强激光光束控制与参数诊断相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
驱动器是实现可控惯性约束核聚变的关键环节。由于激光脉冲能够产生高能量密度的束流,并具有强相干性,能够在时间、空间上聚焦到ICF所要求的强度,可以成为ICF的理想驱动器。本文针对激光光束控制与参数测量工程中的几个相关问题和关键技术进行了探讨。
     1.用干涉测量技术来评估激光波前测量系统的装调
     在强激光波前测量像传递系统中,4-f光传输系统透镜之间装调过程产生的离焦量引入了一个相位调制。首先从实验上测量了像平面处波面横向剪切干涉图样,利用矩阵光学和Collins衍射公式推导出了离焦量和激光波面横向剪切干涉条纹之间的理论关系,并得到了在无离焦情况下激光传输的空域和频域方程。对实验测量得到的干涉条纹空间灰度曲线利用最小二乘法进行了余弦曲线拟合,得到干涉条纹空间尺度,利用理论关系计算得到了离焦量的数值,实现了对像传递系统装调过程的定量描述。本实验方法和结果为激光参数测量系统在线使用状态调节提供了依据和参考。
     2.分析了离轴四程放大系统前端腔镜准直采用的小孔像传递工作原理
     激光束的精密准直系统是目前大型激光装置的一项关键技术,针对离轴四程放大系统前端腔镜准直采用的小孔像传递工作原理进行分析,由Collins衍射公式出发,利用矩阵光学理论推导了监视小孔出射光场复振幅分布的描述方程,并设计了腔镜调整的监视光学系统。论文完整地提出了准直流程中的难点—腔镜准直光学监测镜头设计的物理特征描述,并利用图像边缘特征进行腔镜调节的图像处理仿真研究。基于国内惯性约束装置总体对腔镜准直调整流程,针对高功率激光系统腔镜准直过程光斑图像,利用仿真方法定量分析了光斑边缘特征,结合腔镜准直监测单元光传输的特性,使用激光光斑边缘不同部分曲率的相似性和光斑圆形度,实现对腔镜调节的量化评估。
     3.研究了近远场光斑测量光学系统中的光学瑕疵对图像调制的影响
     光斑的近场分布是描述大型激光系统光束质量的重要内容。本文从物理光学角度定性的分析了激光近场调制的因素,即入射光束自身的特征分布、光阑效应以及由于衍射效应形成的调制,并进行了一系列模拟计算。在激光光束传输过程中,由于测量系统的瑕疵,会在这个地方产生激光能量密度集中,光学元件易损。针对工程需要,本文设计了一种强激光参数测量系统光学元件瑕疵在线检测的辅助光学系统。在设计中充分考虑了测试系统的使用空间,采用了光阑后置的准远心光路,并用CCD器件来检测。
     论文对上述研究内容的创新点进行了总结,并对今后的一些研究工作提出了建议。
The drive facility is the key technical step for controlling the inertial confinement fusion(ICF).The high power laser facility is selected as the ideal ICF drive device for the reason that the laser can produce the high power intensity and spatial interference which meet the temporal pulse length and shape requirements for physical experiments.The assistant optical issue and key technique of beam control and parameter diagnostic in high power laser system are discussed in this paper.
     1.The shear interferometer method is used in evaluating installing status of the beam image-relaying test system.
     In the distribution measurement image-relaying system of high power laser,the phase modulate is produced by the laser converge point diverged from the lens focus in axis between two lens in 4-f system as the test system installed.First the interference pattern in the image plane of the 4-fsystem was measured using sheared interference laterally experiment.And the academic relationship between the off-focus values and interferential fringe interval using lateral sheared interference test method was deduced by the matrix optic theory and Collins diffraction equation. The laser transmission relationship in space and frequency are also derived in the condition of where having no off-focus values.The interference pattern gray-level curve was fitted using minimum mean-square error method,and the off-focus values was calculated by the interferential fringe interval which is received using curve fitting.The installing states of the test system are quantity expressed using the off-focus values.This interference algorithm can be used for quantitative describing the in-line working status of beam near-field measurement image-relaying system.
     2.The algorithm for aligning cavity mirror which applied in off-axis four-pass amplifier high power laser facility is detailed analyzed in this paper.
     The beam automatic alignment is the key technique of high power laser system. Aiming at the scheme of using image-relaying of pinholes in multi-pass amplifier, the laser field distribution was deduced using Collins diffraction theory based on matrix optic method.The measurement optical system was designed for test the alignment of the cavity mirror,and this test system is also applied in the simulation physical experiment.The physical character describing of measurement optical system designing for aligning cavity mirror and algorithm study of far-field image processing in aligning cavity mirror based on edge curve characters are developed in this paper.Based on the ICF prototype facility requirement for aligning the cavity mirror,aiming at the laser image in aligning cavity mirror of high power laser system,the edge characters of light are quantitative analyzed by image processing. Combining the light transfer qualitatively analysis of measurement optical system for aligning cavity mirror,the consistency of different curve edge and the circular degree of the laser image are used for quantitative estimated the azimuth of cavity mirror.
     3.The light modulating in laser near-field beam imagery was studied in this paper,which is caused by the optical component flaw mainly in the near/far laser field distribution measurement system.
