吉林省不同年代大豆品种光合作用与根系活力变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关于大豆品种遗传改良过程中农艺性状和生理变化的研究已有许多报道,但关于根系生理功能变化的研究尚未见报道,根系活力与地上生物量及光合作用的关系目前仍不清楚。本研究通过对吉林省1923年以来育成的主推大豆品种的叶片光合特性和根系伤流量及地上生物量的演化特征,并通过分析光合特性与产量的关系,根系伤流量和根系活力与地上生物量的关系,试图阐明吉林省大豆遗传改良过程中叶片光合特性的演化规律,并揭示根系与地上部分间的相互作用关系,为吉林省大豆品种改良提供可参考的理论依据。
     该试验于2010年和2011年两年进行,选择1923年至2009年间育成的大豆品种进行研究,通过对不同年代育成大豆品种叶片光合速率、气孔导度、蒸腾速率、叶绿素和比叶重等光合指标的测定,以及对不同生育期根系伤流量和根系活力及地上和地下生物量的测定,进一步分析其之间的关系,研究结果表明:
     (1)从1923年到2005年,82年来每公顷籽粒产量提高80.2%,平均每年增加0.98%。生育期82年来缩短了14.7天,平均每10年缩短1.83天,而产量随大豆品种熟期的缩短而呈增加的变化趋势;收获指数提高了58.03%,且与产量呈极显著正相关(r=0.8099**);叶片的净光合速率增加了3.9196μmolCO2·m-1·s-1,提高了18.09%,平均每年提高0.22%,产量与叶片净光合速率呈极显著正相关(r=0.6102**);叶片气孔导度提高了22.91%,平均每年提高0.27%,但产量与叶片气孔导度未达到显著正相关水平;叶片胞间二氧化碳浓度降低了8.3804μmolCO2·mol-1,平均每年降低0.1022μmolCO2·mol-1;蒸腾速率提高了57.29%,平均每年提高0.69%,产量随蒸腾速率的增加而增加,相关系数为0.6316**,而叶片水分利用效率随品种育成年代增加而显著减少,82年来减少了22.3%;叶片表观叶肉导度提高了49.54%,平均每年提高0.60%,产量随表观叶肉导度的增加而显著增加;叶片气孔限制值降低了8.25%,平均每年降低了0.10%,产量随叶片气孔限制值的增加而降低;叶片比叶重提高了91.82%,平均每年提高1.12%,产量随比叶重的增加而增加,相关系数为0.4464*;叶片叶绿素含量提高了17.41%,平均每年提高0.21%,产量随叶绿素的增加而增加;小叶面积降低了47.37%,平均每年降低0.58%。籽粒产量与Pn和Pn/Ci正相关达到极显著水平而叶片的水分利用效率随品种育成年代而显著降低与籽粒产量呈极显著负相关,这三个生理指标可以作为衡量籽粒产量的育种指标。
     (2)从根系伤流液和根系活力看,在V4期,根系伤流量86年来增长了9.10%,年平均增长率为0.11%;根系活力增长了10.24%,年平均增长率为0.12%;在R2期,根系伤流量86年来增长了18.29%,年平均增长率为0.21%;根系活力增长了27.38%,年平均增长率为0.32%;在R4期,根系伤流量86年来增长了16.01%,年平均增长率为0.19%;根系活力增长了24.22%,年平均增长率为0.28%;在R6期,伤流液重量86年来增长了20.22%,年平均增长率为0.24%;根系活力增长了10.83%,年平均增长率为0.13%。由此可知,在R4期年增长率达到最大值,同时在R4期伤流液重量与育成年代呈显著正相关,R4期是大豆栽培中保证根系活力的关键阶段,通过优良的栽培措施保证R4期及以后较高的根系活力是保证大豆高产的核心栽培技术手段。
     (3)从地上生物量和根系生物量看,在V4期,地上生物量86年来增长了10.81%,年平均增长率为0.13%;根系生物量增长了28.10%,年平均增长率为0.33%;单株生物量增长了11.68%,年平均增长率为0.14%;在R2期,地上部生物量86年来增长了6.99%,年平均增长率为0.08%;根生物量增长了17.65%,年平均增长率为0.21%;单株生物量增长了8.55%,年平均增长率为0.10%;在R4期,地上86年来增长了24.76%,年平均增长率为0.29%;根生物量增长了21.13%,年平均增长率为0.25%;单株生物量增长了24.21%,年平均增长率为0.28%;在R6期,地上部生物量86年来增长了10.51%,年平均增长率为0.12%;根生物量增长了9.27%,年平均增长率为0.11%;单株生物量增长了10.05%,年平均增长率为0.12%。由此可知,根生物量,地上部生物量和单株生物量在R4期与育成年代均呈显著正相关或极显著正相关,在V4、R2和R6期,大豆品种的器官生物量与育成年代虽也呈正相关,但均未达到显著水平。这表明,R4期大豆地上和地下部分的生长对产量起至关重要的作用,大豆品种的遗传改良使植株器官生物量得到显著增加,可能与根系生物量和根系活力的改善有关,特别是R4期的根系活力,在R4期,伤流液重量和根系活力与叶片净光合速率均呈显著正相关,也证明了地下部分与地上光合作用的相关性。因此我们推测根系伤流液重量和根系活力可以作为衡量叶片净光合速率的指标,为今后选育高光合大豆品种提供理论依据。
     (4)大豆品种干物质的积累与根系活力、根系伤流液重量有着密切关系。同时我们也发现地上部分与地下根系在品种改良过程中,两者是协同进化的,大豆品种遗传改良是地上器官与地下器官协同进化的结果。在R4期,根系活力和根系伤流液重量和功能叶片的净光合速率关系最为显著,在R2期和R6期,根系活力和叶片净光合速率并未达到显著水平。R2期和R4期地上部分和地下部分有较好的协同关系,但在R6期,根系活力急剧下降,根系伤流液重量迅速减少,但地上部分器官生物量和叶片净光合速率下降不大,说明根系活力的下降先于光合作用的下降,因此大豆植株后期的早衰现象,可能是由于根系的提前衰老导致植株后期光合作用下降的原因。因此我们通过延缓根系的衰老,有可能延缓生育后期光合作用的下降,进而提高产量。
Many reports had showed about agronomic traits and physiological changes in the genetic improvement process of soybean cultivars, but about changes of roots in physiological functions have not been reported, especially about the relationship of root activity and aerial parts of organisms and photosynthesis. This study used soybean varieties bred in Jilin Province since1923to study the photosynthetic characteristics of soybean varieties and root BSW and the biomass of the aboveground, and analyze the relationship of photosynthetic characteristics and yield and the relationship between root BSW and root activity and biomass of aboveground. Aimed to clarify the evolution of the photosynthetic characteristics of leaves in the genetic improvement process of soybean cultivars, and reveal the relationship between the roots and aerial parts, to provide the theoretical basis for the the soybean varieties improvement in Jilin Province.
