花椰菜和大白菜新种质创制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花椰菜(Brassica oleracea var. botrytis)为十字花科(Cruciferae)芸薹属甘蓝种的一个变种,生产中常遭受多种病、虫害的威胁,如黑腐病、黑胫病、根肿病和蚜虫等,严重影响其产量和品质。在花椰菜常规种中,上述病、虫害的抗性资源匮乏或者单一,而在十字花科野生植物中存在丰富的异源高抗基因资源。应用体细胞杂交技术,可以克服常规种间杂交不亲和性,获得种间杂种,转移来自不同物种的异源抗性基因,丰富育种材料抗性基因的遗传多样性,创制新的抗病、虫种质。
     本研究第一部分是利用体细胞杂交技术向芸薹属甘蓝类蔬菜转移野生抗病、虫等优良性状。
     紫罗兰(M. incana)为十字花科紫罗兰属的一个野生种,具有很高的ω-亚麻酸含量以及优良的蚜虫抗性等。本实验建立了花椰菜和紫罗兰原生质体的PEG融合及培养技术,首次成功获得了紫罗兰与花椰菜的属间体细胞杂种再生植株,并对再生株的形态学,分子标记特征,染色体数目,细胞DNA含量等指标进行了系统的分析,为异源优异种质的利用建立了体细胞杂交技术基础。
     黑芥(B. nigra)为芸薹属三个基本种之一,多为野生状态存在。黑芥中存在对黑腐病、黑胫病、根肿病等病害高抗、多抗性的基因型。本实验室通过体细胞杂交技术,获得了众多花椰菜与黑芥体细胞杂种。本研究对利用非对称体细胞杂交技术获得并成功移入温室的79个花椰菜和黑芥的杂种进行全生育期的生物学特性调查,内容包括植株形态学观察、细胞DNA含量测定、染色体计数、基因组组成、育性调查等。通过胚挽救技术获得了部分杂种的回交后代植株并对其部分生物学特性也进行了调查,同时对杂种一代及其回交后代进行了黑腐病抗性鉴定。
     本研究第二部分是利用远缘有性杂交手段向白菜中转移野生种黑芥的抗病性状。大白菜(Brassica campestris ssp. pekinensis)是我国重要的蔬菜作物之一。在种植过程中,常遭受黑腐病、黑胫病和根肿病等病菌的侵染,致使产量下降。通过远缘有性杂交手段把黑芥的抗病性转移到白菜中,对白菜的育种将具有重要意义。本实验以品质优良的感病大白菜为母本,黑芥为父本进行杂交,并对获得的F1代植株进行了形态学,细胞学和分子标记三种手段分析鉴定。通过胚珠和子房培养等胚挽救技术成功获得了回交后代,初步的黑腐病菌人工接种鉴定结果表明,部分回交二代杂种植株中仍具备良好的黑腐病抗性。
     主要实验结果如下:
     1.成功建立了紫罗兰和花椰菜属间体细胞杂交体系,获得了118株再生植株,并对它们进行了形态学调查、RAPD和SRAP分子标记鉴定,同工酶谱分析,染色体计数和流式细胞术核DNA含量检测,表明二株为真杂种,且均为混倍体,染色体数变化范围为26到48条。对不同鉴定方法的比较显示,形态学鉴定直观、简便,有较高的判断率,但SRAP分子标记鉴定更准确可靠。获得的紫罗兰和花椰菜属间体细胞杂种植株在移栽入地后,生长缓慢,没有达到成株期。
     2.对成功移栽入温室的79株花椰菜和黑芥的体细胞杂种进行了全生育期性状调查分析,内容包括细胞DNA含量测定、染色体计数、植株形态学观察和育性调查等。杂种形态变异广泛,多数呈中间类型,少数呈偏亲性状;杂种细胞DNA含量不一致,呈现大于、等于和小于双亲细胞DNA含量之和的三种类型;DNA含量大于双亲之和的杂种中,有较高比例的材料叶型出现畸形和(或)植株生长势弱,育性差。显示出杂种植株的生长势和育性与细胞的DNA含量具有一定的相关性。通过染色体计数,发现所检测杂种多为混倍体,即同一植株的细胞有多种染色体数目构成。在79个杂种中,筛选出13个目标材料,生长势较强,有较好或一定程度的育性,表明采用体细胞杂交技术手段来改良甘蓝类蔬菜的遗传多样性具有可行性。
     3.根据结实与否选取了可育和不育杂种各二株,对其生物学特性进行了对比分析。不育杂种的花粉母细胞(PMCs)减数分裂行为异常的比例远高于可育杂种,出现了大量的染色体桥,染色体滞后,染色体不均等分裂等异常行为;对PMCs终变期观察表明:不育杂种中出现了大量单价体;可育杂种中,二价体数目明显提高,单价体数目较少。基因组原位杂交(GISH)结果显示:可育杂种的体细胞染色体数为供、受体染色体数之和,为对称杂种;不育杂种细胞中含有受体花椰菜的全部基因组以及附加的3-12条供体完整染色体,为低度非对称杂种。且附加的黑芥染色体在减Ⅰ期均出现染色体滞后,染色体不均等分裂等异常行为。对可育和不育杂种的基因组SRAP分子标记分析表明:杂种DNA均有重组发生,且可育杂种的平均新带比例略大于不育杂种。
     4.对10个株系的15株BC1杂种进行了生物学特性调查,内容包括细胞DNA含量测定、染色体计数、植株形态学观察和花粉活力调查等。杂种形态多呈中间类型,有三棵植株形态明显趋向于受体花椰菜。核DNA含量和染色体数目均不一致,显示出混倍特性,但相比于体细胞杂种一代,其变化范围明显变窄,且有接近于受体花椰菜的趋势。以花椰菜为父本,共有4个BC1植株获得自交和回交种子,一颗植株通过胚挽救技术获得回交二代胚苗。
     5.采用从北京,湖南等全国六个省份收集并经过鉴定确定的8个黑腐病菌种以及从英国引进的分别属于RaceⅠ和RaceⅣ的二个生理小种,共10个黑腐菌种对融合亲本花椰菜和黑芥进行苗期抗病性鉴定。筛选出了一个受体(花椰菜)的病情指数为70.4,为“高感(HS)”级别,同时供体(黑芥)的病情指数为8.8,达到“高抗(HR)”级别的黑腐菌种CH5。用筛选的黑腐菌种CH5对体细胞杂种一代及其回交后代植株进行抗病性鉴定,结果显示部分回交二代杂种植株仍具有良好的黑腐病抗性,病情指数为15.7,达到“抗病(R)”级别。
     6.对获得的10株白菜×黑芥的F1代植株,经形态学,细胞学和SRAP等方法鉴定出6株为真杂种。其中有一株杂种(H1)体细胞含有26条染色体,GISH结果显示其基因组组成为ABB型,育性相对较高,获得了175粒回交一代种子;其它5株杂种50%以上的体细胞含有18条染色体,GISH结果显示其基因组组成为AB型,花粉完全败育,通过胚挽救技术也未获得回交后代。由此推测,染色体数目的增多和同源染色体的配对有利于提高杂种的育性。
     7.白菜-黑芥杂种与白菜的BC1代植株形态学上趋向于母本大白菜,表现出明显的杂种优势。细胞学观察发现不同BC1代杂种细胞染色体数目略有不同,但多为28条,GISH结果显示其基因组组成为AAB型,花粉活力明显提高,得到大量的回交二代种子;BC2代杂种细胞染色体数目不同,从22-28条不等。对回交一代和回交二代杂种植株的黑腐病抗性鉴定结果显示:部分回交二代植株仍然保留良好的黑腐病抗性。
Cauliflower, a variety of Brassica in Cruciferae, is popular with many people as a kind of vegetable. However, cauliflower production always suffers from diseases such as black rot, blackleg, club root and so on, affecting the yield and quality of cauliflower seriously.