     Near field diagnostic is an important parameter for ICF laser performance.The reason which causes dark spots fringes in laser near field distribution are qualitative analyzed from physical optics viewpoint.The light modulation is the associated effect between laser distribution,optical aperture and laser diffractive phenomenon. A series academic calculation was done in this paper to simulate this physical phenomenon.As the influence of the flaw in optical component,the laser induced damage is potential exist the place where the laser energy density is very high. Aiming at the engineering requirements,an assistant measurement optical lens was designed for online inspecting optical flaw using in laser parameter sensor packages in this paper.According to the requirement of limited working space,the structure of lenses is a stop iris postposition which field nearly views telecentric,and optical image is obtained directly with CCD cameras.
     Finally,the working emphasis in this paper is summarized,and some advice is also put forward to the potential assistant technical research areas in the beam control and parameter measurement system.
引文
[1]白唐,尹儒英.崭新的能源-受控核聚变.四川:四川人民出版社,1979
    [2]王淦昌.21世纪主要能源展望.1998,18(2):97-108
    [3]Lawson J D.Some criteria for power producing thermonuclear reactor,Proc Phys Soc,1957,B70:6-11
    [4]张荣竹.ICF系统光学元件高精度波前检测技术研究.四川大学博士论文,2003:1-3
    [5]Maiman T H.Nature,1960,187:493
    [6]Basov N G,Krohkin O H.The conditions of plasma heating by optical generation of radiation,proceeding of the 3~(rd) international congress on quantum electronics,Paris,1963,Columbia University Press,New York,1964:1373-1377
    [7]Chiyoe Yamonaka,Yoshiaki Itato,Yosulcazu Izawa.Nd:doped phosphate glass laser systems for laser-fusion research.IEEE J Quant Electron,1981,QE-17(9):1639-1649
    [8]Campbell J H,Suratwala T L.Nd-doped phosphate glasses for high-energy/high-peak-power lasers.Journal of Non-Crystalline Solids,2000,263&264:318-341
    [9]Dawson J M.Phys Fluids,1964,7:981
    [10]Wang G C.Suggestion of Neutron Generation with Powerful laser,Chinese J of Lasers,1987,14(11):641-645
    [11] Basove N G. Experiments on the observation of neutron emission at the focus of high-power laser radiation on a LiD surface. IEEE J. Quantum Electron,1968, QE-4:864-867
    [12] Nuckolls J H, Wood L, Thiessen A. Zimmermam G B. Laser compression of matter to super-high densities: thermonuc]ear(CTR) application. Nature, 1972,239(9): 139-142
    [13] Charatic G, Dovmdoal J. Experimental study of laser driven compression of spherical glass shells. Plasma Physics and Controlled Thermonuclear Fusion (Vienna, International Atomic Energy Agency), 1974
    [14] Speck D R. The performance of Argue as a laser fusion facility, UCRI,-79816, presented at Eleventh Europe Conference on Laser Interaction with Matter, Oxford, England , 1977
    [15] Simmons W W, Speck D R, Hunt J T. Argus laser system: performance summary, Applied Optics, 1978, 17(7): 999-1005
    
    [16] Lindl J D, Manes K, Brooks K. 'Forenuuier', First observation of laser induced thermonuclear fusion and radiation implosion, LLNL, Livermore, CA, UCRL-52202, 1976,88-98.
    [17] Storm E. Eight Session of the International Seminars of Nuclear war, Erice, Sicily, Italy,1988
    [18] Soures J, Kumpan S, Hoose J. High power Nd:glass laser for fusion facility, Appl Opt, 1974,13(9): 2081-2094
    [19] Simmons W W, Speck D R, Hunt J T. Argus laser system: performance summary. Appl Opt,1978, 17(7): 999-1005
    [20] Speck D R, Bliss E S, Glaze J A. The SHIVA laser fusion facility. IEEE J. Quantum Electron, 1981,QE-17(9): 1599-1619
    [21] Manes K R, Hildum J S. Novette laser system. Laser Program Annual Report 1984, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-50021-84.1985: 2-39-2-57
    [22] Summers M A, Seppala L G, Williams J D. Nova Activation and Performance, Laser Program Annual Report. 1984, Lawrence Livermore National Laboratory Livermore, CA,UCRL-50021-84, 1985:2-1-2-4
    [23] Hunt J T. Present and future performance of the Nova laser system. Optic Eng, 1989, 28(40):461-468
    [24] Kyrazis D T, Speck D R. Bibeau C. Performance and operation of the upgraded Nova laser,SPIE.1989,1040: 169-176
    [25] Lowdermilk W H, Campbellel E M. The Nova upgrade facility. Laser and Particle beams,1993, 11(2): 307-316
    [26] Murray J R. The Nova upgrade Beamlet demonstration project. LLNL Laser Program Annual Report 1991: 85-103