     The experiment was conducted in2010and2011, and chose the soybean varieties bred in the1923-2009. Measured the photosynthetic rate, stomatal conductance, transpiration rate, chlorophyll and specific leaf weight of soybean cultivars, and measured the relationship of root BSW and root activity and biomass of aboveground to analyze their relationship further. The study results show that:
     (1) From1923to2005, the grain yield per hectare in82years increased by80.2%, with an average increase by0.98%per year. The of growth period in82years was shortened by14.7days, with an average increase by1.83days every10year, while the yield were showed an increasing trend with shortening in growth period of soybean varieties; harvest index was raise by58.03%, and the harvest index was extremely significant correlated with yield (r=0.8099**); leaf net photosynthetic rate was increased by3.9196μmolCO2·m-1·s-1, and it was increased by18.09%, an average increase was by0.22%per year; the yield was highly significant positive correlated with net photosynthetic rate (r=0.6102**); leaf stomatal conductance was increased by22.91%, an average increase was by0.27%per year, but the correlation of yield and stomatal conductance did not reach significant level; leaf intercellular CO2concentration was decreased by8.3804μmolCO2·mol-1, an average decrease was by0.1022μmolCO2·mol-1per year; transpiration rate was increased by57.29%, an average increase was by0.69%per year, the yield was increased with the increase of transpiration rate, the correlation coefficient was0.6316, but the moisture use efficiency of leaves was decreased significantly along with the year of release, the decrease was by22.3%with the year of release in82years; the blades apparent mesophyll conductance was increased by49.54%, an average increase was by0.60%, the yield was significant increased with the increase in apparent mesophyll conductance; stomatal limitation in leaf was decreased by8.25%, and the average reduction was by0.10%per year, and the yield was decreased with the increase in stomatal limitation; the specific leaf weight was increased by91.82%, an average increase was by1.12%per year, the yield was increased with the increase in specific leaf weight, a correlation coefficient was0.4464; the chlorophyll content in leaf was increased by17.41%, with an average increase was by0.21%per year, the yield was increased with the increase in chlorophyll content; the area of leaflet was decreased by47.37%, with an average reduction was by0.58%. The yield was highly significant positive correlated with Pn, Pn/Ci, but the correlation between the water use efficiency in leaves and year of release was negative, and the water use efficiency in leaves was highly significant negative correlated with grain yield. In concluding, the three physiological indicators could be as indicators by measure of breeding of grain yield.
