, F.; Demircan, Z., Biosorption of chromium(Ⅵ) ions by Mowital (R) B30H resin immobilized activated sludge in a packed bed: comparison with granular activated carbon. Process Biochem 2002,38 (2), 175-186.
    [168]Bahadir, T.; Bakan. G.; Altas. L.;Buyukgungor. H., The investigation of lead removal by biosorption:An application at storage battery industry waste waters. Enzyme Microb Tech 2007,41 (1-2),98-102.
    [169]Chen, J. P.; Hong, L. A.; Wu, S. N.; Wang, L., Elucidation of interactions between metal ions and Ca alginate-based ion-exchange resin by spectroscopic analysis and modeling simulation. Langmuir 2002,18 (24),9413-9421.
    [170]van Hullebusch, E. D.; Zandvoort, M. H.; Lens, P. N. L., Nickel and cobalt sorption on anaerobic granular sludges:kinetic and equilibrium studies. J Chem Technol Biot 2004,79 (11),1219-1227.
    [171]Moon, S. H.; Park, C. S.; Kim, Y. J.; Park, Y. I., Biosorption isotherms of Pb(Ⅱ) and Zn(Ⅱ) on Pestan, an extracellular polysaccharide, of Pestalotiopsis sp KCTC 8637P. Process Biochem 2006,41 (2),312-316.
    [172]Lim, S. F.; Zheng, Y. M.; Zou, S. W.; Chen, J. P., Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS and mathematical modeling study. Environ Sci Technol 2008,42 (7),2551-2556.
    [173]Vijayaraghavan, K.; Palanivelu, K.; Velan, M., Biosorption of copper(Ⅱ) and cobalt(Ⅱ) from aqueous solutions by crab shell particles. Bioresource Technol 2006,97(12),1411-1419.
    [174]Acar, F. N.; Malkoc, E., The removal of chromium(Ⅵ) from aqueous solutions by Fagus orientalis L. Bioresource Technol 2004,94 (1),13-15.
    [175]Debnath, S.; Ghosh, U. C., Kinetics, isotherm and thermodynamics for Cr(Ⅲ) and Cr(Ⅵ) adsorption from aqueous solutions by crystalline hydrous titanium oxide. J Chem Thermodyn 2008,40 (1),67-77.
    [176]Chong, K. H.; Volesky. B., Description of 2-Metal Biosorption Equilibria by Langmuir-Type Models. Biotechnol Bioeng 1995,47 (4),451-460.
    [177]Kargi, F.; Cikla, S., Biosorption of zinc(II) ions onto powdered waste sludge (PWS):Kinetics and isotherms. Enzyme Microb Tech 2006,38 (5),705-710.
    [178]Park, D.; Yun, Y. S.; Park. J. M., Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere 2005,60 (10), 1356-1364.
    [179]Moulder.J.F., S. W. F., Sobol P.E., Bomben K.D.., Handbook of X-ray Photoelectron Spectroscopy in:J. Chastain (Ed.),. Perkin-Elmer Corporation, Eden Prairie, MN 1992.
    [180]Chen, H. H.; Shen, S. C.; Chen, X. Y.;Kawi, S., Selective catalytic reduction of NO over Co/beta-zeolite:effects of synthesis condition of beta-zeolites, Co precursor, Co loading method and reductant. Appl Catal B-Environ 2004,50 (1),37-47.
    [181]Stencel J.M., R. V. U. S., Diehl J.R., Rhee K.H., Dhere A.G., DeAngelis R.J., Dual cobalt speciation in CO/ZSM-5 catalysts. J Catal 1983,84 (109).
    [182]Fierro, G.; Eberhardt, M. A.; Houalla, M.; Hercules, D. M.; Hall, W. K., Redox chemistry of CoZSM-5 zeolite. JPhys Chem-Us 1996,100 (20),8468-8477.
    [183]Chen, X. Y.; Shen, S. C.; Chen, H. H.; Kawi, S., SCR of lean NOx with C3H8 over Co/MFI catalysts:dependence on synthesis condition of MFI and Co location. J Catal 2004,221 (1),137-147.
    [184]Sheng, P. X.; Ting, Y. P.; Chen, J. P.; Hong, L., Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass:characterization of biosorptive capacity and investigation of mechanisms. J. Colloid Interface Sci. 2004,275(1),131-141.
    [185]Flemming, H. C.; Wingender, J., Relevance of microbial extracellular polymeric substances (EPSs)-Part I:Structural and ecological aspects. Water Sci Technol 2001,43 (6),1-8.
    [186]Frolund,B,;Palmgren. R.;Keiding, K.; Nielsen, P. H., Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 1996,30 (8).1749-1758.
    [187]Sheng. G. P.; Yu, H. Q.; Yu, Z., Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila. Appl Microbiol Biot 2005,67 (1).125-130.