    [27] Wonterghem Van B M. System description and initial performance results for Beamlet.LLNL ICF Quarterly Report, 1994, 5(1): 1-17
    [28] Erlandson A C, Rotter M D. Design and performance of the Beamlet amplifier, ICF Annual Report, 1995, Lawrence Livermore National Laboratory, Livermore, CA,UCRL-LR-105820-95, 1996: 18-28
    [29] Bruno M Van Wonterghem, John R Murray, Jack H Campbell, D Ralph Speck. Performance of a prototype for a large-aperture multipass Nd:glass laser for inertial confinement fusion.Applied Optics, 1997, 36 (21): 4932-4951
    [30] Paisner J A, Boyes J D, Kumpan S A, Sorem M. The National Ignition Facility Project,Fusion Technology, 1994, 26(3): 755-766
    [31] Hunt J T, Manes K R, Murray J R, Renard P A. Laser design basis for the national ignition facility. Fusion Technology, 1994, 26(3): 767-771
    [32] Paisner J A. National Ignition Facility Overview, Lawrence Livermore National Laboratory,Livermore, CA, UCRL-LR-105820-94, 1995
    [33] Paisner J A, Boyes J D, K umpan S A, Sorem M. National Ignition Facility Project, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-LR-105820-95, 1996: 29-41
    [34] Lowdermilk W H. Status of the National Ignition Facility project. SPIE, 1997, 3047: 16 -37
    [35] Murray J, Correil D, Carpenter J. ICF Quarterly Report, UCRL-LR-105821, 1997
    [36] Michael Shaw, Wade Williams, Ronald House, Christopher Haynam. Laser performance operations model. Opt Eng, 2004, 43(12) : 2885-2895
    [37] Hogan W J, Moses E I, Warner B E. The National Ignition Facility, Nuclear Fusion,2001,41(5):567-573
    [38] Moses E I, Campbell J H, Stolz C J. The National Ignition Facility: The World's Largest Optics and Laser System, Proc SPIE, 2003, 5001: 1-15
    [39] Moses E I, Wuest C R. The National Ignition Facility: status and plans for laser fusion and high-energy-density experimental studies, Fusion Science and Tech. 2003, 43(3): 420-427
    [40] Miller G H. The National Ignition Facility, Proc SPIE, Vol. 2004, 5341: 1-12
    [41] Moses E I. National Ignition Facility: 1.8 Mi, 750 TW Ultraviolet Laser. Proc SPIE, 2004,5341: 13-24
    [42] Van Wonterghem B M, Burkhart S C, Haynam C A. National Ignition Facility commissioning and performance. Proc SPIE, 2004, 5341: 55-65
    [43] Miller G H, Moses E I, Wuest C R. The National Ignition Facility. Optical Engineering, 2004,43(12): 2841-2853
    [44] Miller Q H, Moses E I, Wuest C R. The National Ignition Facility: enabling fusion ignition for the 21st century, Nuclear Fusion, 2004,44: S228-S238
    [45] Craig R Wuest. The National Ignition Facility: Laser Performance and First Experiments,16th TOFE Technical Program, 2004
    
    [46] Mark C Herrmann. ICF basics, NIF and IFE, LLNL, UCRL-PRES-207384, 2005
    [47] Moses E I. The National Ignition Facility: Exploring ICF Burning Plasmas in the Laboratory,6~(th) Current Trends in International Fusion Research, 2005
    [48] Moses E I, Bonanno R E, Haynam C A. Progress on the National Ignition Facility, Proc SPIE,2006, 6101
    [49] Bunkenberg J, Boles J, Brown D C. The OMEGA high-power phosphate-glass system design and performance, IEEE J. Quantum Electron, 1981, QE-17(9): 1620-1628
    [50] Boehly T R, Craxton R S, Hutchison R J, Kelly J H, Kessler T J, Kumpan S A. The upgrade to the OMEGA laser system, SPIE, 1992, 1627: 236-245
    [51] Soures J M, McCrory R L, Boehly T R. OMEGA upgrade laser for direct-drive target experiments, Laser and Particle Beams, 1993, 11(2): 317-321
    [52] Boehly T R, Craxton R S, Hinterman T H, Jaanimagi P A. The upgrade to the Omega laser system, Fusion Technology, 1994, 26: 722-729
    
    [53] OMEGA System Operations Manual Volume I-System Description, S-AA-M-I2, 2003
    [54] Loucks S J, Meyerhofer D D, Skupsky S. Direct-Drive Inertial Confinement Fusion Research at the Laboratory for Laser Energetics: Charting the Path to Thermonuclear Ignition, 20~(th) IAEA Fusion Energy Conference, 2004
    [55] Soures J M. Direct-Drive Inertial Confinement Fusion Research at the Laboratory for Laser Energetics, 6~(th) Current Trends in International Fusion Research. 2005
    
    [56] Ross I N. Vulcan-a versatile high power glass laser for multiuser experiments. IEEE J.Quantum Electron, 1981. QE-17(9): 1653-1661
    
    [57] Parker K W. Baseline optical design of the proposed AWE 100Tw laser system. Proc SPIE,1996,3047:59-65
    