     (2)The analysis on root bleeding sap and root vigor has showed that at V4stage, the root bleeding rate for86years increased by9.10%, the average annual growth rate was0.11%; the root activity grew by10.24%, the average annual growth rate was0.12%; at R2stage, the root bleeding rate increased by18.29%in the86years, the average annual growth rate was0.21%; the root activity grew by27.38%, the average annual growth rate was0.32%; at R4, root injury traffic in1986increased by16.01%, the average annual growth rate was0.19%; root activity grew by24.22%, the average annual growth rate was0.28%; R6of xylem sap weight increase by20.22%in the86years, the average annual growth rate was0.24%; growth of root activity was10.83%, and the average annual growth rate was0.13%. The result showed that at R4, the annual growth rate reached the maximum, and the bleeding sap weight was significant positive correlated with bred era, the R4stage is the key to ensure root activity of soybean cultivation stage, through excellent cultivation measures to guarantee R4and any subsequent higher root activity is to ensure the core soybean yield cultivation technology means.
     (3) The research results of the biomass and root biomass showed, that in V4period, the aboveground biomass of86years increased by10.81%, the average annual growth rate was0.13%; root biomass increased by28.10%, and the annual average growth rate was0.33%; individual biomass grew by11.68%, the average annual growth rate was0.14%; R2stage, the aboveground biomass increased by6.99%in the86years, the average annual growth rate was0.08%, root biomass increased by17.65%; root biomass average annual growth rate was0.21%; biomass of per plant increased by8.55%, the average annual growth rate was0.10%; R4stage, the aboveground biomass for86years increased by24.76%, the average annual growth rate was0.29%; root biomass increased by21.13%, the average annual growth rate was0.25%; biomass of per plant increased by24.21%, the average annual growth rate was0.28%; the aboveground biomass increased by10.51%in the86years at R6, the average annual growth rate was0.12%; root biomass increased by9.27%, the average annual growth rate was0.11%; biomass of per plant increased by10.05%, the average annual growth rate was0.12%. Therefore, root biomass, aboveground biomass and plant biomass in the R4stage showed a significant positive correlation or very significant positive correlation with bred era, the organ biomass of soybean varieties at V4, R2and R6were also positive correlated with bred era, but did not reach a significant level. This indicates that the ground and underground portion growth of soybean at R4played a crucial role in the production, the genetic improvement of soybean varieties significantly increased the plant organ biomass, these may be associated with the improvement of root biomass and root activity, especially root activity at R4, at the R4stage the xylem fluid weight and root activity were positively correlated with net photosynthetic rate, were also proved the relevance of the underground part and the ground photosynthesis. Therefore, we speculate that the root xylem fluid weight and root activity can be used as indicators of the net photosynthetic rate, and to provide theoretical basis for future breeding high photosynthetic soybean varieties.
     (4) Root activity and root BSW of soybean varieties is closely related to the accumulation of dry matter. We also found that the aerial parts and the underground coordinated in improvement process, and the genetic improvement of soybean varieties was the result of coordination of the aboveground and underground organ. Correlation between root activity and root BSW and net photosynthetic rate of function leaf was the most significant at R4stage, and correlation between root activity and net photosynthetic rate did not reach significant level. The aerial parts and the underground coordinated better at R2and R4stage. At R6stage root activity significant declined, and root BSW quickly reduced, but net photosynthetic rate of leaves and biomass of underground parts decreased little. It showed that the decline of root activity was earlier than the decline of photosynthesis. So the reason of premature phenomenon in late aging with soybean cultivars may be resulted by the decline in photosynthesis in late aging with plants with the premature aging of roots. So we could delay aging of the root aimed to slow down the decline in photosynthesis in late growth aging, thereby to increase the yield.
引文
[1]汤艳丽.全球大豆生产和贸易形势分析[J].粮食与油脂,2002(1):11-31.
    [2]权静,卢定强,张筱,等.大豆功能性成分的研究现状[J].大豆通报,2004,3:27-29.
    [3]唐传核,彭志英.大豆功能性成分的开发现状[J].中国油脂,2000,25(4):44-481.
    [4]赵团结,盖钧镒,李海旺,等.超高产大豆育种研究的进展与讨论[J].中国农业科学,2006,39(1):29-37.
    [5]蔡东宏,郑承志。世界大豆生产与贸易概貌[J].作物研究,1999(2):32-35.
    [6]王连铮,王岚,刘志芳,等.大豆生产的现状及增产的途径[J].大豆通报,1999.2:1-2.
    [7]陈应志.世界大豆生产和科研的进展(续一)[J].大豆通报,2005,1:26-30.
    [8]冯锋,杨新泉.“大豆优异基因资源发掘及其基因组研究”立项背景和意义[J].中国科学基金,2003(6):335-338.