     Somatic hybridization can overcome the sexual incompatibility barriers to obtain the hybrid between different species, and transfer the alien resistant genes from other species. It can enrich the diversity of pathogen resistant genes of the breeding material, and realize the innovation of crop germplasm.
     One object of this study was to transfer multi-resistant genes from wild species to cauliflower by using somatic hybridization technique.
     Matthiola incana belongs to Cruciferae family, which possesses desirable characteristics such as the rich a-linolenic acid and the high resistance to aphids. This study produced somatic hybrids between B. oleracea and M. incana for the first time by using the symmetrical somatic hybridization technique, which laid a good foundation for the utilizing of the heterogenous excellent germ plasm. The regenerated plants were investigated on morphology, RAPD or SRAP molecular marker, isozyme pattern, chromosome number and DNA content.
     B. nigra, one of the three Brassica species, exhibited high resistance to black rot, black leg and clubroot diseases. In our privious study, a lot of somatic hybrids between B. nigra and cauliflower were obtained. Seventy-nine hybrids were transplanted into greenhouse successfully, the biological characters of which were studied systemicly in the present research. The backcross progeny of partial somatic hybrids were obtained through embryo rescue technique, the reaiatance of which to X. campestris pv. campestris was also assessed.
     The other object of this study was to transfer the alien diseases resistant genes from B. nigra to Chinese cabbage. Chinese cabbage is one of the most important vegetable crops in China. In the process of cultivation, the chinese cabbage production always suffers from diseases such as black rot, blackleg, club root and so on, affecting the yield and the quality seriously. In order to transfer the alien diseases resistant genes from other species, crosses between Brassica campestris pekinensis and B. nigra were made and the F1 plants obtained were investigated on morphology, SRAP molecular marker, chromosome number and genome constitution. The backcross progeny of partial F1 hybrids were obtained through embryo rescue technique, the reaiatance of which to X. campestris pv. campestris was also assessed.
     All the results were described as follows:
     1. Two somatic hybrids between cauliflower and Matthiola incana were produced and investigated on morphology, RAPD molecular, chromosome number, isozyme pattern and nuclear DNA content. The two hybrids were both allopolyploid and had 26-48 chromosomes. Comparing the different identification method, it was thought that the morphological observation was more simple and direct, and with enough veracity in most of the cases, but the SRAP molecular marker was more exact and dependable. Both hybrids showed limit growth and neither of them can grow to mature plants in the greenhouse.
     2. Seventy-nine somatic hybrids were transplanted in greenhouse successfully and were investigated on morphology, SRAP molecular marker, chromosome number and genome size. Morphology of the regenerated plants varied a lot and most of the population was intermediate to that of the parents; The hybrid plants had different nuclear DNA content:higher, lower than the parental sum or equal to it. The hybrids with higher DNA content had abnormal leaf, bad growth vigour and poor fertility, which indicated that the growth vigour and fertility had relations with the nuclear DNA content. By chromosome counting, the majority of the detected hybrids were mixoploid. Among 79 hybrids,13 aimed hybrids were picked out, which all had vigorous growth and partial fertility. Therefore, it was feasible to broaden the genetic variability of cabbage though asymmetric somatic hybridization.
     3. The compare of the biological characters of the fertile and sterile hybrids were also studied. The PMCs meiosis behaviors were more abnormal in sterile hybrids than in fertile ones. Laggard chromosomes, chromosome bridges and unequal separation happened more frequently. The results of GISH analysis indicated that the fertile hybrids contained the whole genome of B. nigra and cauliflower with regular meiotic divisions while the sterile hybrids had the whole genome of cauliflower and partial intact chromosomes of B. nigra. Moreover, the additional B. nigra chromosomes had a high occurrence of laggards and unequal distribution. Genome study of the two kinds of hybrids showed that the DNA recombination happened in all hybrids.
     4. A total of fifteen BC1 hybrids were obtained, the biological characters of which were studied. Morphology of the BC1 hybrids was intermediate to that of the parents and three ones had similar morphology to cauliflower. The nuclear DNA content and the chromosomes number were both inconsistent, which indicated the trait of aneuploid. Comparing with the somatic hybrids, the range of the BC1 hybrids became narrow, which also showed a tendensy to cauliflower. All the fifteen BC1 plants were used to self-pollination and backcrossing with cauliflower, four of which could obtain BC2 and BC1S1 seeds.
     5. Eight local Xcc strains and two foreign Xcc strains belonging to raceⅠand raceⅣrespectively, were used to inoculate parent plants. A Xcc strain CH5 were selected depending on severe chlorosis around the inoculation sites on cauliflower giving a disease severity rating of 9 and no symptom development on B. nigra. The selected Xcc strain CH5 was used to inoculate hybrids, and backcross plants. Some BC2 hybrids showing good disease resistance were obtained.