    [58] McMordie J A, Bell T H, Mrris P C, Mead M J, Thomas B R. Baseline design of proposed AWE 100 TW solid state laser system. SPIE, 3492: 1-9
    
    [59] Kirillov G A. Development of a high-power 300kJ neodymium laser. Solid-state laser for application to ICF, 1996: 43-47
    [60] Stanislav A Sukharev. The High-Power Phosphate-Glass Laser System "Luch" - a Prototype of the "Iskra-6" Facility Module, SPIE, 3492: 12-24
    [61]Eroshenko V A, Garamn S G, Kirillov G A, Kochemasov G G, Krotov V A, Sukharev S A.Calculational modeling of "Luch" facility high-power amplifier pumping and pulse amplification, SPIE, 3492: 997-1001
    [62] McMahon J M. The upgraded Pharos II laser system, IEEE J. Quantum Electron, 1981,QE-17(9): 1629-1638
    
    [63] Thiell G, Adolf A, Andre M. Laser and Particle Beams, 1988, 6: 93-103
    [64] Fleurot N, Friart D, Novaro M. Qualification and improvement of a 20 TW very high power laser at 1.06 mm: the PHEBUS Laser Facility, Proc SPIE, Vol. 1990, 1341: 280-291
    [65] Fleurot N, Andre M, Estraillier P. Output Pulse and Energy Capabilities of the PHEBUS Laser Facility. Proc SPIE, 1991, 1502: 230-241
    [66] CEL-VLASER TEAM, Overview of ICF Program at Centre D' Etudes de Limeil-Valenton,Laser Interaction and Related Plasma Phenomena, 12~(th) internation conference Osaka, Japan,1995,40-52
    
    [67] Andre M L. Status of the LMJ project. Pro SPIE, 1996, 3047: 38-42
    [68] Andre M L. Status of the LMJ project. SPIE, 1997, 3047: 38-42
    [69] Tassart J, Bonnaud G, Bourgade J L. Recent Advances in Indirect Drive ICF Physics at CEA, Proc SPIE, 2001, 4424: 45-50
    [70] Claude Cavailler, Noel Fleurot, Lonjaret T, Jean-Michel Di-Nicola. Prospects and progress at LIL and Megajoule, Plasma Phys Control Fusion, 2004,46: B135-B141
    [71] Cavailler C. Inertial fusion with the LMJ, Plasma Phys Control Fusion, 2005, 47:B389-B403
    [72] Claude Cavailler, Noel Fleurot, Jean-Michel Di-Nicola. LIL and LMJ laser facility status,Proc SPIE, 2005, 5580: 443-454
    [73] Yamanaka C, Kato Y, Izawa Y. Nd-Doped Phosphate Glass Laser Systems for Laser-Fusion Research, IEEE Journal of Quantum Electronics, 1981, QE-17(9): 1639-1649
    [74] Yamanaka C. Laser and Particle Beams,1984, 2:425-431
    [75] Nakai S, Mima K. Laser fusion-High density compression experiment and ignition program with GEKKO XII. Sov J. Quantum Electron, 1992,22 (10): 881-905
    [76] Nakatuska M, Azechi H, Jitsuno T. Glass laser system, GEKKO JQI upgrade for ICF Ignition. Fusion Technology, 1994, 26: 738-744
    
    [77] Kitagawa Y. GEKKO XII petawat module project, Annual Progress Report, 1998, 17
    [78] Izawa Y, Kitagawa Y, Fujita H. Petawatt Laser System for Fast Ignitor Studies at ILE, Osaka University, 19~(th) Fusion Energy Conference, 2002, IAEA-CN-94
    [79] Yamanaka T, Azechi H, Fujimoto Y. Progress in Direct-Drive Laser Fusion Using GEKKO-XII/PW Facility, 19th Fusion Energy Conference, 2002, IAEA-CN-94
    [80] Izawa Y. Laser Fusion Research with GEKKO XII and PW Laser System at Osaka, 20~(th) IAEA Fusion Energy Conference, 2004: 1-6
    [81] Mima K. Present Status of Fast Ignition Research and Prospects of FIREX Project, 16~(th) TOFE Technical Program, 2004
    [82] Mima K. Present status and future prospects of IFE and high power laser research in Asia,Nucl Fusion 2004, 44: S129-S133
    [83]Mima K, Azechi H, Fujita H, Izumi N, Jitsuno T, Kato Y, Kanabe T, Kitagawa Y, Kodama R,Miyanaga N, Nakai M, Nakatsuka M, Nakai S, Nagatomo H, Norimatsu T, Nishihara K,Nishimura H, Shiraga H, Takabe H, Yamanaka T. Progress of direct drive laser fusion research at ILE, Osaka, SPIE, 3492: 34-41
    [84] Deng Ximing, Yu Wunyan. Development of high-power laser system for laser fusion research, IEEE J. Quantum Electron, 1981, QE-11(9): 1600-1628
    [85]Lin Z Q.SG-Ⅱ laser elementary research and precision SG-Ⅱ program,Fusion Engineering and Design,1999,44:61-66
    [86]Lin Z Q,Wang S J,Fan D Y.SG-Ⅱ laser facility improvement and its precision progress,Chinese Journal of Lasers,2001,B10:6- 16
    [87]Gangyao Xian,Dianyuan Fan,Shiji Wang,Zunqi Lin.SG-Ⅱ solid-state laser ICF system,SPIE,1998,3492:890-895
    [88]郑玉霞,朱俭,钱列加,张明科,范滇元.“神光-Ⅱ”主放大器的研制,中国激光,1996,23(4):289-294
    [89]郑玉霞,朱俭,吕孝君,范滇元.同轴型双程放大器的研究,光学学报,1996,16(8):1036-1040
    [90]Lin Z Q,Wang S J,Fan D Y.Successful operation of 8 beam SG-Ⅱ laser facility for both 1ω_0 and 3ω_0 output,强激光与离子束,2002,14(3):403-407