    [9]金剑,刘晓冰,王光华,等.美国大豆品种改良过程中生理特性变化的研究进展[J].大豆科学,2003,22(2):137-141.
    [10]Morrison M J, Voldeng H D, Cober E R. Physiological changes from 58 years of genetic improvement of short-season soybean cultivars in Canada. Agronomy Journal.1999,91:685-689.
    [11]Voldeng H D,et al. fifty-eight years of genetic improvement of short-season soybean cultiveas in Canada.Crop Sci, 1997,37:428-431.
    [12]庄波,徐克章,杜双洋,等.新、老大豆品种冠层产量和光合作用的比较[J].华南农业大学学报,2010,31(1):6-9.
    [13]田伟华等,吉林省不同年代育成大豆品种某些农艺性状的变化,中国油料作物学报,2007,29(4):397-401.
    [14]唐善德,盖钧锰,马育华.中国南方大豆干物质积累、分配等生理性状与产量的关系[J].大豆科学,1990,9(4):278-284.
    [15]王晓慧等.大豆品种遗传改良过程中叶片可溶性糖含量和比叶重的变化[J].大豆科学,2007,26(6):879-884.
    [16]董钻.大豆株型育种的若干问题[J].大豆科学,1988,(1):69-74.
    [17]沈允纲.光合作用与作物生产译丛.1980,(1):1-10.
    [18]李大勇等.半野生和栽培大豆叶片某些光合特性的比较,中国油料作物学报,2006,28(2):172-175
    [19]朱桂杰等.大豆生理生态特性与产量的关系[J]. Acta Botanica Sinica,2002,44(6):725-730.
    [20]Wang X-H, et al. Varieties of soluble sugar content and specific leaf weight during the genetic improvement of soybean cultivars[J]. Soybean Sci,2007,26(6):879-884.
    [21]王晓慧等.种进化类型大豆叶片的某些生理特性比较[J].植物生理学通讯,2006,42(2):191-194.
    [22]赵洪祥等.吉林省82年来育成大豆品种的产量和叶片部分生理特性变化及其相互关系[J].作物学报,2008,34(7):1259-1265.
    [23]赵洪祥等.吉林省不同年代育成大豆品种硝酸还原酶活性变化及其与产量的关系[J].南京农业大学学报,2007,30(2):13-17.
    [24]王英男,王洋,杨光宇等.吉林省大豆生产的现状及发展潜力浅析.中国农业科技导报,2009,11(S2):21-24.
    [25]胡明祥,孟祥助,刘凯.吉林省大豆育种工作的回顾与展望.吉林农业科学,1996,4:6-9.
    [26]周勋波,吴海燕,姜德锋,等.不同结荚习性大豆株型特征与产量表现[J].中国油料作物学报,2004,26(2):61-64.
    [27]张富厚,郑跃进,侯典云,等.大豆荚粒性状对单株产量的效应分析[J].安徽农业科学.2006,34(15):3632-3633.
    [28]王滔,孙淑燕,陈存来.大豆叶-荚关系与产量的研究初报[J].大豆科学,1983,2(1):67-74.
    [29]胡明祥,李开明,田佩占,等.大豆高产株型育种研究[J].吉林农业科学,1980,(3):1-14.
    [30]年海,王金陵,杨庆凯.大豆脂肪酸与主要农艺性状和品质性状的相关分析[J].大豆科学,1996,15(3):213-221.
    [311李国桢.黑龙江省大豆品种及其性状的演变[J].中国油料,1986,(2):22-25.
    [32]王振民,康波,邓邵华,等.吉林省不同年份主推大豆品种性状演变规律的初步分析[J].吉林农业大学学报.1993,15(4):92-95.
    [33]周蓉,涂赣英,沙爱华,等.大豆种质的倒伏性调查及其相关农艺性状分析大豆科学[J].大豆科学,2007,26(1):41-44.
    [34]肖世和,张秀英,闫长生,等.小麦茎秆强度的鉴定方法研究[J].中国农业科学,2002,35(1):7-11.
    [35]Saratha K D, David J H, Godfrey C. Genetic improvement in short season soybeans:I. dry matter accumulation partitioning, and leaf area duration. Crop science,2001,41:391-398.
    [36]Frederick J R. Seed yield and agronomic traits of old and modern soybean cultivars under irrigation and soil water-deficit. Field Crop Research,1991,27:71-82.
    [37]郑洪兵,徐克章,赵洪祥,等.吉林省不同年代大豆品种某些株型性状的演变[J].中国油料作物学报,2006,28(3):276-281.
    [38]盖钧镒,崔章林.我国南方大豆地方品种群体特点和特异种质的发掘与遗传基础研究[J].中国农学通报,1999,9(2):61-65.