    [188]Wingender J. N. T., Flemming HC; Heidelberg. Microbial extracellular polymeric substances:characterization. structures and function. Springer-Verlag, Berlin 1999.
    [189]Adav. S. S.; Lee, D. J.; Tay, J. H., Extracellular polymeric substances and structural stability of aerobic granule. Water Res 2008,42 (6-7),1644-1650.
    [190]Li, X. Y.; Yang, S. F., Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res 2007,41 (5),1022-1030.
    [191]Raunkjaer, K.; Hvitvedjacobsen, T.; Nielsen, P. H., Measurement of Pools of Protein, Carbohydrate and Lipid in Domestic Waste-Water. Water Res 1994, 28 (2),251-262.
    [192]Nielsen, P. H.; Jahn, A.; Palmgren, R., Conceptual model for production and composition of exopolymers in biofilms. Water Sci Technol 1997,36 (1), 11-19.
    [193]Dignac, M. F.; Urbain, V.; Rybacki, D.; Bruchet, A.; Snidaro, D.; Scribe, P., Chemical description of extracellular polymers:Implication on activated sludge floe structure. Water Sci Technol 1998,38 (8-9),45-53.
    [194]Sponza, D. T., Extracellular polymer substances and physicochemical properties of flocs in steady-and unsteady-state activated sludge systems. Process Biochem 2002,37(9),983-998.
    [195]Omoike, A.; Chorover, J., Spectroscopic study of extracellular polymeric substances from Bacillus subtilis:Aqueous chemistry and adsorption effects. Biomacromolecules 2004,5 (4),1219-1230.
    [196]Comte, S.; Gulbaud, G.; Baudu, M., Biosoiption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type:Soluble or bound. Process Biochem 2006,41 (4),815-823.
    [197]Guibaud. G.; van Hullebusch, E.; Bordas, F., Lead and cadmium biosorption by extracellular polymeric substances (EPS) extracted from activated sludges: pH-sorption edge tests and mathematical equilibrium modelling. Chemosphere 2006,64(11),1955-1962.
    [198]Guibaud, G.; Tixier, N.; Bouju, A.; Baudu. M., Relation between extracellular polymers'composition and its ability to complex Cd, Cu and Pb. Chemosphere 2003,52(10),1701-1710.
    [199]Jahn, A.; Nielsen, P. H., Extraction of extracellular polymeric substances (EPS) from biofilms using a cation exchange resin. Water Sci Technol 1995,32 (8), 157-164.
    [200]Batstone, D. J.; Keller, J., Variation of bulk properties of anaerobic granules with wastewater type. Water Res 2001,35 (7),1723-1729.
    [201]McSwain. B. S.; Irvine, R. L.; Hausner, M.; Wilderer, P. A., Composition and distribution of extracellular polymeric substances in aerobic floes and granular sludge. Appl Environ Microb 2005,71 (2),1051-1057.
    [202]Sheng, G. P.; Zhang, M. L.; Yu, H. Q., Characterization of adsorption properties of extracellular polymeric substances (EPS) extracted from sludge. Colloid Surface B 2008,62 (1),83-90.
    [203]Ojeda, J. J.; Romero-Gonzalez, M. E.; Bachmann, R. T.; Edyvean, R. G. J.; Banwart, S. A., Characterization of the cell surface and cell wall chemistry of drinking water bacteria by combining XPS, FTIR spectroscopy, modeling, and potentiometric titrations. Langmuir 2008,24 (8),4032-4040.
    [204]Giles C.H., S. D., Huitson A.,, General treatment and classification of solute adsorption-isotherm 1. Theoretical. J. Colloid Interface Sci.1974,47,755.
    [205]Yan, G Y.; Viraraghavan, T., Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 2003,37(18),4486-4496.
    [206]Zhang, J.; Liu, Z.; Wang, S.; Jiang, P., Characterization of a bioflocculant produced by the marine myxobacterium Nannocystis sp NU-2. Appl Microbiol Biol 2002,59 (4-5).517-522.
    [207]Das. S. K.; Das. A. R.:Guha, A. K.,A study on the adsorption mechanism of mercury on Aspergillus versicolor biomass. Environ Sci Technol 2007,41 (24). 8281-8287.
    [208]Eboigbodin. K. E.; Biggs, C. A., Characterization of the extracellular polymeric substances produced by Escherichia coli using infrared spectroscopic, proteomic, and aggregation studies. Biomacromolecules 2008,9 (2).686-695.
    [209]Ashkenazy. R.:Gottlieb, L.; Yannai. S., Characterization of acetone-washed yeast biomass functional groups involved in lead biosorption. Biotechnol Bioeng 1997,55 (1).1-10.