    [91]Lin Zunqi,Deng Ximing,Fan Dianyuan.SG-Ⅱ laser elementary research and precision SG-Ⅱ program,IAEA TCM on Drivers and Ignition Facilities for Inertial Fusion,Osaka,Japan,1997
    [92]Zhang X M,Jing F,Shui Z.Preliminary design of Technical Integration Line(TIL) for the SG-Ⅲ laser facility,SPIE,1999,3492:877-883
    [93]Peng H S,Zhang X M,Wei X F.Overview of the solid state laser projects for ICF applications at CAEP,Proc SPIE,1998,3683:120-127
    [94]Jing F,Zhang X M,Zhu Q H.Design optimization for main amplification stage of Technical Integration Line(TIL),Proc SPIE,1999,3492:328-333
    [95]Peng H S,Zhang X M,Wei X F.Design of 60-kJ SGⅢ Laser Facility and Related Technology Development,Proc SPIE,2001,4424:98-103
    [96]Zhang Xiaomin.Progress in the Technical Integration Line,Proc SPIE,2003,4829:736-737
    [97]Zhang X,Zheng W,Wei X.Preliminary Experimental Results of Shenguang Ⅲ Technical Integration Experiment Line,Proc SPIE,2005,5627:6-12
    [98]Peng H S,Zhang X M,Fan D Y.The SG-Ⅲ solid state laser project,Abstract submitted for 3~(rd) annual international conference on solid state lasers for application to ICF,1998,June 7-12,Monterey,California
    [99]Peng H S,Zhang X M,Wei X F.Status of the SG-Ⅲ solid state laser project,Proc SPIE, 1999,3492:25-33
    [100] Zheng'W Q, he S B, Zhang X M. Development progress for amplifier of SGIII laser facility, Proc SPIE, 1999, 3492: 586-591
    [101] Boege S J, Bliss E S, Chocol C J, Holdener F R, Miller J L, Toeppen J S, Vann Charles S,Zacharias R A. NIF pointing and centering systems and target alignment using a 351 nm laser source. Proc SPIE, 1996, 3047: 248-258
    [102] Holdener F R, Abies E, Bliss E S, Boege S J, Boyd R D, Chocol C J, Davis D T, Demaret R D, EdEnglish R, Laumann C W, Miller J L, Thomas S W, Beam control and diagnostic functions in the NIF transport spatial filter, Proc SPIE, 1996, 3047: 692-699
    [103] Thomas S, Boyd B, Davis D T, Hall B. Temporal multiplexing for economical measurement of power versus time on NIF, Proc SPIE, 1996, 3047: 700-706
    [104] Bliss E S, Boege S J, Boyd R D, Davis D T, Demaret R D, Feldman M, Gates A J, Holdener F R, Knopp C F, Kyker R D, Lauman C W, McCarviIle T J, Miller J L, Miller-Kamm V J,Rivera W E, Salmon J T, Severyn J R, Sheem S K, Thomas S W, Thompson C E, Wang D Y, Yoeman M F, Zacharias R A. Design Progress for the National Ignition Facility Laser Alignment and Beam Diagnostics, SPIE, 1999, 3492: 285-292
    [105] Zacharias R A, Beer N R, E. S. Bliss, Burkhart S C, Cohen S J, Sutton S B, Van Atta R L,Winters S E, Salmon J T, Stolz C J, Pigg D C, Arnold T J. National Ignition Facility alignment and wavefront control. Proc SPIE, 2004, 5341: 168-179
    [106] Sommer S C, Bliss E S. Beam Position Error Budget Developed for NIF, 3~(rd) Annual International Conference in Solid State Lasers for Application to Inertial Confinement Fusion, Proc SPIE, 1998, Society of Photo-Optical Instrumentation Engineers, Monterey
    [107] Burkhart S C, Brading K R, Fern P M, Kozlowski M R, Murray J E, Rothenberg J E, Van Wonterghem B M, Wegner P J, Weiland T E. High-fluence and High-Power 1.05μm and 351nm Performance Experiments on Beamlet. 3rd Annual International Conference in Solid State Lasers for Application to Inertial Confinement Fusion, Proc SPIE, 1998, Society of Photo-Optical Instrumentation Engineers, Monterey
    [108] Calvin Thompson, Carl Knopp, Derek Decker. Optics Damage Inspection for the NIF, 3~(rd) Annual International Conference in Solid State Lasers for Application to Inertial Confinement Fusion, Proc SPIE, 1998, Society ofPhoto-Optical Instrumentation Engineers, Monterey
    [109]Zacharias R A,Bliss E,Feldman M,Grey A,Henesian M,Koch J.Sacks R,Salmon T.Toeppen J,VanAtta L,Wegner P.Williams W,Winters S,LaFiandra C.The National Ignition Facility(NIF) Wavefront Control System.3~(rd) Annual International Conference in Solid State Lasers for Application to Inertial Confinement Fusion,Proc SPIE,1998,Society of Photo-Optical Instrumentation Engineers,Monterey
    [110]VanArsdall P J,Bettenhausen R C,Holloway F W,Saroyan R A,Woodruff J P.NIF Integrated Computer Control System.3~(rd) Annual International Conference in Solid State Lasers for Application to Inertial Confinement Fusion,Proc SPIE,1998,Society of Photo-Optical Instrumentation Engineers,Monterey,