    [39]董钻,董加耕.东北地区大豆早熟品种生长发育特点和产量形成规律探讨[J].大豆科学,1990,9(4):265-270.
    [40]Well R. Soybean growth response to plant density:relationship among canopy photosynthesis, leaf area, and light interception. Crop Sci,1991,31:755-761.
    [41]徐克章,苗以农.大豆光合生理生态的研究[J].大豆科学,1983,2:169-174.
    [42]Dornhoff G M et al. Varietal differences in net photosynthesis of soybean leaves. Crop sci,1970,10:42-45.
    [43]邹冬生,郑丕尧.大豆叶片光合、蒸腾等生理特性的品种间比较研究[J].大豆科学,1990,(1):45-49.
    [44]杜维广等.大豆品种(系)间光合活性的差异及其产量的关系[J].作物学报,1982,(2):131-135.
    [45]苗以农,许守民,朱长甫等.大豆不同品种光合性状和固氮能力的比较[J].大豆科学,1992,1(1):61-68.
    [46]李大勇,徐克章,张治安等.新老大豆品种叶片光合特性的比较[J].中国油料作物学报,2007,29(3):281-285.
    [47]张恒善,刘金印.大豆叶面积净光合生产率与产量关系研究[J].中国油料作物学报,1982,(3):33-37.
    [48]Gbikpi P J, Crookston R K. Effect of flowering date on accumulation of dry matter and protein in soybean seed.Crop Sci. 1981,22:860-867.
    [49]Fer F W, Rr and C C E.1977. Stages of soybean developmen.Iowa Agric. Exp Stn Spec Rep.
    [50]Brun W A. Assimilation. In A.G.Normanled, Soybean physiology, agronomy, and uilization [M]. Academic press, New York. 1978. P:45-76.
    [51]Christy A L, Porter C A, Development, carbon metabolism and plant productivity. In Govindjee (de.) photosynthesis [M]. Vol, Ⅱ.Accdemic press, New York.1982. P.499-511.
    [52]彭玉华,朱健超,杨国保等.大豆叶形分布与四粒荚[J].作物学报,1994,20(4):501-503.
    [53]彭玉华,杨国保,吴琳等.大豆叶形垂直分布类型在产量改良中的应用[J].作物学报,1999,21(1):13-16.
    [54]王继安,王金阁.大豆叶面积垂直分布对产量及农艺性状的影响[J].东北农业大学报,2000,31(1):14-19.
    [55]金成忠.根系对叶片生长和活力作用的物质基础[J].植物生理学通讯,1963,1(1):1-16.
    [56]吴岳轩,吴振球.杂交稻根系代谢活性与叶片衰老进程相关研究[J].杂交水稻,1992(6):36-39.
    [57]Babu R C, Srinivasan P S, Natarajaratnam N, et al. Relationship between leaf photosynthetic rate and yield in blackgram [Vigna mungo (L.) Hepper] genotypes. Photosynthetica,1985,19(2):159-163.
    [58]Morrison M J, Voldeng H D, Cober E R. Physiological changes from 58 years of genetic improvement of short-season soybean cultivars in Canada. Agronomy Journal.1999,91:685-689.
    [59]Wells R, Schulze L L, Ashley D A, et al. Cultivar differences in canopy apparent photosynthesis and their relationship to seed yield in soybean. Crop Sci,1982,22:886-890.
    [60]Mann C. C. Genetic engineerings aim to soup up crop photosynthesis. Science,1999.283:314-316.
    [61]Moss, D.N., Musgrave, B.P. Photosynthesis and crop production.In:Brady, N.C.(ed). Advancesin Agronomy. Academic Press. NewYork and London,1971,23:317-336.
    [62]Menz K.M., Moss D.D., Cannell. R.Q., Brun W.A. Screening for photosynthetic effieieney. Crop Sci,1969,9:692-694.
    [63]Marx J.L. Photorespiration:key to increasing plant productivity. Science,1973,179:365-367.
    [64]Bhagsari A, Brown R.H. Leaf photosynthesis and its correlation with leaf eara. Crop Seience,1986,26:127-132.
    [65]LawlorD.W. Photosynthesis, production and environment. Journal of Experimental Botany, c1995,46:1389-1396.
    [66]Duncan W.G. et al. Net photosynthetic rate relative leaf growth rates, and leaf numbers of 22 races of maize grown at eight temperature. Crop Sci,1968,8670-8674.
    [67]Hanson W.D. Selection for differential productivity among Juvenile Maize plants:Accociate net photosynthetic rate and leaf area changes. Crop Sci,1971,11334-11339.
    [68]Larson E.M., Hesketh J.D., Wooley J.T., Peters D.B. Seasonal variation in apparent photosynthesis among plant stands of different soybean cultivars. Photosynth. Res,1981,2:3-20.