     6. Ten F1 plants were obtained between Chinese cabbage and B. nigra, six of which were characterized to be hybrids through morphology, SRAP molecular marker and cytology analysis. One of the hybrids had 26 chromosomes with ABB genomic constitution by GISH analysis showing partial fertility. The other five hybrids had 18 chromosomes in more than 50% PMCs with AB genomic constitution were entirely sterile. An increase in the chromosomes number and homologous chromosomes pairing mignt improve the hybrids fertility.
     7. The BC1 hybrids were more homophylic to the female parent on morphology, showing visible heterosis. Most plants had 28 chromosomes with with AAB genomic constitution by GISH analysis. The male fertility increased obviously and many BC2 seeds were obtained. The number of BC2 hybrids chromosomes was not consistent, having 22-36 chromosomes. Some BC2 hybrids showing good Xcc resistance were obtained.
引文
1.蔡兴奎,柳俊,谢从华.马铃薯栽培种与野生种叶肉细胞融合与体细胞杂种鉴定.园艺学报,2004,31(5):623-626
    2.陈斌,赵泓,耿三省.辣椒花药培养再生株群体染色体倍性构成的多样性.华北农学报,2007,22(1):123-128
    3.陈力耕.柑橘溃疡病的抗性遗传与育种.中国南方果树,1993,22(1):19-20
    4.董卫民,王宏,李凤兰.小麦在畜牧业生产中的应用.中国草食动物,2003,23(3):28-29
    5.侯喜林,曹寿椿,佘建明,等.不结球白菜OguCMS下胚轴原生质体培养再生植株.园艺学报,2000a,27(6):449-451
    6.侯喜林,曹寿椿,佘建明,等.不结球白菜子叶原生质体培养再生植株.南京农业大学学报,2000b,23(4):17-20
    7.侯喜林,曹寿椿,佘建明,等.原生质体非对称电融合获得不结球白菜胞质杂种.园艺学报,2001,28(6):532-537
    8.惠志明,刘凡,简元才,等.原生质体非对称融合法获得花椰菜与Ogura CMS甘蓝型油菜种间杂种.华北农学报,2006,21(3):65-70
    9.景士西.园艺植物育种学总论[M].北京:农业出版社,1981,214-215
    10.李昌功,周嫦,杨弘远.芸薹属花粉-下胚轴原生质体融合再生杂种小植株.植物学报,1994,36(4):905-910
    11.李明山,索玉英,周长久.大白菜与萝卜属间杂种幼胚离体培养的研究.园艺学报,1992,19(4):353-357
    12.李明远.十字花科蔬菜主要病害的发生与防治.中国蔬菜,1998,1(2):52-54
    13.李旭峰.芸薹属与萝卜属远缘杂交研究进展.中国油料,1995,17(1):69-73
    14.李再云,刘焰.芸薹属与诸葛菜属间杂种的细胞遗传学.自然科学进展,2002,1(3):168-172
    15.林良斌,马占强,张传利,等.甘蓝型油菜与紫罗兰体细胞杂交研究.云南农业大学学报,2008,23(3):295-301
    16.刘大钧.主编.细胞遗传学[M].北京:中国农业出版社,1999:46-49,141-158
    17.刘继红,邓秀新.柑橘原生质体非对称融合植株再生及鉴定.植物学报,2002,42(11):1144-1149
    18.刘文轩,陈佩度,刘大钧,等.利用荧光原位杂交技术检测导入普通小麦的大赖草染色质.遗传学报,1999,26(5):546-551
    19.李桂英,韩粉霞.植物不对称体细胞杂交的研究进展.核农学报,2003,17(6):442-446
    20.卢钢,曹家树.白菜和芜菁杂种小孢子培养研究.浙江大学学报,2001,27(2):161-164
    21.孟金陵.芸墓属植物远缘杂交不亲和性的研究进展.中国油料,1987,4(2):71-75
    22.孟金陵.甘蓝型油菜与近缘种属间杂交时花粉-柱头相互作用的研究.作物学报,1990,16(1):19-25
    23.申书兴,侯喜林,张成合.利用小孢子培养技术创建大白菜初级三体的研究.园艺学报,2006,33(6):1209-1214
    24.史永忠,邓秀新,伊华林.伏令夏橙与宁波金柑属间体细胞杂种变异研究.植物学报,1998,40(3):1060-1066
    25.司军,李成琼,肖崇刚,等.十字花科植物根肿病及抗根肿病育种研究进展.西南农业学报,2002,15(2):69-72.