    [111]Boyd R D,Bliss E S,Boege S J,Demaret R D,Feldman M,Gates A J,Holdener F R,Hollis J,Knopp C F,McCarville T J,Miller-Kamm V J,Rivera W E,Salmon J T,Severyn J R,Thompson C E,Wang D Y,Zacharias R A.Alignment and diagnostics on the National Ignition Facility laser system.Proc SPIE,1999,3782:496-501
    [112]Zacharias R A,Beer N R,Bliss E S,Johnson C,Burkhart S C,Cohen S J,Sutton S B,Van Atta R L,Winters S E,Salmon J T,Latta M R,Stolz C J,Pigg D C,Arnold T J.Alignment and wavefront control systems of the National Ignition Facility.Opt Eng,2004,43(12):2873-2884
    [113]Zacharias R A,Beer N R,Bliss E S,Johnson C,Burkhart S C,Cohen S J,Sutton S B,Van Atta R L,Winters S E,Salmon J T,Latta M R,Stolz C J,Pigg D C,Arnold T J.National Ignition Facility alignment and wavefront control.Proc SPIE,2004,5341:168-179
    [114]Normand D,Ferray M,Lompre L A.Focused laser intensity measurement at 10~(18)W/cm~2and 1053nm,Opt Lett,15(23):1400-1402
    [115]Lawson J K,Seppala L G,Smith I C,Thompson C E.Beamlet Schlieren diagnostic and experiments.Lawerence Livemore Natioanal Lab,Livemore,CA 94551,UCRL-JC-124
    [116]Laumann C W,Miller J L,Thompson C E.ICF Report.Lawerence Livemore National Laboratory,Livemore,CA,UCRL-JC-106786,1991
    [117]支婷婷,黄奎喜,林尊琪.激光远场CCD诊断仪.激光与光电子学进展.1997,4:29-35
    [118]梁向春,蒋玉柱,施阿英.高功率激光的光学特性测试.光学学报,1982,2(2): 113-121
    [119]何凌.陈波,刘华,谢旭东,夏彦文,苏春燕,卢尊贵.激光远场焦斑测试技术的实验研究.强激光与粒子束,2003,15(3):245-248
    [120]谢旭东,陈波,何凌,刘华,夏彦文,苏春燕,卢尊贵.强激光远场焦斑重构算法研究.2003,15(3):237-240
    [121]Rothenberg J E,Moran B,Henesian M,Van Wonterghem B.Performance of Smoothing by Spectral Dispersion(SSD) on Beamlet.2~(nd) Annual International Conference on Solid-State Lasers for Application to ICF,Paris,France,1996:22-25
    [1]吕百达.强激光的传输与控制(第一版).北京:国防工业出版社,1999
    [2]Parent A,Morin M,Lavigne P,Propagation of super-Gaussian field distributions.Opt.&Quant Electron.,1992,24:1071-1079
    [3]吕百达,王喜庆,张彬.超高斯光束传输中的变化.激光技术,1997,21(4):206-209
    [4]Gori F,Flattened Gaussian beams.Opt.Commun.,1994,107:335-341
    [5]Baiini V,Borghi R,Gori F,Pacileo A M,Santarsiero M,Amborsini D,SchhitriPa SPagnolo G.Propagation of axially symmetric flattened Gaussian beams.Opt.Soc.Am.A,1996,13:1385-1394
    [6]Lü B,Luo S,Zhang B.Propagation of flattened Gaussian beams with rectangular symmetry passing through a paraxial optical ABCD system with and without aperture.Opt.Commun.,1999,164:1-6
    [7]罗时荣,吕百达,张彬.平顶高斯光束的传输特性.光学学报,2000,20(9):1213-1217
    [8]Tovar A A.Propagation of flat-topped multi-Gaussian laser beams.J.Opt.Soc.Am.A,2001,18:1897-1904
    [9]Li Yajun.Light beams with flat-topped profiles.Opt.Lett.,2002,27(12):1007-1009
    [10]Li Yajun.Propagation and focusing of Gaussian beams generated by Gaussian mirror resonators.J.opt.Soc.Am.A,2002,19(9):1832-1843
    [11]Lü B,Luo S,Zhang B.A comparison between the flattened Gaussian beam and super-Gaussian beam.Optik,1999,120(6):255-257
    [12]罗时荣,吕百达,张彬.平顶高斯光束与超高斯光束传输特性的比较研究.物理学报,1999,48(8):1446-1451
    [13]Palma C,Bagini V.Propagation ofsuper-Gaussian beams.Opt.Commun.,1994,111:6-10
    [14]Amarande S A.Approximation of super Gaussian beams by generalized flattened Gaussian beams.SPIE,1997,3092.345-348
    [15]Santarsiero M,Borghi R.Correspondence between super-Gaussian and flattened Gaussian beams.J.Opt.Soc.Am.A,1999,16(1):188-190
    [16]Lü Baida,Li Binzhong.Study of the correspondence between flat-topped multi-Gaussian beams and super-Gaussian beams.Journal of Optics A:Pure and Applied Optics,2002,4(5):509-513
    [17]Lü Baida,Luo Shirong,Ji Xiaoling.A further comparative study of flattened Gaussian beams and super-Gaussian beams.J.Mod.Opt.,2001,48(2):371-377
    [18]胡利云,周南润,陶向阳,雷敏生.平顶高斯光束的解析传输公式.江西师范大学学报,2003,27(2):99-101
    [19]Nanrun Zhou,Guihua Zeng,Liyun Hu.Algorithms for flattened Gaussian beams passing through apertured and unapertured paraxial ABCD optical systems.Opt.and Comm.,2004,240:299-306
    [20]S.A.Collins.Lens-system diffraction integral written in terms of matrix optics.J.Opt.Soc.Am,1970,60(9):1168-1 177
    [21]数学手册[M].北京:高等教育出版社,2005,620,566-577,836-846
    [22]王竹溪,郭敦仁.特殊函数概论[M].北京:北京大学出版社,2000,131
    [23]吕百达.激光光学-激光束的传输变换和光束质量控制[M].成都:四川大学出版社,1992,53-57
    [24]Joseph W.Goodman.Introduction to Fourier Optics[M].BeiJing:Pulishing House of Electronics Indutry,2006:50-55,88-95
    [25]梁昆淼.数学物理方程[M].北京:高等教育出版社,1998,104-114
    [26]杨志文.光学测量[M].北京:北京理工大学出版社,2005,224-230
    [27]波恩(Born.M),沃耳夫(Wolf.E).光学原理[M].北京:电子工业出版社 2005,261-278