    [69]Nelson C.J. Genetic associations between photosynthesis characteristics and yield:Review of the evidence. Plant physiol Biochem,1988,26:543-554.
    [70]韩庚辰.玉米主要光合性状与产量的关系及遗传效应分析.作物学报,1982,(4):237-244.
    [71]Sinclair T.R. Analysis of the carbon and nitrogen limitation to soybean. Agron. J,1976,68:319-324.
    [72]Pandey C.S., Singh M. Genotypic variation in photosynthetic efficiency in relation to productivity of gram (Cicer arietinum) genotypes. Indian J Agric Sci,1996,66:466-469.
    [73]Bhatia V.S., Tiwari S.P., Joshi O.P. Inter-relationship of leaf photosynthesis, specific leaf weight and leaf anatomical characters in soybean. Indian J Plant Physiol,1996,39:6-9.
    [74]Jiang G.M., Hao N.B., Bai K.Z, Zhan Q.D., Sun J.Z., Guo R.J., Ge Q.Y., Kuang T. Chain of correlation between variables of gas exchange and yield potential in different winter wheat cultivars. Phoyosynthetiea.2000,38:227-232.
    [75]Day W., Chalabi Z.S. Use of models to investigate the link between the modification of photosynthesis characteristics and improved crop yields. Plant physiol Biochem,1998,26:511-517.
    [76]Ashley D.A., Boerma H.R. Canopy photosynthesis and its association with seed yield in advanced generations of a soybean cross. Crop Sci,1989,29:1042-1045.
    [77]沈允钢.光合作用与作物生产译丛,1980,(1):1-10.
    [78]张贤泽等.大豆群体的光合速率一测定方法及其与产量的关系.大豆科学,1984,3(2):127-131.
    [79]李永孝等.夏大豆光合速率与叶龄及水肥条件的关系.大豆科学,1992,11(1):36-42.
    [80]Patterson, TG&Hoss D.N. Enzymatic changes during the senescence of field-grown wheat. Crop Sci,1980,20:19-23.
    [81]楚奎锡.高产大豆叶面积消长规律和光合势、净同化率与产量相关模型的研究.大豆科学,1988,7(3):215-222.
    [82]Singh S.P., Lal K.B., Ram R.S., Singh K.N. Photosynthetic efficiency and productivity of pigeonpea. Indian Journal of Pulses Research,1993,6:212-214.
    [83]杜维广等.大豆光合作用与产量关系的研究.大豆科学,1999,18(2):154-159.
    [84]邹冬生,郑玉尧.大豆叶片光合、蒸腾等生理特性的品种间比较研究.大豆科学,1990,9(1):25-31.
    [85]许大全,沈允钢.光合作用与作物产量.作物高产光效生理研究进展.科学出版社,1992.
    [86]许大全.光合速率、光合效率与作物产量.生物学通报,1999,34(8):8-10.
    [87]王连铮,王岚,刘志芳,等.大豆生产的现状及增产的途径[J].大豆通报,1999.2:1-2.
    [88]陈应志.世界大豆生产和科研的进展(续一)[J].大豆通报,2005,1:26-30.
    [89]赵团结,盖钧镒,李海旺,等.超高产大豆育种研究的进展与讨论[J].中国农业科学,2006,39(1):29-37.
    [90]Cox T S,Shroyer J P.Liu B H,et al.Cenetic improvement in agronomic traits of hard red winter wheat cultivars from 1919 to 1987[J].Crop Sci,1988(28):756-760.
    [91]Ustun A., Fred L. Allen, and Burton C. English, Genetic progress in soybean of the U.S Midsouth.Crop Science.2001,41:993-998.
    [92]Karmakar P G, Bhatnagar P S, Genetic improvement of soybean varieties released in India from 1969 to 1993.Euphytica, 1996,90:95-103.
    [93]Voldeng H D,et al. fifty-eight years of genetic improvement of short-season soybean cultiveas in Canada.Crop Sci, 1997,37:428-431.
    [94]韩秉进,潘相文,金剑,等.大豆农艺及产量性状的主要成分分析[J].大豆科学,2008,27(1):67-73
    [95]李远明,刘丽君,祖伟,等.不同基因型大豆品种干物质积累与产量形成的关系[J1.东北农业大学学报,1999,30(4):324-328.
    [96]郑洪兵,徐克章,赵洪祥,等.吉林省大豆品种遗传改良过程中主要农艺性状的变化[J].作物学报,2008,34(6):1042-1050.
    [97]周勋波,吴海燕,姜德锋,等.不同结荚习性大豆株型特征与产量表现[J].中国油料作物学报,2004,26(2):62-65.