    [210]Gokcay, C. F.; Yetis. U., Effect of nickel(Ⅱ) on the biomass yield of the activated sludge. Water Sci Technol 1996,34 (5-6),163-171.
    [211]Principi, P.; Villa, F.; Bernasconi, M.; Zanardini, E., Metal toxicity in municipal wastewater activated sludge investigated by multivariate analysis and in situ hybridization. Water Res 2006,40 (1),99-106.
    [212]You, S. J.; Tsai, Y. P.; Huang, R. Y, Effect of heavy metals on nitrification performance in different activated sludge processes. J Hazard Mater 2009, 165(1-3),987-994.
    [213]Hu, Z. Q.; Chandran, K.; Grasso, D.; Smets, B. F., Comparison of nitrification inhibition by metals in batch and continuous flow reactors. Water Res 2004,38 (18),3949-3959.
    [214]Barrena, R.; Vazquez, F.; Sanchez, A., Dehydrogenase activity as a method for monitoring the composting process. Bioresource Technol 2008,99 (4), 905-908.
    [215]P.L., M., Anaerobic waste treatment fundamentals. Part Ⅱ:toxic materials and their control Public Works 1964,95,91-94.
    [216]Sani, R. K.; Peyton, B. M.; Brown, L. T., Copper-induced inhibition of growth of Desulfovibrio desulfuricans G20:Assessment of its toxicity and correlation with those of zinc and lead. Appl Environ Microb 2001,67 (10),4765-4772.
    [217]Hu, Z. Q.; Chandran, K.; Grasso, D.; Smets,B. F., Impact of metal sorption and internalization on nitrification inhibition. Environ Sci Technol 2003,37 (4). 728-734.
    [218]Howlett, N. G.; Avery. S. V., Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Environ Microb 1997,63 (8),2971-2976.
    [219]Juliastuti, S. R.; Baeyens, J.; Creemers, C.; Bixio, D.; Lodewyckx, E., The inhibitory effects of heavy metals and organic compounds on the net maximum specific growth rate of the autotrophic biomass in activated sludge. J Hazard Mater 2003,100 (1-3),271-283.
    [220]Ong, S. A.; Toorisaka, E.; Hirata, M.; Hano, T., Effects of nickel(Ⅱ) addition on the activity of activated sludge microorganisms and activated sludge process. J Hazard Mater 2004,113 (1-3),113-123.
    [221]Ozbelge, T. A.; Ozbelge, H. O.; Altinten, P., Effect of acclimatization of microorganisms to heavy metals on the performance of activated sludge process. J Hazard Mater 2007,142 (1-2),332-339.
    [222]Nies, D. H., Resistance to Cadmium, Cobalt, Zinc, and Nickel in Microbes. Plasmid 1992,27(1),17-28.
    [223]Delgado, L. F.; Schetrite, S.; Gonzalez, C.; Albasi, C., Effect of cytostatic drugs on microbial behaviour in membrane bioreactor system. Bioresource Technol 2010,101 (2),527-536.
    [224]Jiang, H. L.; Tay, J. H.; Tay, S. T. L., Changes in structure, activity and metabolism of aerobic granules as a microbial response to high phenol loading. Appl Microbiol Biot 2004,63 (5),602-608.
    [225]Henriques, I. D. S.; Love, N. G., The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins. Water Res 2007,41 (18),4177-4185.
    [226]Sheng, G. P.; Yu, H. Q.; Yue, Z. B., Production of extracellular polymeric substances from Rhodopseudomonas acidophila in the presence of toxic substances. Appl Microbiol Biot 2005,69 (2).216-222.
    [227]Fang, H. H. P.; Xu, L. C.;Chan. K. Y., Effects of toxic metals and chemicals on biofilm and biocorrosion. Water Res 2002,36 (19).4709-4716.
    [228]Xu H.Q., X. R. L., Zhu D.S.,. Effect of long term fertilization on functional diversity of soil microbial community of the tea plantation Acta Ecologica Sinica 2007,27(8),3355-3361.
    [229]Thottathil. S. D.; Balachandran. K. K.; Jayalakshmy, K. V.; Gupta. G. V. M.; Nair. S., Tidal switch on metabolic activity:Salinity induced responses on bacterioplankton metabolic capabilities in a tropical estuary. Estuar Coast Shelf S 2008,78 (4),665-673.
    [230]Deng, S.; Ting, Y.-P., Characterization of PEI-modified biomass and biosorption of Cu(Ⅱ), Pb(Ⅱ) and Ni(Ⅱ). Water Res 2005,39(10),2167-2177.
    [231]Perdew, J. P.; Wang, Y, Accurate and Simple Analytic Representation of the Electron-Gas Correlation-Energy. Phys Rev B 1992,45 (23),13244-13249.
    [232]Delley. B.,From molecules to solids with the DMol(3) approach. J Chem Phys 2000,113(18),7756-7764.