    [1]VanArsdall P J.Holloway F W,McGuigan D L,Shelton R,T.NOVA laser alignment control system.Proc.SPIE,1984,483:54-64
    [2]Paisner J A,Boyes J D,Kumpan S A.Conceptual design of the National Ignition Facility.Proc of SPIE,1995,2633:2-12
    [3]陈庆浩,徐仁芳,彭增云,诸彩龙,庄亦飞.用于激光核聚变装置的光路自动准直 光学学报,1995,15(5):531-533
    [4]Speck D R,Bliss E S,Glaze J A.The Shiva laser-fusion facility.IEEE J.Quatron,1981,QE-17(9):1599-1619
    [5]Boyd R D.Evolution of Shiva laser alignment systems.Proc of SPIE,1980,251:204-209
    [6]Swift C D,Bliss E S,Jones W A.The three wavelength optical alignment of Nova laser.Proc of SPIE,1984,483:10-15
    [7]Swift C D,Bliss E S,Jones W A.Target plane imaging system for the Nova laser.Proc of SPIE.1986,608:2-8
    [8]Swift C D,Bliss E S,Jones W A.A target plane images for inertial confinement fusion.Proc of SPIE,1985,540:261-263
    [9]VanArsdall P J.Peeves P J.Image processing for automatic alignment in the Nova laser facility.Proc of SPIE,1986,608:29-39
    [10]Boege S J,Bliss E S,Chocol C J.NIF pointing and centering systems and target alignment using a 351 nm laser source.Proc of SPIE,1996,3047:248-258
    [11]Bliss E S,Feldman M,Murray J E.Laser chain alignment with low-power local light sources.Proc of SPIE,1995,2633:760-767
    [12]Bliss E S,Boege S J,Boyd R D.Design process for the National Ignition Facility laser alignment and beam diagnostic.Proc of SPIE,1999,3492:285-293
    [13]Van Arsdall P J,Bettenhausen R C,Holloway F W.National Ignition Facility integrated computer control system.Proc of SPIE,1999,3492:538-549
    [14]Holdener F R,Ables E,Bliss E S.Beam control and diagnostic function in the NIF transport spatial filter.Proc of SPIE,1996,3047:692-699
    [15]陈庆浩,徐仁芳,彭增云.用图像处理光路的光路自动准直.激光与光电子进展,1996,7:186-188
    [16]何为,陈庆浩,徐仁芳.分布式基于像传递带有实物定向的激光自动准直系统.光子学报,1998,27(22):181-185
    [17]何为,陈庆浩,徐仁芳,彭增云,杨惠兵,诸彩龙,赵继然.激光核聚变装置中基于像传递的自动准直技术研究.光学学报,1999,19(9):1279-1283
    [18]王方,朱启华,蒋东镔,张清泉,邓武,景峰.多程放大系统主放大级光学系统优化设计.物理学报,2006,55(10):5277-5282
    [19]王方,朱启华,徐冰,张清泉,蒋东镔,黄征,唐晓东.离轴多程放大系统中光学设计的初步研究.强激光和粒子束,2005,17(12):1843-1846
    [20]J.R.Murray.The Nova upgrade Beamlet demonstration project.1991,LLNL Laser Program Annual Report:85-103
    [21]Van Wonterghem B M.System description and initial performance results for Beamlet.1994,LLNL ICF Quarterly Report,Vol 5,No 1:1-17
    [22]Lowdermilic W H.Status of the National Ignition Facility Project.Proc of SPIE,1996,Vol 3047:16-37
    [23]Haney S W.Optimized NIF laser system based on ICF target requirements.Proc of SPIE,1996,Vol 3047:546-559
    [24]Andre M L.Status of the LMJ project.Proc of SPIE,1996,Vol 3047:38-42
    [25]景峰,张小民,满永在,朱启华,罗斌.四程放大系统能流分布的模拟计算和分析.强激光与粒子束,1998,10(1):11-16
    [26]Yarema S M,Milam D.Gain saturation in phosphate laser glasses.IEEE J Quantum Electron,1982,Vol.QE-18(11):1941-1946
    [27]Kirillov G A.Development of a high-power 300-kJ neodymium laser.Proc of SPIE,1996,Vol.3047:43-53
    [28]李俊昌.激光的衍射及热作用计算.北京:科学出版社,2003,57-76
    [29]ZEMAX.Optical Design Program User's Guide.2003,January 6:195-198
    [30]周次明,程祖海.强激光反射镜热畸变对光束传输特性的影响.强激光与粒子束,2003,15(10):769-972
    [31]季小玲,吕百达.像散透镜对超高斯光束的变换特性.激光技术,26(1):9-12
    [1]Van Arsdall P.J,Holloway F.W,McGuigan D.L.Nova laser alignment control system.SPIE,1984,483:54-64
    [2]James V.Candy,Abdul A.S.Awwal,Wilbert A.Mcclay Ⅲ,S.Walter Ferguson,Scott Burkhart.Detection of off-normal images for NIF automatic alignment.SPIE,2005,5907:1-12
    [3]吕凤年,刘代中,徐仁芳,曹金洲,范滇元.图像处理住光路自动准直系统中的应用.光学技术,2005,31(3):335-337
    [4]Ronald G.D,Richard Vollmerhausen,Keith Krapeis.Target identification performance as a function of temporal and fixed pattern noise.Optical Engineering,2001,40(30):443-447
    [5]Yu Jin Zhang.Optimal selection of segmentation algorithms based on performance evalution.Optical Engineering,2000,39(6):1450-1455
    [6]Alexis P.T,Dana H.B.Point target detection in IR image sequences:a hypothesis-testing approach based on target and clutter temporal profile modeling.Optical Engineering,2000,39(8):2270-2278
    [7]戴俊钊,冷何英.目标识别新算法的研究与应用.红外与激光工程.2001,30(2):108-111
    [8]颜树华,叶湘滨.线阵CCD交汇测量靶中非共面误差的研究.光电子·激光,2000,11(1):65-66
    [9]章毓晋.图像分析与处理[M].北京:清华大学出版社,1999,179-199
    [10]王浩,曾欢.几种图像去噪平滑算法的性能分析.科技资讯,2006,3:1-2
    [11]Agrawal R,Equitz W.R,Faloutsos C,Flickner M.D,Swami A N.Method for highdimensionality indexing in a multi-media database.Issued on July 8,1997.Filed on February 28,1996.