    26.司家刚,朱德蔚.原生质体非对称融合获得胡萝卜(Daucus carota L.)种内胞质杂种.园艺学报,2002,29(1):128-132
    27.司怀军,戴朝曦.马铃薯种间体细胞杂种植株的形态学和农艺性状观察.中国马铃薯,1997,11(3):193-196
    28.孙保亚,沈向群,郭海峰,等.十字花科植物根肿病及抗根肿病育种研究进展.中国蔬菜,2005,15(4):34-37
    29.孙万仓,官春云,孟亚雄,等.芸芥(Eruca sativa Mill)与芸薹属(Brassica L.)3个油用种的远缘杂交.作物学报,2005,31(1):36-42
    30.王幼平,罗鹏,何兴金,等.诸葛菜与芸薹属属间杂交时花粉-雌蕊相互作用的研究.广西植物,1997,17(4):371-374
    31.魏文辉,张苏锋,李均,等.白芥×甘蓝F1代及BC1代单体异附加系的GISH分析.科学通报,2006,51(21):2490-2414
    32.魏琴,周黎军.十字花科10属种与油菜萝卜胞质不育系杂交的花粉萌发情况观察.植物学通报,2000,17(3):260-265
    33.吴俊,李旭锋,李琳,等.油菜与诸葛菜属植物杂交亲和性研究.西南农业大学学报,1999,21(5):412-416
    34.向风宁,黄贤荣,王颖,等.柴胡与高寒藏药-川西璋芽菜科间体细胞杂交.山东大学学报,2003,38(2):93-96
    35.熊新生,贾士荣,傅幼英,等.甘蓝原生质体无性系变异.园艺学报,1988,15(2):120-124
    36.徐利远,罗鹏,兰泽蘧,等.甘蓝型油菜与蓝花子远缘杂交及双二倍体的合成研究.遗传学报,1996,23(2):124-130
    37.颜辉煌,程祝宽,刘国庆,等.栽培稻-药用野生稻杂种F1及回交后代的基因组原位杂交鉴定.遗传学报,1999,26(2):157-162
    38.徐爱遐,黄继英,金平安,等.甘蓝型油菜和芥菜型油菜种间杂交研究.西北植物学报,1999, 19(3):402-407
    39.宣俊杰,蔡兴奎,郭鲜蒲,等.马铃薯体细胞杂种主要形态性状和农艺性状鉴定.中国马铃薯,2006,5(6):261-264
    40.闫静,张明方,陈利萍,等.体细胞杂交技术在蔬菜育种中的研究与应用.细胞生物学杂志,2004,26(1):51-56
    41.姚星伟,刘凡,云兴福,等.非对称体细胞融合获得花椰菜与Brassica spinescens的种间杂种.园艺学报,2005,32(6):1039-1044
    42.伊华林,邓秀新.哈姆林甜橙与粗柠檬体细胞杂种的育性.植物生理学报,2001,27(2):145-150
    43.云锦凤,王照兰,杜建才,等.加拿大披碱草/老芒麦种间杂交及F1代细胞学分析.中国草地,1997,48(1):32-35
    44.张爱芬,李英,侯喜林,等.不结球白菜自交不亲和S单元型的鉴定研究.西北植物学报,2008,28(9):1720-1727
    45.赵德培,张纪增.通过幼胚培获得结球甘蓝与大白菜的种间杂种.中国农业科学,1981,2(4):46-51
    46.张德双,徐家炳,曹鸣庆,等.大白菜转育新型甘蓝型油菜细胞质雄性不育系的研究.华北农学报,2002,17(1):60-63
    47.张德双,张凤兰,方智远,等.大白菜细胞质雄性不育的分子鉴定及序列分析.华北农学报,2007,22(6):53-59
    48.张峰,宋文芹,李凌,等.利用AFLP-银染法筛选与抗甘蓝黑腐病性状连锁的分子标记.南开大学学报,1999,32(3):177-181
    49.张丽,赵泓,刘凡,等.花椰菜与黑芥种间体细胞杂种的获得和鉴定.植物学报,2008,25(2):176-184
    50.赵义平,谭其猛,魏毓棠.大白菜风味品质相关性状及其遗传规律的研究.北方园艺,1987,4(3):1-6
    51.郑晓鹰,李丽,李秀清,等.大白菜品种同工酶及水溶性蛋白的遗传多样性分析.园艺学报,1997,24(3):244-248
    52.周光宇,龚摹纂,王自芬,等.远缘杂交的分子基础.遗传学报,1979,6(5):405-412
    53.周爱芬,夏光敏,陈惠民,等.小麦与簇毛麦属间不对称体细胞杂交的研究.中国科学(C辑),1996,26(1):32-37
    54.周永明,Scarth R.甘蓝型油菜和芥菜型油菜种间杂种小孢子培养获得再生植株.作物学报,1996,22(4):399-402
    55. Anamthawat-Jonsson K. Molecular cytogenetics of introgression hybridization in plants. Methods in Cell Science,2001,23:139-148
    56. Armstrong KC, Keller WA. Chromosome pairing in haploids of Brassica campestris. Theoretical and Applied Genetics,1981,59:49-52
    57. Atanassov Ⅱ, Aatanassov SA, Dragoeva AI. A new CMS source in Nicotiana developed via somatic cybridization between N. tabacum and N. alata. Theoretical and Applied Genetics,1998,97: 982-985
    58. Ayotte R, Harney P, Souza MV, et al. The transfer of triazine resistance from Brassica napus L. to B. oleracea L. Ⅲ. First backcross to parental species. Euphytica,1988,38:137-142
    59. Bain DC. Resistence of Cabbage to Black Rot. Phytopathology,1955,45:35-37
    60. Bates GW, Hasenkampf CA, Contolini CL, et al. Asymmetric hybridization in Nicotiana by fusion of irradiated protoplasts. Theoretical and Applied Genetics,1987,74:718-726
    61. Begum F, Paul S, Bag N, et al. Somatic hybrids between Brassica juncea and Diplotaxis harra and the generation of backcross progenies. Theoretical and Applied Genetics,1995,91:1167-1172
    62. Bergman P, Edqvist J, Farbos I, et al. Male-sterile tobacco displays abnormal mitochondrial atpl transcript accumulation and reduced floral ATP/ADP ratio. Plant Molecular Biology,2000,42: 531-544
    63. Brar DS, Khush GS. Alien introgression in rice. Plant Molecular Biology,1997,35:35-47
    64. Buiteveld J, Suo Y, Van L. Production and characterization of somatic hybrid plants between leek (Gallium ampeloprasum L.) and onion (Gallium cape L.). Theoretical and Applied Genetics,1998, 96:765-775
    65. Chen CL, Guo WW, Yi HL, et al. Cytogenetic analysis of two interspecific citrus allotetraploid somatic hybrids and their diploid fusion parents. Plant Breeding,2004,123:332-337
    66. Cheng AX, Xia GM. Somatic hybridization between common wheat and Italian ryegrass. Plant Science,2004,166:1219-1226
    67. Chevre AM, Eber F, Baranger A, et al. Characterization of Brassica nigra chromosomes and blackleg resistance in B. napus-B. nigra addition lines. Plant Breeding,1996,115:113-118
    68. Chevre AM, Barret P, Eber F. Selection of stable Brassica napus-B. juncea recombination lines resistant to blackleg (Leptosphaeria maculans).1. Identification of molecular markers, chromosomal and genome origin of the introgression. Theoretical and Applied Genetics,1997,95:1104-1111
    69. Chrung B, Verma N, Mohanty A, et al. Production and characterization of interspecific hybrids between Brassica maurorum and Brassica crops. Theoretical and Applied Genetics,1999,98: 608-613
    70. Dickson MH, Hunter JE. Inheritance of resistance in cabbage seedlings to black rot. Journal of the American Society for Horticultural Science,1987,22:108-109
    71. Dixelius C, Bohman S, Forsberg J, et al. Inheritance of the resistance to Leptosphaeria maculans of Brassica nigra and B. juncea in near-isogenic lines of B. napus. Plant Breeding,1999,118(2): 151-161
    72. Dudits D, Maroy D, Prazovzky T. Transfer of resistance trait from carrot into tobacco by asymmetric somatic hybridization:regeneration of fertile plants. Proceeding of the National Academy of Sciences,1987,84:348-358
    73. Escalante A, Imanishi S, Hossain M, et al. RFLP analysis and genomic in situ hybridization (GISH) in somatic hybrids and their progeny between Lycopersicon esculentum and Solanum lycopersicoides. Theoretical and Applied Genetics,1998,96:719-726
    74. Fahleson J, Rahlen L, Glimelius K. Analysis of plants regenerated from protoplast fusions between Brassica napus and Eruca sativa. Theoretical and Applied Genetics,1988,76:507-512