    [233]Sun, X.F.; Wang, S.G.; Zhang, X.M.; Paul Chen, J.; Li, X.M.; Gao, B.Y.; Ma, Y, Spectroscopic study of Zn2+ and Co2+ binding to extracellular polymeric substances (EPS) from aerobic granules. J. Colloid Interface Sci.2009,335 (1), 11-17.
    [234]Chanda. M.; Rempel, G. L., A new method of gel-coating polyethyleneimine (PEI) on organic resin beads. High capacity and fast kinetics of PEI gel-coated on polystyrene. Ind Eng Chem Res 2001,40 (7),1624-1632.
    [235]Rao, P. S.; Smitha, B.; Sridhar, S.; Krishnaiah, A., Preparation and performance of poly(vinyl alcohol)/polyethyleneimine blend membranes for the dehydration of 1,4-dioxane by pervaporation:Comparison with glutaraldehyde cross-linked membranes. Sep Purif Technol 2006,48 (3), 244-254.
    [236]Holan, Z. R.; Volesky, B., Biosorption of Lead and Nickel by Biomass of Marine-Algae. Biotechnol Bioeng 1994,43 (11),1001-1009.
    [237]Leusch, A.; Holan, Z. R.; Volesky, B., Biosorption of Heavy-Metals (Cd, Cu, Ni, Pb, Zn) by Chemically-Reinforce Biomass of Marine-Algae. J Chem Technol Biot 1995,62 (3),279-288.
    [238]Murphy, V.; Hughes. H.; McLoughlin, P., Cu(Ⅱ) binding by dried biomass of red. green and brown macroalgae. Water Res 2007,41 (4),731-740.
    [239]Dang, V. B. H.; Doan, H. D.; Dang-Vu, T.:Lohi, A.,Equilibrium and kinetics of biosorption of cadmium(Ⅱ) and copper(Ⅱ) ions by wheat straw. Bioresource Technol 2009,100(1),211-219.
    [240]Sun, X. F.; Ma, Y.; Liu, X. W.; Wang, S. G.; Gao, B. Y.; Li, X. M., Sorption and detoxification of chromium(VI) by aerobic granules functionalized with polyethylenimine. Water Res 2010,44 (8),2517-2524.
    [241]Al-Rub, F. A. A.; El-Naas, M. H.; Ashour, I.; Al-Marzouqi, M., Biosorption of copper on Chlorella vulgaris from single, binary and ternary metal aqueous solutions. Process Biochem 2006,41 (2),457-464.
    [242]Gupta, V. K.; Rastogi, A., Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J Hazard Mater 2009,163(1),396-402.
    [243]Yun, Y. S.; Park, D.; Park, J. M.; Volesky, B., Biosorption of trivalent chromium on the brown seaweed biomass. Environ Sci Technol 2001,35 (21), 4353-4358.
    [244]Yang, L.; Chen, J. P., Biosorption of hexavalent chromium onto raw and chemically modified Sargassum sp. Bioresource Technol 2008,99 (2), 297-307.
    [245]Akar, T.; Tunali, S., Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(Ⅱ) and Cu(Ⅱ) ions from an aqueous solution. Bioresource Technol 2006,97(15),1780-1787.
    [246]Jing, C. Y.; Liu, S. Q.; Korfiatis, G. P.; Meng, X. G, Leaching behavior of Cr(Ⅲ) in stabilized/solidified soil. Chemosphere 2006,64 (3),379-385.
    [247]Park, D.; Yuri, Y. S.; Ahn,C. K.; Park, J. M., Kinetics of the reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Chemosphere 2007,66 (5).939-946.
    [248]Allen. S. J.; Mckay. G.; Porter. J. F.. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems.J. Colloid Interface Sci.2004,280 (2).322-333.
    [249]Gu, C.; Karthikeyan, K. G. Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environ Sci Technol 2005,39 (23). 9166-9173.
    [250]Park, D.; Yun, Y. S.; Jo, J. H.;Park. J. M., Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Res 2005,39 (4), 533-540.
    [251]Das. S. K.; Mukherjee, M.; Guha, A. K., Interaction of chromium with resistant strain Aspergillus versicolor:Investigation with atomic force microscopy and other physical studies. Langmuir 2008,24 (16),8643-8650.
    [252]Lim, S. F.; Zheng, Y. M.;Chen, J. P., Organic Arsenic Adsorption onto a Magnetic Sorbent. Langmuir 2009,25 (9),4973-4978.
    [253]Lim, S. F.; Zheng, Y. M.; Zou, S. W.; Chen, J. P., Uptake of arsenate by an alginate-encapsulated magnetic sorbent:Process performance and characterization of adsorption chemistry. J. Colloid Interface Sci.2009,333 (1),33-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700