    [12]Ostu N.A threshold selection method from Gray-Level Histogrram.IEEE Trans System,1979,SMC-9(1):62-66
    [13]Gonzalez R C,Woods R E.Digital Image Processing[M].北京:电子工业出版社,2002:482-495
    [14]Freeman H.Computer processing of line-drawing images[J].Computing Surveys,1974,6(1):57-97
    [15]王方,朱启华,徐冰,张清泉,蒋东镔,黄征,唐晓东.离轴多程放大系统中光学设计的初步研究[J].强激光和粒子束,2005,17(12):1843-1846
    [16]ZEMAX,Optical Design Program User's Guide[M].2003,6,195-200
    [17]《数学手册》编写组.数学手册[M].北京:高等教育出版社,2005,65-68
    [18]张建恩,曹长修,金琼.图像处理中的圆分析算法.重庆大学学报.2005,28(11):43-45
    [1]中物院激光聚变研究中心,神光Ⅲ原型装置激光参数术语(初稿).2004
    [2]ZEMAX.Optical Design Program User's Guide.2003,January 6:454
    [3]Jesoph W.Goodman.Introduction to Fourier Optics(Third Edition).Beijing:Publishing House of Electroincs Industry,2006
    [4]Collins S A.Lens-system difraction integral writen in terns of matrix optics.JOSA,1970,60:1168-1177
    [5]Wen J J,Breazeale M A.A diffraction beam field expressed as the superposition of Gaussian beams.J Acoust Soc Am,1988,83:1752-1756
    [6]Biosi F,Vicail R M.Diffraction field of a circularly symmetric beam through a sequence of apertures.Appl Opt,1991,30(13):1595-1597
    [7]Tankan,Yoshida K,Taguchi M.Analytical and experimental investigation of the diffraction field of a Gaussian beam through a sequence of apertures:applicability of the beam mode expansion method.Appl Opt,1988,27(7):1310-1312
    [8]Gori F.Flattened Gaussian beams.Opt Comm.1994,107:335-341
    [9]吕百达.强激光的传输与控制.北京:国防工业出版社,1999,95-132
    [10]Williams W W,Auerbam J M,Hunt J T.NIF Optics Phase Gradient Specification.UCRL-ID-127297,1997
    [11]刘红婕,景峰,左言磊,彭志涛,胡东霞,张春玲,周维,李强,张昆,姜蕾,左明,孙志强.高功率激光束波前空间频率划分研究.光子学报,2006,35(10):1464-1467
    [12]Chen B Y,Kegelmeyer L M,Liebman J A,Salmon J T,Tzeng J,Paglieroni D W.Detection of laser optic defents using gradient direction matching.Proc SPIE,2006,6101:1-12
    [13]胡建平,马平,许乔.光学元件的激光损伤阈值测量.红外和激光工程,2006,35(2):187-191
    [14]胡建平,张问辉,段利华,马平,许乔.K9玻璃表面的1064nm激光损伤.激光杂志,2006,27(3):59-60
    [15]胡建平,马平,许乔,张问辉,段利华.1064nm偏振薄膜的激光损伤特性.中国激光,2004,(3):477-479
    [16]谈恒英,刘鹏程.施柏煊.激光光热偏转成像法无损检测光学薄膜的激光损伤.光子学报,2005,34(1):158-160
    [17]Thompson C E,Knopp C F,Decker DE.Optics damage inspection for NIF.Proc of SPIE,1999,3492:921-932
    [18]任冰强,黄慧杰,张维新,赵永凯,韩广礼,杜龙龙,王树森,路敦武.光学元件损伤在线检测装置及实验研究[J].强激光和粒子束,2004,16(4):465-468
    [19]Chow R,McBurney M,Eickelberg W K,Williams W H,Thomas M D.Correlation of test data from some NIF small optical components.Pro of SPIE,2001,4451:384-393
    [20]CBC株式会社(东京).CCTV工业自动化(FA)镜头2007
    [21]常凌颖,赵葆常,杨建峰,陈立武.用于航天立体摄影测量的光学系统设计.光子学报,2007,36(3):539-542
    [22]李晓彤.几何光学和光学设计.杭州:浙江大学出版社,1997:94-103
    [23]《光学仪器设计手册》编写组.光学仪器设计手册(上册).北京:国防工业出版社,1972:137-141
    [24]安连生,李全臣.应用光学.北京:北京理工大学出版社,第三版,2002:96-99
    [25]马科斯·玻恩,埃米尔·沃尔夫.光学原理.北京:电子工业出版社,第七版,2005:207-213
    [26]ZEMAX.Optical Design Program User's Guide.2005,January 6:65-69
    [27]Wallin W.The Control of Petzval Curvature.Journal of the optical cociety of America,1951,41(12):1029-1032
    [28]萧泽新,安连生.工程光学设计.北京:电子工业出版社,2003:13-19
    [29]郁道银,谈恒英.工程光学.北京:机械工业出版社,第二版,2006:67-73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700