    75. Fahleson J, Lagercrantz U, Mouras A, et al. Characterization of somatic hybrids between Brassica napus and Eruca sativa using species-specifc repetitive sequences and genomic in situ hybridization. Plant Science,1997,123:133-142
    76. Feher A. Characterization of chromosome instability in interspecific asymmetric somatic hybrids obtained by X-ray fusion between potato and Brevidens Phil. Theoretical and Applied Genetics, 1992,84:880-890
    77. Forsberg J, Dixelius C, Lagercrantz U, et al. UV dose-dependent DNA elimination in asymmetric somatic hybrids between Brassica napus and Arabidopsis thaliana. Plant Science,1998,131:65-76
    78. Forsbeg J, Landgren M, Glimelius K. Fertile somatic hybrid betwee Brassica napus and Arabidopsis thaliana. Plant Science,1994,95:213-223
    79. Friebe B, Jiang J, Gill BS, et al. Radiation-induced nonhomologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theoretical and Applied Genetics, 1993,86:141-149
    80. Garriga-Caldere F, Huigen DJ, Jacobsen E, et al. Prospects for introgressing tomato chromosomes into the potato genome:an assessment through GISH analysis. Genome,1999,42:282-288
    81. Gerdemann-knOrck M, Nielen S, Tzscheetzsch C. Transfer of disease resistance within the genus Brassica through asymmetric somatic hybridization. Euphytica,1995,85:247-253
    82. Gleba YY, Hoffmann F. Arabidobrassica:A novel plants obtained by protoplast fusion. Planta,1988, 149:112-117
    83. Gleba YY, Hinnisdaels S, Sidorov VA, et al. Intergeneric asymmetric hybrids between Nicotiana plumbaginifolia and Atropa belladonna obtained by gamma fusion. Theoretical and Applied Genetics,1988,76:760-766
    84. Gleba YY, Hoffinann F. Hybrid cell lines Arabidopsis thaliana+Brassica campestris:no evidence for specific chromosome elimination. Molecular and General Genetics,1978,165:257-264
    85. Gleba YY, Hoffman F.'Arabidobrassica':a novel plant obtained by protoplast fusion. Planta,1980, 149:112-117
    86. Glimelius K, SjOdin C. Evaluation of resistance to Plasmodiophora brassicae, Aternaria and Phoma in Brassicaceae. Theoretical and Applied Genetics,1989,78(4):363-369
    87. Green SK, Deng TC. Turnip mosaic virus strains in cruciferous hosts in Taiwan. Plant Disease,1985, 69:28-31
    88. Guttman B. Evolution in:Brenner S, Miller JH. Encyclopedia of geneties [M]. San Diego: Academic Press,2001,2:663-666
    89. Hansen LN, Earle ED. Transfer of resistance to Xanthomonas campestris pv campestris into Brassica oleracea by protoplast fusion. Theoretical and Applied Genetics,1995,91:1293-1300
    90. Hansen LN, Earle ED. Novel flowering and fatty acid characters in rapid cycling Brassica napus resynthesized by protoplast fusion. Plant Cell Reports,1994,14:151-156
    91. Helgeson H, Hunt PG. Somatic hybrids between Solanum brevidens and Solanum tuberosum: Expression of a late blight resistance gene and potato leaf roll resistance. Plant Cell Reports,1986,3: 212-214
    92. Heslop-Harrison J. Pollen-stigma interaction and cross-incompatibility in the grasses. Science,1982, 215(4):1358-1364
    93. Hu Q, Hansen L, Laursen J, et al. Intergeneric hybrids between Brassica napus and Orychophragmus violaceus containing traits of agronomic importance for oilseed rape breeding. Theoretical and Applied Genetics,2002,105:834-840
    94. Hua YW, Li ZY. Genomic in situ hybridization analysis of Brassic napus X Orychophragmus violaceus hybrids and production of B. napus aneuploids. Plant Breeding,2006,125:144-149
    95. Humphreys M, Thomas HM, Harper J. Dissecting drought and cold-tolerance traits in the Lolium-Festuca complex by introgasion mapping. New Phytologist,1997,137:55-60
    96. Jiang J, Friebe B, Gill BS. Recent advances in alien gene transfer in wheat. Euphytica,1994,73: 199-212
    97. Jourdan PS, Mutschler MA, Earle ED, et al. Production and characterization of somatic hybrids between Brassica oleracea and B. campestris. Cruciferae News Letter,1986,11:84-85
    98. Jourdan PS, Earle ED, Mutschler MA. Synthesis of male sterile triazine-resistant Brassica napus by somatic hybridization between cytoplasmic male sterile B. oleracea and triazine-resistant B. campestris. Theoretical and Applied Genetics,1989,78(3):445-455
    99. Jourdan P, Salazar E. Brassica carinata resythesized by protoplast fusion. Theoretical and Applied Genetics,1993,86:567-572
    100. Kao HM, Keller WA, Gleddie S, et al. Synthesis of Brassica oleraceal Brassica napus somatic hybrid plants with novel organelle DNA compositions. Theoretical and Applied Genetics,1992,83: 313-320
    101.Kameya T, Kanzaki H, Toki S, et al. Transfer of radish (Raphanus sativus L.) chloroplasts into cabbage (Brassica oleracea L.) by protoplast fusion. Japanese Journal of Genetics,1989,64:27-34
    102. Kanno A, Kanzaki H, Kameya T. Detailed analyses of chloroplast and mitochondrial DNA from the hybrid plant generated by asymmetric protoplast fusion between radish and cabbage. Plant Cell Reports,1997,16:479-484
    103. Kasha KJ, Kao KN. High frequency haploid production in barley. Nature,1970,225:874-876
    104. Kiriti PB, Prakash S, Chopra VL. Interspecific hybridization between Brassica juncea and B. spinescens through protoplas fusion. Plant Cell Reports,1991,9(11):639-642
    105. Kisaka H, Kisaka M, Kanno A, et al. Production and analysis of plants that are somatic hybrids of barley (Hordeum vulgate L.) and carrot (Daucus carota L.). Theoretical and Applied Genetics,1997, 94:221-226
    106. Kisaka H, Kisaka M, Kanno A. Intergeneric somatic hybridization of rice (Oryza sativa L. and barley (Hordeum vulgar L.) by protoplast fusion. Plant Cell Reports,1998,17:362-367