    [98]郑洪兵,徐克章,赵洪祥,等.吉林省不同年代大豆品种某些株型性状的演变[J].中国油料作物学报,2006,28(3):276-281.
    [99]Kumudini S,Hume D J,Chu GGenetic improvement in sgort season soybeans:1.dry matter accumulation,partitioning,and leaf area duration [J]. Crop Sci,2001(41):391-398.
    [100]金剑,刘晓冰,王光华。不同熟期大豆R4-R5期冠层某些生理生态性状与产量的关系[J].中国农业科学,2004,37(9):1293-1300.
    [101]朱桂杰,蒋高明,郝乃斌,等。大豆生理生态特性及其与产量的关系[J].植物学报2002,44(6):725-730.
    [102]SpechtJ E,Hume D J,Kumudini S V. Soybean yield potential:A genetic and physiological perspective. Crop Sci,1999,39:1560-1570.
    [103]王晓慧,李大勇,徐克章,等.3种进化类型大豆叶片的某些生理特性比较[J].植物生理学通讯,2006,42(2):23-26.
    [104]杨秀红,吴宗璞,张国栋.不同年代大豆品种根系性状演化的研究[J].中国农业科学,2001,34(3):292-295.
    [105]孙海波,田佩占.盆栽条件下大豆品种对肥力的反应[J].大豆科学.2006,25(2):390-392.
    [106]Xu DQ.Progress in photosynthesis research:from molecular mechanisms to Green Revolution. Acta Phytophysiol Sin,2001,27 (2) 97-98.
    [107]Wilcox J.R.Sixty years of improvement in publicly developed elite soybean lines.Crop Science,2001,41:1711-1716.
    [108]Cox, TS, Shroyer JP,,Liu BH, Sears RG, Martin TG Genetic improvement in agronomic traits of hard red winter wheat cultivars from 1919 to 1987. Crop Sci.1988,28,756-760.
    [109]Luedders, V.D.,.Genetic improvement in yield of soybeans. Crop Sci.1977,17,971-972.
    [110]Ustun, A., F.L.,Allen, B.C.,English,. Genetic progress in soybean of U.S.Midsouth. Crop Sci.2001,41:993-998.
    [111]Dornhoff, GM., R.M., Shibles. Varietal difference in net photosynthesis of soybean leaves. Crop Sci.1970,10,42-45.
    [112]Buttery, B.R., R.I., Buzzell, W.I., Findlay.Relationships among photosynthetic rate, bean yield and other characters in field grown cultivars of soybean. Can. J. Plant Sci.1981,61,191-198.
    [113]Richards, R.A..Selectable traits to increase crop photosynthesis and yield of grain crops. Jour. of Expernmental Botany. 2000,51,447-458.
    [114]董钻.关于大豆株型和株型育种的几个问题[J].1997(2)1-2.
    [115]孙卓韬,董钻.大豆株型、群体结构与产量关系的研究第二报大豆群体冠层的荚粒分布[J].大豆科学,1986,5(2):91-102.
    [116]杨光宇.大豆品种主要数量性状的相关和通径分析[J].吉林农业科学,1985,1:7-10.
    [117]彭宝,项淑华,牛建光.我国大豆育种问题浅析及对策吉林[J].农业科学,2002,27(4):19-20.
    [118]崔世友,喻德跃.大豆产量改良中生物量、收获指数的研究及展望[J]大豆科学,2006,25(1):67-62.
    [119]赵明,王美云.玉米亲本及杂交种光合速率的关系[J].北京农业大学学报,1995,21(3):265-269.
    [120]沈允刚,1998.合机构的调节和运转.生命科学,10(2):55-58.
    [121]许大全.1994.光合作用及有关过程对长期高CO2浓度的响应.植物生理通讯,30(2):81-87.
    [122]郑殿君,张治安,姜丽艳等.不同产量水平大豆叶片气体交换特性的比较[J].安徽农业科学,2011,39(1):111-113.
    [123]Farquhar GD.Sharkey TD.Stomatal conductance and photosynthesis.Annu Rev Plant Physiol,1982,33:317-345.
    [124]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯.1997,33,241-224.
    [125]Downton WJS.Loveys BR,Grant WJR.Non-uniform stomatal inhibition of photoynthesis.New Phytol,1988b,110:503-510.
    [126]董钻.大豆产量生理[M].国农业出版社,1999,58-59.
    [127]邹冬生,郑丕尧,王瑞舫.大豆叶片光合蒸腾的日变化及其与生态因子的相关性研究[J].植物生态学与地植物学学报,1990,14(4):350-357.
    [128]高辉远,邹琦,程炳嵩.大豆光合日变化的不同类型及其影响因素[J].大豆科学,1992,11(3)219-225.