    107. Kofer W, Glimelius G, Bonnett HT, et al. Modification of floral development in tobacco induced by fusion of protoplast of different male sterile cultivars. Theoretical and Applied Genetics,1990,79: 97-102
    108. Kostenyuk I, Lubaretz O, Borisyuk N, et al. Isolation and characterization of intergeneric somatic hybrids in the Apocynaceae family. Theoretical and Applied Genetics,1991,82:713-716
    109. Kovtun YV, Korostash MA, Butsko YV. Amplification of repetitive DNA from Nicotiana plumbaginifolia in asymmetric somatic hybrids between Nicotiana sylvestris and Nicotiana plumbaginifolia. Theoretical and Applied Genetics,1993,86:221-228
    110. Kyozuka J, Kaneda T, Shimamoto K, et al. Production of cytoplasmic male sterile rice (Oryza sativa L.) by cell fusion. Biotechnology,1989,7:1171-1174
    111.Lashermes P, Andrzejewski S, Bertrand B, et al. Molecular analysis of intrograsive breeding in coffee. Theoretical and Applied Genetics,2000,100:139-146
    112. Lefol E, Fleury A, Darmency H, et al. Gene dispersal from transgenic crops II. Hybridization between oilseed rape and the wild hoary mustard. Sexual Plant Reports,1996,9:189-196
    113.Lelivelt CL, Krens FA, Frederiks HJ, et al. Transfer of resistance to the beet cyst nematode (Heterodera schachtii Schm) into the Brassica napus L. gene pool through intergeneric somatic hybridization with Raphanus sativus L. Theoretical and Applied Genetics,1993,85:887-894
    114. Le HT, Armstrong KC, Miki B, et al. Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Molecular Biology Reporter,1989, 7:150-158
    115. Li Z, Liu HL, Luo P, et al. Production and cytogenetics of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Theoretical and Applied Genetics,1995,91:131-136
    116. Li ZY, Heneen WK. Production and cytogenetics of intergeneric hybrids between the three cultivated Brassica diploids and Orychophragmus violaceus. Theoretical and Applied Genetics, 1999,99:694-714
    117. Liu F, Ryschka U, Marthe F, et al. Culture and fusion of pollen protoplasts of Brassica oleracea L.var. italica with haploid mesophyll protoplasts of B. rapa L. ssp. pekinensis. Protoplasma,2007, 231:89-97
    118. Liu JH, Xu XY, Deng XX, et al. Intergeneric somatic hybridization and its application to crop genetic improvement. Plant Cell Reports,2005,82:19-44
    119. Mariam AL, Zakri AH, Mahani MC, et al. Interspecific hybridization of cultivated rice Oryza sativa L. with the wild rice O. minuta. Theoretical and Applied Genetics,1996,93:664-671
    120. Mcnaughton IH. Synthesis and sterility of raphanobrassica. Euphytica,1973,22:70-88
    121.Melchers G, Labib G. Somatic hybridization of plant by fusion of protoplasts. Molecular and General Genetics,1978,135:277-294
    122. Menczel L, Nagy F, Kiss ZR, et al. Streptomycin resistant and sensitive somatic hybrids of Nicotiana tabacum+Nicotiana knightiana:correlation of resistance to N. tabacum plastids. Theoretical and Applied Genetics,1984,59:191-195
    123. Melzer JM, O'Connell MA. Molecular analysis of the extent of asymmetry in two asymmetric somatic hybrids of tomato. Theoretical and Applied Genetics,1990,79(2):193-200
    124. Melzer JM, O'Connell MA. Effect of radiation dose on the production of and the extent of asymmetry in tomato symmetric somatic hybrids. Theoretical and Applied Genetics,1992,83(3): 337-344
    125. Mukai Y, Gill BS. Detection of barley chromatin added to wheat by genomic in situ hybridization. Genome,1991,34:448-452
    126. Mukai Y, Gill BS. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome,1993,36:489-494
    127. Narasimhulu SB, Kirti PB, Shyam P, et al. Resynthesis of Brassica carinata by protoplast fusion and recovery of a novel cytoplasmic hybrid. Plant Cell Reports,1992,11:428-432
    128. Narasimhulu SB, Kirti PB, Bhatt SR, et al. Intergeneric protoplast fusion between Brassica carinata and Camelina sativa. Plant Cell Reports,1994,13:657-660
    129. Nyman M, Waara S. Characterization of somatic hybrids between Solanum tuberosum and its frost-tolerant relative Solanum commersonild. Potato Research,1997,95:1127-1132
    130. Oberwalder B, Ruob B, Hemleben V, et al. Asymmetric fusion between wild and cultivated species of potato detection of asymmetric hybrids and genome elimination. Theoretical and Applied Genetics,1997,94(8):1194-1112
    131. Pearson OH. Cytoplasmically inherited male sterility characters and flavor components from the species cross Brassica nigra (L.) X B. oleracea (L.). Journal of the American for Horticultural Science,1972,97:397-402
    132. Pental D, Hamil JD, Pirrie A. Somatic hybridization of Nicotiana tabacum and Petumia hybrida. Molecular and General Genetics,1986,202:342-347
    133. Peterka H, Budahn, Schrader O, et al. Transfer of resistance against the beet cyst nematode from radish to rape by monosomic chromosome addition. Theoretical and Applied Genetics,2004,109(1): 30-41
    134. Piao ZY, Deng YQ, Lim YP, et al. SCAR and CAPS mapping of CRb, a gene conferring resistance to plasmodiophorea brassica in Chinese cabbage. Theoretical and Applied Genetics,2004,108(3): 1458-1465
    135. Piastuch WC, Bates GW. Chromosomal analysis of Nicotiana asymmetric somatic hybrids by dot blotting, an in situ hybridization. Molecular and General Genetics,1990,222:97-103
    136. Pickering RA, Malyshev S, Kunzel G, et al. Locating introgressions of Hordeum bulbosum chromatin within the H. vulgare genome. Theoretical and Applied Genetics,2000,100:27-31
    137. PUhler A, Arlat M, Becker A, et al. What can bacterial genome research teach us about bacteria-plant interactions. Plant Biology.2004,134:137-147
    138. Puite KJ, Roest S, Pijnacker LP. Somatic hybrid potato plants after electrofusion of diploid Solanum tuberosum and Solanum phureja. Plant Cell Reports,1986,5:262-265
    139. Puite KJ, Schaart JG. Nuclear genomic composition of asymmetric fusion products between irradiated transgenic Solanum brevidens and S. tuberosum:limited elimination of donor chromosomes and polyploidization of the recipient genome. Theoretical and Applied Genetics,1993, 86:237-244
    140. Rasmussen JO, Waara S, Rasmussen OS. Regeneration and analysis of interspecific asymmetric potato-Solanum hybrid plants selected by micromanipulation of fluorescence-activated cell sorting (FACS). Theoretical and Applied Genetics,1997,95:41-49
    141. Ren JP, Dickson MH, Earle ED, et al. Improved resistance to bacterial soft rot by protoplast fusion between Brassica rapa and B. oleracea. Theoretical and Applied Genetics,2000,100:810-819
    142. Richard H, Ozminkowski JR, Jourdan PS, et al. Comparison of somatic and sexual interspecific hybridization for the development of new Brassica vegetable crops. New Crops,1993,2:565-569
    143. Rasmussen SR, Halloran GM, Pang EC. Resistance of oilseed Brassica to blackleg caused by Leptosphaeria maculans. The Canadian Journal of Plant Pathology,1992,14(1):56-66
    144. Robert D, Gerard JA, Rouwendal AK, et al. Asymmetric somatic cell hybridization in plants. Molecular and General Genetics,1992,234(2):306-314
    145. Rocherieus J, Glory P, Giboulot A, et al. Isolate-specific and broad-spectrum QTL are involved in the control of clubroot in Brassica oleracea. Theoretical and Applied Genetics,2004,108(3): 1555-1563
    146. Rosen B, Hallden C, Heneen WK, et al. Diploid Brassica napus somatic hybrids:Characterization of nuclear and organellar DNA. Theoretical and Applied Genetics,1988,76:197-203
    147. Ryschka U, Schumann G, Klocke E, et al. Somatic hybridization in Brassicaceae. Acta Horticulturae,1996,407:201-208
    148. Sacristan MD, Gerdemann-Knorck M, Schieder O, et al. Incorporation of hygromycin resistance in Brassica nigra and its transfer to B. napus through asymmetric protoplast fusion. Theoretical and Applied Genetics,1989,78:194-200
    149. Sakai T, Liu HJ, Iwabuchi M, et al. Introduction of a gene from fertility restored radish(Raphanus sativus) into Brassica napus by fusion of X-irradiated protoplasts from a radish restorer line and iodacetoamide-treated protoplasts from a cytoplasmic male-sterile cybrid of B. napus. Theoretical and Applied Genetics,1996,93:373-379
    150. Samoylov VM, Sink KC. The role of irradiation dose and DNA content of somatic hybrid calli in producing asymmetric plants between an interspecific tomato hybrid and eggplant. Theoretical and Applied Genetics,1996,92:850-857
    151. Schenk HR, Robbelen G. Somatic hybrids by fusion of protoplasts from Brassica oleracea and B.campestris. Zeitschrift fur Pflanzenzucht,1982,89:278-288
    152. Schelfhout CJ, Snowdon R, Cowling WA, et al. A PCR based B-genome-specific marker in Brassica species. Theoretical and Applied Genetics,2004,109:917-921
    153. Schwarzacher T, Leitch AR, Bennett MD, et al. In situ localization of parental genomes in a wide hybrid. Annals of Botany,1989,64:315-324
    154. Schwarzaeher T, Anamthawat-Jonsson K, Harrison GE. Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theoretical and Applied Genetics,1992, 84:778-786
    155. Sharma SR, Kapoor KS, Gill HS, et al; Screening against sclerotinia rot (Sclerotinia sclerotiorum), downy mildew (Peronospora parasitica) and black rot (Xanthomonas campestris) in cauliflower (Brassica oleracea var. botrytis subvar. cauliflora). Indian Journal of Agricultural Sciences,1995, 65:891-916
    156. Skarzhinskaya M, Landgren M, Glimelius K, et al. Production of intertribal somatic hybrids between Brassica napus L. and Lesquerella fendleri (Gray). Theoretical and Applied Genetics,1996, 93:1242-1250
    157. Skarzhinskaya M, Fahleson J, Glimelius K, et al. Genome organization of Brassica napus and Lesquerella fendleri and analysis of their somatic hybrids using genomic in situ hybridization. Genome,1998,41:691-701
    158. Sigarava MA, Earle ED. Direct transfer of a cold-tolerant Ogura male-sterile cytoplasm into cabbage (Brassica oleracea ssp. capitata) via protoplast fusion. Theoretical and Applied Genetics, 1997,94:213-220
    159. Sikdar SR, Chatterjee G, Das S, et al.'Erussica', the intergeneric fertile somatic hybrid developed through protoplast fusion between Eruca sativa Lam and Brassica juncea (L.). Theoretical and Applied Genetics,1990,79:561-567
    160. Sjqdin C, Glimelius K. Evaluation of resistance to Plasmodiophora, Aternaria and Phoma in Brassicaceae. Acta Horticulturae,1989,459(1):363-369
    161. Snowdon RJ, Kohler W, Friedt W, et al. Genomic in situ hybridization in Brassica amphidiploids and interspecic hybrids. Theoretical and Applied Genetics,1997,95:1320-1324
    162. Snowdon RJ, Winter H, Diestel A, et al. Development and characterisation of Brassica napus-Sinapis arvensis addition lines exhibiting resistance to Leptosphaeria maculans. Theoretical and Applied Genetics,2000,101:1008-1014
    163. Soengas P, Hand P, Vicente JG, et al. Identification of quantitative trait loci for resistance to Xanthomonas campestris PV. campestris in Brassica rapa. Theoretical and Applied Genetics,2007, 114:637-645
    164. Spangerberg G, Schweiger HG Controlled electrofusion of different types of protoplasts including cell reconstruction in Brassica napus. European Journal of Cell Biology,1986,80:41-45