    [129]周欣,郭亚芬,魏永霞等.水分处理对大豆叶片净光合速率蒸腾速率及水分利效率的影响[J].农业现代化研究,2007,28(3)374-376.
    [130]Wiebold, W.J., R., Shibles, D.E.,Green.Selection for apparent photosynthesis and related leaf traits in early generations of soybeans. Crop Sci.1981,21,969-973.
    [131]Secor J., D.R., McCarty, R., Shibles, D.E., Green. Variability and selection for leaf photosynthesis in advanced generations of soybeans. Crop Sci.1982,22,255-259.
    [132]苗以农.大豆高产潜力限制因素分析及高产类型设想.1994,(1):23-24.
    [133]张巨松,杜涌梦.棉花叶片叶绿素含量消长动态的分析[J].新疆农业大学学报,2002,25(3):7-9.
    [134]翟中和.2007.细胞生物学.北京:高等教育出版社.
    [135]Buttery, B.R., R.I.,Buzzel. Some differences between soybean cultivars observed by growth analysis. Can. J. Plant Sci. 1972,52,13-20.
    [136]常耀中.大豆的合理摆布与产量关系的研究[J].大豆科学,1981(2):22-26.
    [137]张荣贵,宋宁.大豆叶面积净光合生产率与产量的相关性[J].中国农业科学,1977(1):40-46.
    [138]杜吉到,郑殿峰.大豆复叶性状与产量形成关系的研究现状[J].黑龙江八一农垦大学学报,2005,17(2):23-27.
    [139]董钻.叶绿素含量及比叶重与大豆单株生物产量的相关性[J].沈阳农学院学报,1979,(2):7-9.
    [140]孙贵荒,刘晓丽,董丽杰.大豆叶面积指数消长与产量关系的研究[J].辽宁农业科学,2003,(4):13-14.
    [141]郑洪兵,徐克章,赵洪祥,等.吉林省不同年代大豆品种某些株型性状的演变[J].中国油料作物学报,2006,28(3):276-281.
    [142]Frederick, J.R., J.T.,Woolley, J.D., Hesketh, D.B.,Peters. Seed yield and agronomic traits of old and modern soybean cultivars under irrgation and soil water-deficit. Field Crops Res.1990,27,71-82.
    [143]Frederick, J.R., J.T.,Woollley, J.D., Hesketh, D.B., Peters,.Water deficit development in old and new soybean cultivars. Agron. J.1991,82:76-81.
    [144]梁建生,曹显祖.杂交水稻叶片的若干生理指标与根系伤流强度关系[J].江苏农学院学报,1993,14(4):25-30.
    [145]白书农,肖栩华.杂交水稻根系生长与呼吸强度的研究[J].作物学报,1998,14(3):53-59.
    [146]赵全志,凌启鸿.水稻颖花伤流量与群体质量的关系[J].南京农业大学学报,2000,23(3):9-12.
    [147]赵全志,吕德彬.杂交小麦群体光合速率及伤流强度优势研究[J].中国农业科学,2002,35(8):925-928.
    [148]潘晓华,王永锐,傅家瑞等.水稻根系生长生理的研究进展[J].植物学通报,1996,13(2):13-20.
    [149]许凤英,马均,王贺正等.强化栽培条件下水稻的根系特征及其与产量形成的关系[J].杂交水稻,2003,18(4):61-65.
    [150]孙庆泉,胡昌浩,董树亭,等.我国不同年代玉米品种生育全程根系特性演化的研究[J].作物学报,2003,29(5):641-645.
    [151]姚万山,宋连启.夏玉米高产群体生理动态质量指标的研究[J].华北农业学报,1999,14(4):54-59.
    [152]田丰,张永成.马铃薯根系吸收活力与产量相关性研究[J].干旱地区农业研究,2004,22(2):105-107.
    [153]Kumudini S.V., Hume D.J., Chu G. Genetic improvement in short season soybean:Ⅱ. Nitrogen Accumulation, Remobilization and Partitioning. Crop Science,2002,42:141-145.
    [154]徐仲伟,徐克章,张治安等.吉林省不同年代大豆品种植株地上器官生物量的变化.南京农业大学学报,2011,34(3):7-12.
    [155]曹雄,郑淑兰.大豆高产株型和生理特征研究进展[J].山西农业科学,2003,31(1):16-19.
    [156]黄中文,赵团结,喻德跃.大豆产量有关性状的QTL的检测[J].中国农业科学,2009,42(12):4155-4165.
    [157]翟俊峰.吉林省大豆品种遗传改良过程中某些农艺性状的变化[D).长春:吉林农业大学,2008,
    [158]孙贵荒,刘晓丽,董丽杰,等.高产大豆干物质积累与产量关系的研究仁[J].大豆科学,2002,21(3):199-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700