    165. Spangenberg G, Valles MP, Wang ZY, et al. Asymmetric somatic hybridization between tall fescue (Festuca arundinacea) and irradiated Italian ryegrass (Lolium mutiflorum Lam) protoplasts. Theoretical and Applied Genetics,1994,88:509-519
    166. Spangenberg G, Wang ZY, Legris G, et al. Intergeneric symmetric and asymmetric hybridization in Festuca and Lolium. Euphytica,1995,85:235-245
    167. Stebbins GL. Variation and evolution in Plants [M]. Columbia University Press, NewYork,2000
    168. Struss D, Quiros CF, Plieske J, et al. Construction of Brassica B genome synteny groups based on chromosomes extracted from three different sources by phenotypic, isozyme and molecular markers. Theoretical and Applied Genetics,1996,93:1026-1032
    169. Sundberg E, Landgren M, Glimelius K, et al. Fertility and chromosome stability in Brassica napus resynthesised by protoplast fusion. Theoretical and Applied Genetics,1989,75:96-104
    170. Szarka B, Gonter L, Mlonar-lang M, et al. Mixing of maize and wheat genomic DNA by somatic hybridization in regenerated sterile maize plants. Theoretical and Applied Genetics,2002,105:1-7
    171. Tanno-Suenaga L. Transfer of the CMS trait in Daucus carota L. by donor-recipient protoplast fusion. Theoretical and Applied Genetics,1988,76:855-860
    172. Taylor JD, Conway J, Roberts SJ, et al. Sources and origin of resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology,2002,92:105-111
    173. Tonguc M, Elizabeth D, Phillip D. Segregation distortion of Brassica carinata derived black rot resistance in Brassica oleracea. Euphytica,2003,134:269-276
    174. Toriyama K, Kameya T, Hinata K. Selection of a universal hybridizer in Sinapis turgida Del and regeneration of plantlets from somatic hybrids with Brassica species. Planta,1986,170:308-313
    175. Toriyama K, Hinata K, Kameya T, et al. Production of somatic hybrid plants,'Brassicomoricandia' through protoplast fusion between Moricandia arvensis and B. oleracea. Plant Science,1987,48: 123-128
    176. Trick H, Zelcer A, Bates GW. Chromosome elimination in asymmetric somatic hybrids:effect of gamma dose and time in culture. Theoretical and Applied Genetics,1994,88(8):965-972
    177. Truco MJ, Hu J, Sadowski J, et al. Inter and Intragenomic homology of the Brassica genomes: implications for their origin and evolution. Theoretical and Applied Genetics,1996,93:1225-1233
    178. UN. Genome-analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpanese Journal of Genetics,1935,7:389-395
    179. Vicente JG, Conway D, Roberts SJ, et al. Identification and origin of Xanthomonas campestris pv campestris races and related pathovars. Phytopathology,2001,91:492-499
    180. Vladimir A, Sidorov LM, Ferenc N, et al. Chloroplast transfer in Nicotiana based on metabolic complementation between irradiated and iodoacetate treated protoplasts. Planta,1981,152(4): 341-348
    181. Vlahova M, Hinnisdaels S, Frulleux F, et al. UV irradiation as a tool for obtaining asymmetric somatic hybrids between Nicotiana baginifolia and Lycopersicon eculentum. Theoretical and Applied Genetics,1997,94:184-191
    182. Wang YP, Snowdon RJ, Rudloff E, et al. Cytogenetic characterization and fael gene variation in progenies from asymmetric somatic hybrids between Brassica napus and Crambe abyssinica. Genome,2004,47:724-731
    183. Willams PH, Matheus A. Inheritance of resistance in cabbage to black rot. Phytopathology,1972, 62:247-252
    184. Wolters MA, Schoenmakers HC, Knaap E, et al. Limited DNA elimination from the irradiated potato parent in fusion products of albino Lycopersicon esculentum and Solonun tuberosum. Theoretical and Applied Genetics,1991,83:225-232
    185. Xiang FN, Xia GM, Chen HM. Effect of UV dosageon soamtic hybridization between common wheat (Triticym aestivum L) and Aveba sativa L. Plant Science,2003,164(5):697-707
    186. Xu YS, Pehu E. RFLP analysis of asymmetric somatic hybrids between Solanum tuberosum and irradiated S. brevidens. Theoretical and Applied Genetics,1993,86:754-760
    187. Xu YS, Melodv S. Use of RAPD markers to screen somatic hybrids between Solanum tuberosum and Solanum brevidens. Plant Cell Reports,1993,12:107-109
    188. Yamagishi H, Glimelius K. Somatic hybrids between Arabidopsis thaliana and cytoplasmic male-sterile radish (Raphanus sativus). Plant Cell Reports,2003,22(1):52-58
    189. Yan Z, Tian Z, Hang B, et al. Production of somatic hybrids between Brassica oleracea and the C3-C4 intermediate species Moricandia nitens. Theoretical and Applied Genetics,1999,99: 1281-1286
    190. Yaniv Z, Schaffernann D, Zur M, et al. Cultivation of improved ines of Matthiola incana, a source of ω-3-linolenic acid [A]. Monteiro AA. Papers of ISHS Symposium on Brassicas and Ninth Crucifer Genetics Workshop [C] Lisbon:Seeretariat,1994
    191. Yue W, Xia GM, Zhi DY, et al. Transfer of salt tolerance from Aeleutopus littoralis to wheat (Triticum aestivum L.) via asymmetric somatic hybridization. Plant Science,2001,161:259-263
    192. Zadoo SN. Cytogenetic observations on a monosomic in Sesbania macrocarpa Muhl. Experientia, 1984,40(12):1414
    193. Zelcer A, Aviv D, Galun EZ et al. Interspecific transfer of cytoplasmic male sterility by fusion between protoplasts of normal Nicotiana sylvestris and x-irradiated protoplasts of male sterile N. tabacum. Zeitschrift fur Pflanzenzucht,1978,90:397-407
    194. Zubko MK, Zubko El, Patskovsky YV, et al. Novel'homeotic', CMS patterns generated in Nicotiana via cybridization with Hyoscyamus and Scopolia. Jounal of Experimental Botany,1996, 47:1101-1110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700